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Sommario

Il presente lavoro riguarda l’utilizzo di modelli matematici per la simulazione di processi biologici ed é
frutto di una collaborazione tra i Dipartimenti di Ingeneria Meccanica e Civile e il Dipartimento di Medicina
Molecolare e Translazionale. Per questo motivo, il presente lavoro ha carattere fortemente multidisciplinare, e
le discipline coinvolte sono la biologia, termodinamica e cinetica chimica, la meccanica dei solidi classica e non-
lineare. La collaborazione tra ricercatori che provengono da diversi settori sta diventando sempre pi utilizzata
per far fronte all’esigenza di capire i dettagli di complessi fenomeni biologici, come quello dell’angiogenesi.
Angiogenesi é la formazione di nuovi vasi sanguigni a partire da qualli pre-esistenti. Questo processo inizia
quando una cellula endoteliale viene stimolata da proteine extracellulari, chiamate fattori di crescita o
ligandi, che hanno la funzione di interagire fisicamente con proteine transmembrana, note come recettori.
Essi sono presenti sulla membrana cellulare delle cellule endoteliali, che formano il vaso sanguigno. Questo
legame produce una modifica conformazionale del recettore stesso, la sua dimerizzazione e fosforilazione,
scaturando il primo segnale intracellulare verso il nucleo. Infine, una cascata di segnali, generata da questa
prima interazione, comporterà una trascrizione genetica che à responsabile della duplicazione e proliferazione
di nuove cellule endoteliali per formare nuovi vasi sanguigni. In vivo, i fattori di crescita possono essere,
per esempio, rilasciati dalle cellule tumorali che hanno bisogno di nutrimenti e ossigeno per continuare a
crescere e a proliferare nei tessuti e organi circostanti. I ligandi sono localizzati e immmobilizzati nella
matrice extracellulare; mentre i recettori sono liberi di diffondere nel doppio strato lipidico, che compone la
membrana cellulare ed hanno la funzione di percepire i segnali extracellulari e di trasmettere il messaggio
all’interno della cellula. I biologi che collaborano con noi, hanno condotto esperimenti di reclutamento e
rilocalizzazione dei recettori sulla mebrana da parte dei fattori di crescita che sono stati immobilizzati su
un substrato. L’esperimento, semplicemente, consiste nell’appogiare una singola cellula endoteliale su un
substrato sul quale, in precedenza, sono stati immobilizzati dei ligandi. La cellula inizialmente si accascia e
si deforna, cambiando la sua geometria, e contemporaneamente si osserva la diffusione dei recettori verso la
zona di contatto tra la cellula e il substrato dove sono presenti i ligandi. In quel momento avviene il legame
tra recettore e ligando. Dal punto di vista biologico, molte informazioni su queste interazioni sono già note,
ma le conoscenze in merito alla rilocalizzazione dei recettori sono ancora insufficienti. Per questo motivo,
lo scopo della nostra ricerca é stato quello di descrivere questo processo scrivendo un modello matematico,
semplificando questo problema utilizzando equazioni alla derivate parziali scritte in forma forte e in forma
debole e poi discretizzando con il metodo degli elementi finiti e metodi di analisi numerica. Le equazioni sono
poi state implementate mediante un codice in un programma agli elementi finiti e sono state ottenute delle
simulazioni che sono in buon accordo con i dati sperimentali. Nel modello preliminare si é tenuto conto solo
del processo chemo-diffusivo del problema, scegliendo una geometria e la deformazione della cellula molto
semplificati. Infine, il modello matematico tiene conto della deformabilità della cellula in grandi deformazioni.
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Chapter 1

Introduction

1.1 Motivations and research objectives

Motivations. Angiogenesis plays a major role in revascularization. Deprivation of these blood vessel
networks, resulting in diseased states related to reduced vascular perfusion which could be treated by pro-
angiogenic strategies. Recovery of the vascular network after injury is a key factor in the preventing wound
expansion and ulcer formation. During cell and tissue transplantation, wound healing in diabetic conditions
as well in aging patients suffering from slower heal recovery can take advantages of pro-angiogenic research.
Other diseases such as limb, cardiac, coronary artery ischemias arise from reduced vascular perfusion. Thus,
therapeutic angiogenesis is considered as the most strategy for revascularizing ischemic tissue and holds
prime importance for tissue engineering and regenerative medicine in recent years. The clinical applications
in the field of tissue engineering are still limited because the lack of good strategies that are able to provide
adequate amount of oxigen and nutrients through blood vessels. Insufficient vascularization in the initial stage
after implantation of tissue-engineered construct can lead to hypoxia and tissue death. Several strategies
to overcome this issue are under research, such as the delivery of growth factors (VEGF, BMP), that
stimulate the recruitment of endothelial cells. Thus, the modulation of angiogenesis process, such as the
attivation of vascular endothelial growth fator receptors by ligands can ehnance these strategies. Moreover,
angiogenesis plays a fundamental role in tumor growth and cancer proliferation. Tumor development is
sustained by angiogenesis, necessary to provide the nutriments for cancer proliferation. Tumor angiogenesis
is modulated by the interaction between specific pairs of membrane receptors expressed by endothelial cells
and extracellular ligands produced by the tumor cell. The understanding of tumor angiogenesis has leaded
to the development of antiangiogenic therapies but these therapies have not achieved the expected results
yet.

Research objectives. The goal of theoretical and experimental biology is to study complex living systems
and understand their fundamental mechanisms. Nowadays a wide amount of information about angiogenesis
phenomena are still unknown. In vitro and in vivo information from experiments are difficult to analyze
and disciplines as mathematics, thermodynamics and computational modeling can enable to attempt to fully
understand how and why a biological process works. An open communication among different disciplines
is the key. Recently, several successful ongoing collaborations, among different areas, such as biology and
engineering, exist in the angiogenesis field and analyze what aspects of their approaches led them to achieve
novel and impactful biological insight. Mathematical and computational approaches, if applied correctly, can
hugely aid to solve biological complexity and increase the discovery of the general principles. Experimentalists
and modelers must be work together, because a predictive capacity of a mathematical model will increase
as the level of communication with experimentalists increases.
This thesis is the result of a first collaboration among the Mechanical and Industrial, Civil and Molecular
and Translational Medicine Departments at the University of Brescia, consequently, this research is the out-
come of the interplay among several disciplines, as biology, thermodynamics, solid mechanics and numerical
methods. The main goal was to describe the VEGFR-2 recruitment and relocalization on endothelial cell
membrane driven by ligands by means of mathematical equations. We started from the simplest mathe-
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matical description of these phenomena, by a chemo-diffusion preliminar model. Then the model has been
enriched by adding complexity: we coupled integrins and the cell mechanics in large deformations, with the
ultimate aim of reproducing the real condition for receptor relocation driven by growth factors. Summarizing,
we investigated

• VEGFR-2 relocalization modeling by means of

– a preliminar thermodynamical model by means of a chemo-diffusion problem taking into account
of chemical kinetics on a spherical geometry, presented in Chapter 3,

– a chemo-diffusion model through a discretized weak form with a simplified mechanics to describe
the cell-subtrate contact on a surface, proposed in Chapter 4;

• interaction among VEGFR-2/ligand complex coupled with low affinity integrins through a matematical
formulation taking into account the interplay with the latter co-receptors, presented in Chapter 5;

• the VEGFR-2 relocalization by considering cell spreading, contractility and the cell-substrate contact
through a mathematical formulation in order to take into account for the large deformations, described
in Chapter 6.

Computational simulations have been performed in Chapters 3 and 4 by comparison with experimental
evidence and co-designed tests have been carried out to confirm our results. Experimental data necessary to
run the simulations, such as the receptor diffusivity and the species concentrations, are described in Chapter
2. In the following Chapter we presented fundamental biological concepts to contextualize the problem and
we proposed a brief state-of-the-art of the methods used to investigate similar biological systems.

1.2 Biological background of blood vessel

1.2.1 Angiogenesis and vasculogenesis

Blood vessels originate from two different mechanisms, vasculogenesis and angiogenesis (Figure 1.1). During
embryonic development, blood vessels develop from endothelial precursors called angioblasts, which give
rise to the first primitive vascular plexus at specific sites, in a process previously called vasculogenesis
[1, 2]. Subsequent growth and expansion of the vessels throughout the body occurs mainly by proliferation
and movement of the endothelial cells (ECs) of these first vessels, in a process called angiogenesis [3].
During this time, vessel walls mature integrate tightly with supporting cells (such as smooth muscle cells
and pericytes, namely the perivascular cells that wrap around blood capillaries) and surrounding matrix
[4]. Angiogenesis is the new blood vessels formation from pre-existing ones and is a vital factor necessary
for a wide range of physiologic and pathologic processes. For instance, angiogenesis is involved in tissue
repair and regeneration, in the ovulation, in tumor growth, and in retinopathies for repair or regeneration of
tissue and during pregnancy to build the placenta. These processes give rise to the formation of a vascular
network through a tightly controled balance between pro- and anti-angiogenic signals. Understanding the
mechanisms implicated in angiogenesis regulation and reach the knowledge of how to control ”good” and
”bad” angiogenesis can be the key to improving treatment efficacy [1]. Angiogenesis is responsible for the
remodeling and sprouting of this circulatory system. Endothelial cells, which form the linings of the blood
vessel, during later development, exhibit heterogeneity generating mature, functional blood vessels, due to
microenvironmental signals to them [1, 4].
Vasculogenesis concerns in situ differentiation and growth of precursors, while angiogenesis involves two
different mechanisms: non-sprouting angiogenesis or intussusception and sprouting angiogenesis (Figure
1.2). Quiescent endothelial cells, interconneted whith each other by tight cell adhesion junctions, constitute
a monolayer covering the inner surface of blood vessels. Intussusception divides existing vessel lumens
by formation and insertion of tissue crease and columns of interstitial tissue into the vessel lumen [2, 5].
Intussusception includes the creation of new vessels by in situ formation in the wall of large veins. Sprouting
angiogenesis is a complex multistep process, which requires the interaction among different cellular types,
soluble factors, cell surface receptors and extracellular matrix (ECM) components, with endothelial cells
playing the central role in this process. The molecular regulation of these distinct mechanisms depends on
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Figure 1.1: Genesis of the vascular system. During develop-
ment, mesodermal cells (that are cells of mesoderm, the mid-
dle of the three primary germ layers of the embryo) differenti-
ate into hemangioblasts leading to the formation of primitive
blood islands. Then, the peripheral hemangioblasts differen-
tiate into angioblasts, the precursors of endothelial cells. Sub-
sequently, ECs migrate, allowing the fusion of the blood is-
lands and their remodeling into tubular structures, giving rise
to the first primitive vascular plexus. This vascular network
rearranges into larger vessels, through the process of vasculo-
genesis of the embryo. In contrast to this phenomenon, an-
giogenesis is a neovascularization process by which new blood
vessels form from pre-existing ones. Adapted from [6].

the most important angiogenic regulators, vascular endothelial growth factor (VEGF) and its receptor
VEGFR-2 (also known as KDR), both described later in this Chapter. The sprouting process is based
on endothelial cell migration, proliferation and vessel formation. Sprouts exhibit long estensions of the
endothelial cell at the tip directed towards the VEGF-producing cells [2, 5].

1.2.2 Endothelial cells

To understand how the vascular system grows, for instance toward tumor cells, it is necessary to focus on
ECs. In the circulatory system, the largest blood vessels are arteries and veins, which have a thick wall
of connective tissue and many layers of smooth muscle cells. The inner wall is lined by a thin single sheet
of ECs, the endothelium, separated from the surrounding outer layers by a basal lamina [3] (see Figure
1.3). The endothelium is a dynamic organ and highly heterogeneous [1], surrounded by the extracellular

Figure 1.2: Vasculogenesis involves the differentiation of
ECs from precursor angioblast cells to form a primitive vas-
cular plexus, which can expand by angiogenesis. Two types
of angiogenesis are shown: intussusceptive and sprout-
ing angiogenesis. Intussusceptive angiogenesis involves the
splitting and growing of vessels in situ. In sprouting an-
giogenesis, ECs proliferate behind the tip cell of a grow-
ing branch in response to cytokines, namely small pro-
teins that are necessary for cell signalling, such as vascu-
lar endothelial growth factor (VEGF). Neighbouring mes-
enchymal cells migrate towards the neovessel in response
to platelet-derived growth factor (PDGF). Adapted from
[7].
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matrix, namely the vascular basement membrane, and is constituted mainly by proteins and proteoglycans,
that confers shape and stability to the vessel. Accessory cells, including pericytes and smooth muscle cells,
are embedded in the basement membrane, give stability and monitor the maturation of ECs. Pericytes are
required for normal microvascular structure and function because they provide structural support, protect
endothelial cells from apoptosis, and actively control the stability of the vessels [1]. ECs have the ability to
adapt their number and network of the blood vessels to create a suitable system, extending by cell migration
into almost every region of the body [3].

Figure 1.3: Simplified cross section of a blood vessel, showing the ECs
lining the lumen, basal lamina, (an extracellular structure with sup-
portive primary funcion for ECs) and the smooth muscle cells around
them as well. Source [3].

As described above, ECs originate at specific sites, in the early embryo, from precursors, called heman-
gioblasts. From these sites, during vasculogenesis, early embryonic ECs migrate, proliferate, and differentiate
to create the first rudimental blood vessels [3]. Subsequent growth and branching of the vessels throughout
the body occurs mainly by proliferation and movement of the ECs of these first vessels, in a process, previ-
ously described, called angiogenesis [3]. Each new vessel originates as a capillary sprout from the side of an
existing capillary. During angiogenesis, ECs migration involves three major mechanisms [8], namely

1. chemotaxis, the directional migration toward a gradient of soluble chemoattractants,

2. haptotaxis, the directional migration toward a gradient of immobilized ligands,

3. mechanotaxis, the directional migration generated by mechanical forces.

1.2.2.1 Mechanical properties of ECs: elastic modulus

Mechanical properties describe how cells perceive mechanical forces and respond to them and it is necessary
quantify these characteristics. The work proposed by Caille et al. [9] provides Young’s modulus values of
the cytoplasm and nucleus from experiments and validated with finite element simulations. Single ECs of
three different conformations, round cells, spread cells and isolated nuclei, were underwent to compression
between a rigid and a flexible microplates. The compression was imposed by displacing the rigid glass
carrying the cell or nucleus by steps of 2.5µm every 10 s towards the flexible glass [9]. This mechanical test
allows measurement of the uniaxial force applied to the cell and the resulting deformation. Measurements
were made in the shortes possible time and on round and spread cells to rule out cellular adaptation and
avoid the influence of cell morphology on the nucleus mechanical properties. It is been observed that round
cells deform at lower forces than spread cells and nuclei [9]. The finite element models consider the nucleus
and the cytoplasm (rest of the cell) as separate homogeneous hyperelastic materials. The models simulate
the compression and yield the force-deformation curve for a given set of elastic moduli. These parameters
are varied to obtain a best fit between the theoretical and experimental data. The elastic modulus of the
cytoplasm is found to be on the order of 500 Pa for spread and round cells. The elastic modulus of the
endothelial nucleus is on the order of 5000 Pa for nuclei in the cell and on the order of 8000 Pa for isolated
nuclei [9].

Other works are based on modern atomic force microscopy (AFM) techniques which provide the analysis
of local mechanical properties and the topography of the living cells at a high spatial resolution and force
sensitivity. In particular, AFM is used for mapping mechanical properties of a single cell that yields infor-
mation on cellular structures including cytoskeleton structure [10]. The effort is to choose an appropriate
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mechanical model for the estimation of cellular Youngs modulus using AFM. For instance, the Hertz model
has been used in the majority of cases dedicated to the assessment of elastic modulus of cells. The Hertz
model describes the simple case of elastic deformation of two perfectly homogeneous smooth bodies touching
under load [10]. The elasticity of ECs was measured with AFM, and analyzed by applying the Hertz model
[11]. The Youngs modulus value measured is on order of 10000 Pa in the work presented by Sato et al.
[11]. Other theoretical models used in studies of cell elastic properties based on AFM are the finite element
method and the theory of elastic shells [10]. However, the Hertz method supposes unrealistic assumptions
about cell indentation experiments, about the geometry of the probe tip or the material properties of the cell,
including homogeneous, isotropic, linear elastic material properties, infinitesimal deformations, and infinite
sample thickness and dimensions [12]. For this reason, an alternative pointwise approach to analyze the
AFM indentation data has been presented [12]. In addition, it is been observed that there are significant
variations of the values of elastic modulus at different cell regions, then Mathur et al. [13] showed that the
elastic modulus values of ECs were 700 Pa over the nucleus; 300 Pa over the cell body in proximity to the
nucleus, and 130 Pa on cell body near the edge.

1.2.3 Physiological and pathological angiogenesis

During the embryogenesis process, a strong angiogenic activity occurs and it is responsible and necessary for
tissues and organs growth. In contrast with this, in healthy adult body, vessels remain dormant (quiescent)
and neovascularization happens rarely, being restricted to cycling ovary and placenta during pregnancy. ECs
keep their angiogenesis abitity, since they can respond to hypoxic and inflammatory stimuli, as it happens
during wound healing. Several pathologies are due to a lack of equilibrium of the angiogenic stimulus leading
to either an excessive or insufficient neovascularization. Accordingly, a good regulation of angiogenesis is
necessary in human physiology to keep homeostasis, namely the tendency of a system to maintain internal
stability, such as the regulation of body temperature, the pH of extracellular fluid, or the concentrations
of sodium, potassium and calcium ions, as well as that of glucose in the blood plasma. A lack of vessel
maintenance is usually associated to pathological conditions such as stroke, neurodegenerative diseases or
obesity, whereas excessive angiogenesis is reported in ocular and inflammatory disorders, diabetes, cirrhosis,
multiple sclerosis, endometriosis, AIDS and autoimmune diseases [14]. Also, tumor development depends on
the formation by angiogenesis of a structure of blood vessels devoded to supply the tumor with oxygen and
nutrients and to remove waste products [14].

1.2.4 Pro- and anti-angiogenic therapies

Angiogenic therapy targets to promote neovasculature through several strategies by using pro-angiogenic
factors. These include growth factor such as VEGF, fibroblast growth factor, platelet-derived growth factor.
Growth factors delivery system is a challenging approach that can help to promote the ideal condition for
tissue regeneration and they have been applied to a wide range of in vivo and in vitro models in tissue
engineering, diabetic conditions, cardiovascular disorders and chronic wounds to improve angionenesis [15].
It has been proved that some peptides derived from grown factors, ECM, receptors promote angiogenesis.
In addition, synthetic peptides has proved to enhance EC proliferation [15]. Thus, a wide range of pro- and
anti-angiogenic processes cause angiogenesis and drug delivery systems can potentially improve to enhance
or reduce angiogenesis in a more controlled manner [16]. For instance, the fact that tumours are depen-
dent on blood supply has inspired many researchers to search for anti-angiogenic molecules and to design
anti-angiogenic strategies for cancer treatment [17]. As a consequence, inhibition of angiogenesis represents
a target for blocking tumor growth, possibly bypassing the multidrug resistance problem, since ECs, unlike
tumor cells, are genetically stable. The identification of the mechanical laws that regulate VEGF receptor
localization may open new perspectives to develop innovative anti-angiogenic strategies through the modula-
tion of EC activation. Innovative drug delivery systems can increase the effectiveness of anti-cancer therapies.
Several anti-angiogenic molecules alone or in combination with traditional treatments are in clinical trials in
the past decade [18]. These analysis are based on strategies that interfere with pro-angiogenic ligands and
their receptors or their intracellular signalling. These approaches offer new perspective for the successful
treatment of cancer. However, there are two major problems that justify caution in clinical and laboratory
studies on humans. One of the obstacles to the success of anticancer therapies is related to the inefficient
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distribution of drugs to cancer cells [19] and the problem of drug resistance. Inefficient distribution is due
to several reasons, as the abnormal structure and function of tumor blood vessels [19]. The combination of
several therapies, such as blocking the signaling of few growth factors (Figure 1.4), have been shown to be
more efficient rather than a single therapy [16]. For example, researchers have simultaneously administered
antibodies against VEGFR-2 to suppress tumor growth as well as an anti-angiogenic antibody to enhance
the efficacy of a conventional chemotherapy drug. This can be especially useful when a certain type of tumor
is known to be resistant to one treatment but not to another [20]. Drug delivery models are being developed
that couple well-studied principles of material transport and pharmacokinetics with new biomaterials [16].
Some of these therapeutic systems have been translated to the clinic with success. Despite this, additional
research is needed to improve the delivery of drugs and to identify new strategies [16].

(a) (b)

Figure 1.4: Antiangiogenic drugs, such as VEGF-TRAP and bevacizumab, block the
angiogenic effect of the growth factors VEGF and VEGFR. Modified from [16].

1.2.5 Angiogenesis at the molecular level

The neovascularization is regulated by a balance between pro- and anti-angiogenic signals and requires
proliferation, survival, migration and differentiation of ECs. Moreover, stromal cells as well as pericytes
and smooth muscle cells need to be recruited in order to generate a mature and functional vasculature. A
wide range of molecules lead such phenomena. Among others, growth factors, cell surface receptors, ECM
proteins and enzymes modulate the angiogenic process, triggering to a fine regulation.

1.2.5.1 Pro-angiogenic factors

The pro-angiogenic factors are molecules known as growth factors that cooperate to modulate ECs be-
haviour. Several molecules including growth factors, inflammatory molecules and citokines have been de-
scribed as positive or negative modulators of angiogenesis.
Pro-angiogenic factors can be divided in direct pro-angiogenic factors, which have direct effects on ECs and
indirect factors, such as:

• direct factors: angiopoietins (Ang1 and Ang2 [21]), delta-like-ligand-4 (Dll4) [22], platelet-derived
growth factor (PDGF) [23], Slits [24], hepatocyte growth factor (HGF) [25], some cytokines [Interleukin
(IL) such as IL-8 [26], IL-1 [27], IL-6 [28]], sempahorin 4 [29, 30] and the recently discovered Gremlin
[31];

• indirect factors: transforming growth factor-β (TGFβ), TNFα [32, 33], angiogenin and pleiotropic
factors, such as fibroblast growth factor (FGF) [34].
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Angiopoietins (Ang), from the family of vascular growth factors, are well-known pro-angiogenic molecules
that play a central role in blood vessel plasticity modulation and contribute to vascular maintenance by
binding Tie-2 tyrosine kinase receptor, expressed almost exclusively in ECs. Ang-1 induces ECs to recruit
pericytes and smooth muscle cells to become annexed in the vessel wall, being involved either in maintain-
ing vasculature quiescence or in the remodelling and maturation of newly formed vascular network. As
consequence, Ang-1 enhances survival, migration and network formation of ECs in vitro, contributing to
angiogenesis in vivo. Beside angiopoietins, Dll4, a kind of Notch ligands, are well-characterized players in
angiogenesis. PDGF is considered a potent mitogen since it stabilizes newly formed vessels [23].
TNF-α and angiogenin stimulate non-endothelial cells to produce direct pro-angiogenic factors, contributing
to in vivo angiogenesis [32, 33]. Also FGF simultaneously target the different cell types (ECs, pericytes
and smooth muscle cells) that participate to the new blood vessels formation is involved in angiogenesis
modulation. FGF2 is an heparin-binding protein which concurrently induces proliferation and migration of
ECs and up-regulates VEGF expression in target cells.
At last, others angiogenic factors such as the viral proteins HIV-1 Tat and p17 can modulate angiogenesis
[35, 36, 37]. Tat represents the main viral transactivator factor of HIV that drives the expression of several
cytokines and growth factors, lowering the efficiency of the immune response and contributing to the arise of
different AIDS-associated diseases [36]. Tat released by HIV-1-infected cells leads to different angiogenesis-
related AIDS-associated diseases. Tat binds and activates VEGFR-2, eventually leading to ECs proliferation
and chemotaxis in vitro and neovascularization in vivo [38] and interacts with heparan sulfate proteoglycans
(HSPGs) [39]. HSPGs are glycoproteins, found at the cell surface and in the ECM, where they interact with
a wide range of growth factors.

1.2.5.2 Anti-angiogenic factors

The action of pro-angiogenic factors is usually counter-balanced by that of anti-angiogenic ones. The most
widely investigated angiogenesis inhibitors are the proteolytic cleavage products of ECM or serum compo-
nents, such as endostatin, angiostatin, arresten, and tumstatin (by remembering that proteolytic cleavage is
the hydrolysis of peptide bonds in a protein). Multiple cytokines can also exert anti-angiogenic properties, in-
cluding interferons (IFN-α) [40] and certain interleukins (IL-10 [41], IL-12 [42] and IL-18 [43]). Several other
molecules are known to negatively regulate angiogenesis. Among those, sempahorin 3 decreases angiogene-
sis, by modulating VEGF activity and inhibiting ECs migration [44]. Also, there are few known naturally
occurring anti-angiogenic molecules, which include platelet factor 4, known as CXCL4 [45], and the ECM
protein thrombospondin1(TSP-1) [46]. TSP-1 inhibits the release of VEGF from ECM, through suppression
of metalloproteases (MMPs) activity [47], MMPs are the main enzimes capable of degrading ECM proteins.
TSP-1 also binds directly to VEGF, and this interaction can mediate the uptake and clearance of VEGF
from the ECM [48, 49].

1.2.5.3 Modulation of growth factors activity by the extracellular matrix

The extracellular matrix (ECM) is the non-cellular component present within all tissues and organs, and
provides not only essential physical scaffolding for the cellular constituents but also initiates crucial biochem-
ical and biomechanical cues that are required for tissue morphogenesis, differentiation and homeostasis. The
ECM is composed of water, proteins and polysaccharides, each tissue has an ECM with a unique composition
and topology that is generated during tissue development through a dynamic and reciprocal, biochemical
and biophysical dialogue between the various cellular components (e.g. epithelial, fibroblast, adipocyte,
endothelial elements) and the evolving cellular and protein microenvironmen. The ECM generates the bio-
chemical and mechanical properties of each organ, such as its tensile and compressive strength and elasticity,
and also mediates protection by a buffering action that maintains extracellular homeostasis and water re-
tention. In addition, the ECM directs essential morphological organization and physiological function by
binding growth factors and interacting with cell-surface receptors to elicit signal transduction and regulate
gene transcription. During angiogenesis process, growth factors, by binding their specific receptors, modu-
late the intracellular signalling pathways that support cell proliferation, migration and morphogenesis. The
microenvironment plays a central role by governing the sensitivity of cells to those factors. In blood vessels,
ECs lay on the ECM and the latter confers a mechanical sustain for ECs, but also influences their survival,
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differentiation, shape, polarity and mobility [50] [51]. During angiogenesis ECM remodelling by matrix met-
alloproteinase leads to the exposure of usually masked binding sites, resulting in higher ECs migration and
invasion [52]. The ECM can control cell behaviour by binding, sequestering or accumulating growth factors
and cytokines (FGFs, VEGFs). In this way the ECM act as a ’reservoir’ regulating the availability and ac-
tivity of signalling molecules [53, 54]. Besides, ECM-immobilized angiogenic growth factors reach high local
concentrations, retain the capacity to engage their signalling receptors [55, 57] and can sustain a long-term
stimulation of target cell [58]. Also, several anti-angiogenic molecules are ECM components or fragments
generated by ECM remodelling, such as TSP-1 [59] and endostatin and arrestin [60] respectively. Addition-
ally, the biophysical properties of the ECM are emerging as crucial regulators of important cellular functions
including cell migration [61]. The ECM contains protein fibers connected in a hydrated gel composed of
glycosaminoglycans (GAGs) and proteoglycans (including HSPGs). The main components of the ECM are
laminins, collagens, fibronectin and elastins. HSPGs are abundant components and they typically consist of
a core protein with a variable number of GAGs. Beside their presence in the ECM, HSPGs can be found in
free forms in body fluids or expressed on the membrane of most eukaryotic cell types, including ECs, where
they represent low affinity and high capacity receptors for a wide array of heparin-binding proteins (growth
factors, cytokines, chemokines, enzymes and ECM components) [62, 63]. HSPGs mainly act as co-receptors.
HSPGs also contribute to a productive binding of VEGFs with signalling VEGFRs [64]. Also Gremlin, a
non-canonical VEGFR-2 ligand, binds HSPGs, which are crucial for a productive interaction with the re-
ceptor [65]. Integrin receptors provide cells with the possibility to interact and sense the ECM. Integrins are
a large family of transmembrane heterodimeric receptors. Integrins link directly the basement membrane
to cell cytoskeleton and signal transduction, contributing both to mechanical support and cell migration
proliferation and survival. Several common intracellular signalling pathways, including focal adhesion kinase
(FAK), Src, MAPKs, phsphoinositide-3-kinase (PI3K), Rho-GTPase are activated by integrin engagement
[52, 66, 67, 68]. During angiogenesis, integrins expression and ECM composition modulate the sensitivity
of EC to growth factors [69, 71]. The cross talk between tirosine kinase receptor (TKR) and integrins
leads to improve modulation of the cellular responses [72, 73]. αvβ3 integrin supports and modulate VEGF-
and FGF-driven angiogenesis [74, 75]. Beside their role in co-operating with TKRs, integrins can mediate
TK-independent angiogenic activity of growth factors [76]. This may imply a direct interaction. What
discussed above is only a partial list of signalling molecules and pathways involved in angiogenesis. Thus,
it is clear how angiogenesis is a complex process involving several molecular pathways, interconnected each
others, that need to be finely orchestrated in order to drive the well ordinated growth of new vessels from
pre-existing ones.

1.2.6 Cystine-knot proteins

The ligands object of the present work belong to the cystine-knot proteins family, classified in three groups
[77, 78]: growth factor cystine-knots (such as TGF-β and VEGF family), inhibitor cystine-knots and cyclic
cystine-knots. In addition to these well-known components, new proteins are being added to the cystine-knot
proteins family, collected in a group called C-terminal cystine-knot proteins (CTCK). Members of CTCK
are the bone morphogenetic protein (BMP) antagonists, which include Gremlin.

1.2.6.1 Vascular endothelial growth factor (VEGF)

Vascular endothelial growth factor (VEGF) is the most important molecules to control the vascular
development of ECs. VEGF is a protein which is able to bind or stick to other molecules. The substance
that is bound by another protein is referred to as a ligand for that protein (from the Latin word ’ligare’,
meaning ’to bind’). VEGF was first described in 1983 by Dvorak and collaborators [79], as a tumour-secreted
vascular-permeabilty factor (VPF), and was first molecularly defined and cloned by Ferrara in 1989 [80].
In mammals, the VEGF family consists of five members, VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E
and placenta growth factor (PLGF) [81, 82]. VEGF-A is a protein that occurs in at least six molecular
isoforms, which consist of 121, 145, 165, 183, 189, and 206 amino acids [8, 83]. Although VEGF-A121,
VEGF-A183 and VEGF-A189 are expressed in various tissues, VEGF-A165 is the most abundantly expressed
form, whereas VEGF-A145 and VEGF-A206 are relatively rare. VEGF-A is the most important and is a very
specific mitogen for vascular ECs [8, 81]. VEGF-A provokes the full cascade of events required for angiogen-
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esis and is overexpressed in a variety of tumors [8, 81, 83]. After the VEGFs production, these ligands are
able to bind the heparin domain and diffuse through the tissue, and act on nearby ECs, stimulating them
to proliferate, and to form sprouts. The tip cells of the sprouts detect the VEGF gradient and move toward
its source [3].

Vascular permeability. The permeability of the vasculature is a feature of the capillary wall to prevent
the movement of fluid or solutes driven by a physical force. It is the main responsible of the regulation
of exchange of nutrients and water between tissues and blood [84]. Vascular permeability is vital for the
health of normal tissues and plays a central role as characteristic of many disease states in which it is greatly
increased. Examples are acute inflammation and pathologies associated with angiogenesis such as tumors,
wounds, and chronic inflammatory diseases [85]. VEGF, as said before, is a protein synthesized and secreted
by a variety of cells, serves as an EC-specific mitogen and a potent angiogenic factor. In addition, VEGF
is a key regulators of permeability. Intradermal injection of VEGF increases vascular permeability of ECs,
a critical event in inflammation and angiogenesis. VEGFs may increase vascular permeability by inducing
platelet-activating factor (PAF) synthesis [86].

1.2.6.2 VEGF receptor (VEGFR)

The region of a protein that associates with a ligand, known as the ligand’s binding site, usually consists of
a cavity in the protein surface formed by a particular amino acids placement [3]. VEGF exerts its effects
after binding to homologous TKRs.

Figure 1.5: The selective binding of a protein to another
molecule. Many weak bonds are needed to enable a protein
to bind tightly to a second molecule, or ligand. Source [3].

Many extracellular signal proteins operate through TKRs. The binding of the signal protein to the ligand-
binding domain (as shown in Figure 1.5) on the extracellular side of the receptor activates the tyrosine kinase
domain on the cytosolic side. This leads to the phosphorylation of tyrosine side chains on the cytosolic part
of the receptor, creating phosphotyrosine docking sites for various intracellular signaling proteins, which relay
the signal. Phosphorylation is a phenomenon that implies the addition of a phosphoryl group to a molecule
(Figure 1.6(a)). For most TKRs, ligand binding causes the receptor dimerization, that is bringing the two
cytoplasmic kinase domains together and thereby promoting their activation (Figure 1.6(b)). Dimerization
stimulates kinase activity by a variety of mechanisms. In many cases, dimerization simply brings the kinase
domains (green area) close to each other in an orientation that allows them to phosphorylate each other on
specific tyrosines in the kinase active sites, thereby promoting conformational changes that fully activate
both kinase domains [3].
Three different vascular endothelial growth factor receptors types, VEGFR-1, VEGFR-2 and VEGFR-3,
have been identified in ECs. Each VEGF ligand (-A, -B, -C, -D, -E and PLGF) binds in a specific manner
to three TKRs, which exert different affinity for different VEGFs [4, 8, 82, 87]. VEGFR-2, known as fdk-
1/KDR, is a transmembrane protein, which binds VEGF-A ligand, with high affinity [82]. This interpay
is the most effective in inducing tumour angiogenesis, through a complex signaling cascade [4, 8, 82, 87]. A
schematic illustration of the ligand specificity and effects of each VEGFRs is shown in Figure 1.7. VEGFR-2
is expressed on vascular and lymphatic endothelium. VEGFR-2 binds all VEGF-A isoforms, VEGF-C, -D
and -E. Downstream effects of VEGFR-2 activation in the vascular endothelium include cell proliferation,
migration, permeability and survival, resulting in angiogenesis [82].
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(a) (b)

Figure 1.6: (a-(A)) The general reaction transfers a phosphate group from ATP to
an amino acid side chain of the target protein by a protein kinase. Removal of the
phosphate group is catalyzed by a second enzyme, a protein phosphatase. (a-(B)) The
phosphorylation of a molecule by a protein kinase can either increase or decrease the
protein’s activity, depending on the site of phosphorylation and the structure of the
protein. Source [3]. (b) A structural model of the ligand/receptor complex interaction
for dimerization upon ligand-induced activation and its binding site, as determined by
X-ray. Adapted from [88].

1.2.7 Bone morphogenetic proteins (BMPs)

BMPs are ECM-associated molecules that belong to the TGF-β family of cystine-knot proteins. BMPs exert
pro-angiogenic function and can directly modulate angiogenesis by aiming ECs, or may indirectly support
angiogenesis by inducing the expression of other pro-angiogenic molecules [89]. To date over 20 members have
been identified in humans with varying functions during processes such as embryogenesis, skeletal formation,
hematopoesis and neurogenesis [90]. Despite their functions have been identified, few is known about the
regulation at the ECM, membrane surface, and receptor activation [90].

A BMP antagonist: Gremlin. In addition to the tissue-specific expression of BMP ligands and cell
surface receptors, a crucial regulatory step of BMP signalling is their modulation by specific extracellular
BMP antagonists [91]. Recently, it is been demonstrated [31, 92] the capacity of VEGFR-2 to interact with
another non-canonical ligand, known as Gremlin-1, a BMP antagonist, that leads to VEGFR2-dependent
angiogenic responses in vitro and in vivo. Gremlin-1 is a secreted protein that is known to regulate bone
formation during development. Mitola et al. [92] report the novel role of Gremlin as a VEGFR-2 agonist and
the function of the Gremlin protein. Gremlin induces angiogenesis by binding to VEGFR-2 and triggering
intracellular signaling pathways in ECs. Gremlin is produced by human tumors and is expressed by tumor
endothelium. Thus, Gremlin may play an important role in tumour vascularization [92], and for this reason
is being studied.

1.2.8 Ligands specificity

The binding of ligands to individual surface receptors can be determined by standard techniques, and rate
constants and equilibrium constants are measured in the same units as for interaction in solution. The
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Figure 1.7: Schematic illustration of ligand specificity and the effect of each of the
VEGFRs. Source [82].

kinetics constants of association and dissociation rate, k+ and k−, and their ratio Kd = k−

k+ are measured
from Surface Plasmon Resonance (SPR), well-described in Chapter 2, and BiaEvaluation1 where VEGFR-2
are immobilized on a microchip and VEGF and Gremlin are the analytes injected and flowed over the gold
chip, as shown in Figures 1.8 and 1.9 respectively.
Determination of interaction kinetics is the most characteristic application for Biacore systems. The label-
free real-time detection allows interactions to be monitored with high resolution as they happen, and the
results can be interpreted in relation to a mathematical model of the interaction mechanism to evaluate
kinetic parameters.
The work proposed by Maiolo et al. [94], the nanoscale mechanical phenomena interconnected with VEGFR-2
surface recognition by its canonical growth factor VEGF-A and its noncanonical ligand have been investi-
gated. The in-plane forces developed upon surface recognition of VEGFR-2 by the two ligands have been
quantified. For this end, interactions of the extracellular domain of VEGFR-2 with these ligands have
been investigated by integrating SPR spectroscopy data with nanoliter CONtact Angle MOlecular REcog-
nition (CONAMORE) assays. SPR analysis revealed substantial differences between VEGF-A/sVEGFR2
and Gremlin/sVEGFR2 interactions in terms of binding and dissociation kinetic rate constants, k+ and k−,
where sVEGFR2 means immobilized extracellular domain of VEGFR-2. SPR experiments and analysis were
performed immobilizing the sVEGFR2 with a density of approximately (2.2 ± 0.03) × 1010 molecule/mm2

to an Au-coated SiO2 5 × 5 mm2 chip. Binding of VEGF-A and Gremlin to immobilized sVEGFR2 was
monitored as a function of time by tracking the SPR intensity change upon binding progression. VEGF-A
was scanned for concentrations ranging from 2.5 to 400 nM and Gremlin was scanned for concentrations
ranging from 5 to 200 nM. The ligand solutions were flowed on the chip for 4 min. In particular for VEGF-A
ligand the sample volume is 40µL, with a flow rate of 10 µL

min , and dissociation time of 120 s. For Gremlin

1BIAevaluation is a stand-alone software package for presentation and evaluation of sensorgram data from real-time Biomolec-
ular interaction analysis (BIA) analyses. BIAa technology based on Surface Plasmon Resonance (SPR), is nowadays used to
identify in details a wide range of biological interplays among molecules, proteins, and other biomolecules [93]. The software
supports the evaluation of kinetic constants from sensorgram data using numerical integration and global fitting methods.

12



Figure 1.8: Parameters values for VEGF and VEGFR-2 interaction: k+ = 5.02 · 105

and k− = 4.64 · 10−7, and its ratio Kd = 9.25 · 10−13.

Figure 1.9: Values for Gremlin and VEGFR-2 interaction: k+ = 1.3 · 105 and k− =
9.44 · 10−8, and its ratio Kd = 7.27 · 10−13.

Figure 1.10: Values of k+ = kon and k− = koff for the interplay between VEGFR-2
and Gremlin. [94]
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the sample volume 40µL, flow rate 5 µL
min , and dissociation time 240 s. Examples of the binding curves are

reported in Figures 1.8 and 1.9. The binding and dissociation kinetic rate constants were evaluated from
fitting dose sensorgrams with a 1:1 Langmuir association/dissociation equation [95]. The k+ and k− values,
reported in Figure 1.10, represent the mean over a set of sensorgrams of the same ligand at different doses.
The equilibrium constant can be infered from [94] as

Keq (Gremlin) =
k+

k−
=

(8± 2)× 104

(2± 0.3)× 10−3
' 4× 107M−1 (1.1)

The lateral interactions take place in the plane of the membrane, i.e., in two instead of three space dimensions
[96]. For several reasons, the kinetic parameters of these interactions cannot be easily deduced from the rate
constants of the same interaction in solution [96]:

1. anchoring of the proteins into the membrane reduces the translational and rotational freedom, and
results in a preferred orientation of the interaction partners to each other along the normal of the
surface;

2. lateral and rotational diffusion of the membrane anchored protein is much slower than in solution.

For these reasons we tried to asses the kinetic parameters from our first thermodynamical model presented
in Chapter 3.

1.2.9 Co-receptors: Integrins

Integrins are transmembrane proteins, localized on the cell membrane, that are able to bind the surrounding
ECM to the cytoskeleton. The binding among integrins and matrix components (as specific extracellular
ligands, e.g. fibrinogen) triggers the propagation of intracellular signaling cascades that affect the cell
mechanical behavior. When integrins cluster at sites of matrix contact, they influence the assembly of cell-
matrix junctions called focal adhesion (FA) [3]. Among the many proteins recruited into these junctions
the most important is the cytoplasmic tyrosine kinase called focal adhesion kinase (FAK) [3]. Integrins
by means of cell-matrix junctions, as talin and vinculin, are able to attach contractile F-actin/myosin II
bundles, connecting them to the ECM (Figure 1.11).

Figure 1.11: The subunit structure of an active integrin
molecule, linking extracellular matrix to the actin cytoskele-
ton. Source [3].

Humans contain 24 types of integrins, formed from the products of 8 different β-chain genes and 18 different
α-chain genes, dimerized in different combinations. Each integrin dimer has distinctive properties and
functions. The binding of integrins to their matrix ligands is affected by the concentration of Ca2+ and
Mg2+ in the extracellular environment [3, 72, 97]. Several integrins are not constitutively active; they can
be, and often are, expressed on cell surfaces in an inactive or ’off’ state, in which they do not bind ligands and
do not signal [98]. Integrins are flexible, dynamic adhesive machines, and they exist in different conformations
[72, 98, 99](as shown in Figure 1.12):
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• low-affinity, inactive, and bent-clasped conformation;

• the progressive extension of the integrin unbent-clasped form;

• unbent and unclasped, high-affinity configuration.

Although cell adhesion to the ECM and cell migration are mediated by integrins, the identification of the
mechanisms by which specific integrins influence biological processes such as angiogenesis continue to be a
challenge [72]. In addition to the function of integrins for supporting cell adhesion, integrins have been widely
recognized as important molecules in the signal transduction from the ECM to the intracellular signaling
[72].

Figure 1.12: Integrins exist in several con-
formations and they have different affinities
for ECM ligands. They can exist in low-
affinity, inactive, and bent-clasped conforma-
tions. The progressive extension of the in-
tegrin extracellular domain characterizes the
transition to a primed, unbent-clasped con-
formation, which has a medium affinity for
the ECM. Active integrins display a high
affinity for the ECM and are both unbent
and unclasped. Source [99].

1.2.9.1 Cytoskeleton

Figure 1.13: Cell in culture has been fixed and
labeled to show its cytoplasmic arrays of micro-
tubules (green) and actin filaments (red). Source
[3].

Living cells have to organize themselves in space in order to operate correctly. Cells are able to interact
with their surroundings and with each other and to change their shape and move around. All cells have
the capacity for reorganize their internal structure as they grow, divide, and adapt to changing conditions
[3]. ECs are highly spread cells and their directional migration is initiated by extracellular signals such as
growth factors gradient [100]. Directional cues count in mechanical forces (for istance, cell stretching), ECM
proteins (e.g. Fibronectin, Fibrinogen) and ECM/substratum stiffness. Migration cell starts by polarizing
and extending protuberances (lamellipodium and filopodium) of the cell membrane, towards the signal,
driven by the polymerization of actin filaments [100].
The spatial and mechanical functions of living cells depend on a considerable network of filaments called
the cytoskeleton (Figure 1.13) [3]. The cytoskeletal network is highly dynamic and flexible. The three
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major cytoskeletal network responsible for various aspects of the cell’s spatial organization and mechanical
properties are listed below [3]:

1. Actin filaments regulate the shape of the cell’s surface and are necessary for whole-cell locomotion;

2. Microtubules determine the positions of membrane-enclosed organelles, direct intracellular transport,
and form the mitotic spindle that segregates chromosomes during cell division;

3. Intermediate filaments provide mechanical strength.

All of these cytoskeletal structures interact with a wide range of proteins that modulate and connect them
to other element of the cell or to each other as well [3]. These proteins are crucial to control cytoskeletal
filaments assembly, and they contain the motor proteins, that transform the energy of ATP hydrolysis into
mechanical force that can move the filaments themselves [3].
Actin is the major cytoskeletal component and has a fundamental role in various cellular processes such as
migration and morphogenesis [3, 101]. Therefore, the regulation of the structure and dynamics of the actin
cytoskeleton is essential for many processes in living cells, and abnormalities in its dynamics are associated
with many deseases such as cancer [101]. It is composed by monomeric globular subunits (G-actin)
that polymerize into helical actin filaments (F-actin). F-actin are flexible structures with a diameter of 8
nm that arrange into two-dimensional and three-dimensional linear bundles networks. Although F-actin are
dispersed throughout the cell, they are most distributed in the cortex, just under the plasma membrane [3].
The most important function of actin filaments is to create force for cellular processes such as cell motility
[3, 101, 102, 103]. Actin filaments reach this function by two distinct mechanisms: polymerization and
the actin-myosin contraction. The polymerization of actin filaments against cellular membranes provides
force, for instance, to create plasma membrane protrusions during cell migration (Figure 1.14 (b)). The
structure and dynamics of actin filament networks are regulated by actin-binding proteins, which control the
nucleation, elongation and disassembly of F-actin as well as their arrangement in three-dimensional arrays
[101]. F-actin, combined with myosin II, produces contractile filaments, as well as the force generated
through actin polymerization. Here, the force is produced by ATP-driven movement of the myosin II motor
domains along the actin filaments. Because myosin II assembles into bi-polar bundles, and the F-actin
in these structures are arranged in bi-polar arrays, the motor activity of myosin II bundles results in the
contraction of the actomyosin bundle [101](as shown in Figure 1.14 (b)).
The constant remodeling of the actin cytoskeleton into filopodium, lamellipodium, (Fig. 1.14b) and stress
fibers is essential for cell migration [8]. Filopodium is based on membrane projections that accommodate long
parallel actin filaments arranged in tight bundles [8]. Lamellipodium is composed by cytoplasmic protrusions
on the leading edge of spreading cells. Stress fibers are bundles of contractile actin filaments linked by
α-actinin and non-muscle myosin II [8].
The actin-myosin bundles contribute to cell motility. Myosin II is the kind of molecular motor, a protein
that is able to convert chemical energy, in the form of ATP, to mechanical energy, producing force and cell
migration [3, 102]. Stress fibers and focal adhesion (FA) are essential for cell adhesion to the substrate, for
changes in cell morphology and they are well-known to produce and transmit mechanical tension [104, 105].
Stress fibres have been classified in three classes on the basis of their position: ventral stress fibres, dorsal
stress fibres and transverse arcs [105]. Ventral stress fibres are the most commonly observed structures
(Figure 1.15D) and lie along the base of the cell, attached to integrin-rich FA at each end. Dorsal stress
fibres are connected to FA at one end only, which attaches them to the basal aspect of the cell. The rest of
the structure rises towards the dorsal surface, terminating in a loose matrix of actin filaments. Transverse
arcs are bundles of actin that form under the dorsal surface of migrating cells, just behind the protrusive
lamellipodium [105].

1.2.9.2 Interactions among VEGFR2/ligand complex and co-receptors

VE-cadherin and PI 3-kinase. Specificity of biological responses may be explained by quantitative con-
siderations, e.g. signal duration and strength. Signal specificity can also counter from qualitative differences
in the set of proteins docking to TKR cytoplasmic tails. Moreover, biochemical signals generated from
TKRs can potentially be integrated with those originating from other receptors and combined with preex-
isting transcription factors [87].
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Figure 1.14: (a) Adhesions elongate along actin filaments that contain myosin II, which
cross links the actin filaments and exerts tension on them. (b) Adhesion is coupled
with the protrusions of the leading edge of the cell (filopodium and lamellipodium).
Adhesion maturation to focal complexes and focal adhesions is accompanied by the
cross-bridging of actin filaments, and actomyosin-induced contractility makes stable
adhesion formation. Mature adhesions is associated with large size of F-actin bundles.
Modified from [100].

One of the complexes in which VEGFR-2 participates also includes vascular endothelial cadherin (VE-
cadherin), β−catenin and Phosphatidylinositol 3-kinase (PI 3-kinase). VE-cadherin is a transmembrane
protein that mediates endothelial homophilic adhesion and forms clusters at intercellular junctions when
cells come into contact with one another. Through its cytoplasmic tail, VE-cadherin binds β−catenin, which
in turn interacts with actin [87]. (PI3K) is a major signaling mediator downstream of cell surface RTKs
that plays a crucial role in the regulation of various cellular processes, such as proliferation and cytoskeletal
rearrangement.
Integrin. During angiogenesis, ECs adhere to a provisional ECM, through αvβ3 integrin. Once engaged
with the ECM, this integrin participates in a complex containing VEGFR-2 and PI 3-kinase. It has been
demonstrated that αvβ3 integrin takes part in the full activation of VEGFR-2 provoked by VEGF-A [74] or
by Gremlin [106]. It been tested that VEGFR-2 stimulation by its ligand VEGF-A165 [74] and Gremlin [106]
induces the formation of a complex with β3 integrin, responsible for the long-term activation of the intracel-
lular signal, triggered by canonical and noncanonical pro-angiogenic VEGFR-2 ligands. The nature of the
physical interaction between KDR and β3 subunit is been examined occuring outside the cell, demonstrated
by Borges et al.[107] generating a lack of the cytoplasmic domain in the β3 integrin. VEGFR-2/αvβ3 inte-
grin complex could support the integration of FAK and downstream signaling pathways and would promote
EC proliferation, migration and survival [87, 72]. It is possible to argue that both integrin activation and
VEGFR-2 function are reciprocally linked. The sequence of the molecular events could be as follows: VEGF
stimulation leads to an initial VEGFR-2 phosphorylation followed by proto-oncogene tyrosine-protein kinase
(cSrc) recruitment and these events induce to the complex formation between VEGFR-2 and β3 integrin
[108]. All these phenomena promote activation of αvβ3 and result in the increase integrin ligation (attiva-
tion) and phosphorylation of β3 integrin by cSrc. These occurances, in particular the complex formation,
are responsible for prolonged and full activation of VEGFR-2 increasing its long term phosphorylation [108].
Neuropilin. In addition to interacting with VE-cadherin or αvβ3 integrin, VEGFR-2 may also complex with
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Figure 1.15: Actin stress fibre structure. (A) Non-muscle myosin (red) and α-actinin
(green) (B) Stress fibers contractility model (C) The stress fibers network, indicated
with red (dorsal), yellow (arcs), green (ventral) lines (D) Model of stress fibre formation.
Dorsal stress fibres arise from focal contacts at the cell periphery and elongate up
through the cell to join transverse arcs at the cell surface. Two dorsal stress fibres may
meet a transverse arc, forming a ventral stress fibre. Source [105].

Figure 1.16: (A) The diagram shows possible sequence of
molecular events involved in interaction between VEGFR-2
and αvβ3 integrin. Adapted from [108].

Neuropilin1 (Npn1), a transmembrane protein that is expressed in ECs, but has been better characterized
for its involvement in axon guidance. The association between VEGFR2 and Npn1 is highly dependent
on the ligand isoform: through its unique 44 amino acid stretch encoded by exon 7, VEGF-A165, but not
VEGF-A121, triggers the formation of the VEGFR2/Npn1 complex. This isoformspecific association may be
the molecular mechanism that allows greater stimulation of VEGFR2 tyrosine kinase activity by VEGF-A165

rather than by VEGF-A121 [87].

1.3 A state-of-the-art in mathematical models

Receptor-ligand interaction has been extensively studied in the last past thirty years from the biological
and computational point of view. A theoretical framework is proposed by Bell [109] for the analysis of
adhesion among cells or of cells to surfaces when the adhesion is controlled by reversible bonds between
specific molecules such as enzyme and substrate. Knowing the reaction rates for reactants in solution and
of their diffusion constants both in solution and on membranes, it is possible to estimate reaction rates for
membrane-bound reactants. Two models are developed for predicting the rate of bond formation between
cells and are compared with experiments. Bell compared his theory with measurements of the binding of cells
to lectin-coated fibers or to lectin-coated cells on fibers [109]. In this work, the cell periphery is described
by the fluid mosaic model and the cell membrane is a phospholipid bilayer in which various proteins are
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inserted and retained by virtue of the favorable free energy of their hydrophobic amino acids in the lipid as
compared to the aqueous environment [109]. The force required to separate two cells is shown to be greater
than the expected electrical forces between cells, and of the same order of magnitude as the forces required
to pull gangliosides and perhaps some integral membrane proteins out of the cell membrane.
Single experiments similar in design to those typically performed for Scatchard analyses of binding data
conducted at physiological temperature and in the absence of inhibitors of ligand-receptor complex inter-
nalization and degradation can provide kinetic data sufficient to permit derivation of all the respective rate
constants by numerical methods [110]. Mayers et al. [110] developed an analytical solution based on a
kinetic model which assumes that all of these processes follow first order kinetics. The model represents
interactions of surface receptors, the surface ligand-receptor complex and internalized receptor-ligand com-
plex. The present model is applicable to systems in which there is no cell growth, nonspecific binding of
the ligand can be ignored, free ligand concentration is sufficiently large to be considered constant. It has
been demonstrated the applicability of this approach to the analysis of interactions of IFN-α with human
epithelial tumor cells and Madin-Darby Bovine Kidney Epithelial (MDBK) cells and to the analysis of the
interaction of epidermal growth factor with human fibroblasts [110].
DiMilla et al. [111] proposed a simple mathematical model which relates basic cell biochemical and bio-
physical properties to cell movement speed based on adhesion receptor-ligand (as integrins and fibronectin)
kinetics, receptor-ligand densities, cell rheology and cytoskeletal force generation. This model incorporates
cytoskeletal force generation, cell polarization, and dynamic adhesion as requirements for cell motility. A
feature is the proposed existence of an asymmetry in some cell adhesion-receptor property, correlated with
cell polarity. A viscoelastic-solid model for cell mechanics allowed to represent one-dimensional motion with
a system of differential equations describing cell deformation and displacement along with adhesion-receptor
dynamics. The cell surface is modeled as two flat rectangular sheets, representing the dorsal and ventral
sides, so that to form a continuous surface. In this paper, equations under the simplifying assumption that
receptor dynamics are at a quasi-steady state relative to cell locomotion are solved. The results are strictly
valid for sufficiently slow cell movement, as typically observed for tissue cells such as fibroblasts. The results
predict how cell speed might vary with intracellular contractile force, cell rheology, receptor/ligand kinetics,
and receptor/ligand number densities.
Gilson et al. [112] have outlined a class of models of binding that have foundation in statistical thermodynam-
ics, and are computationally friendly. A central feature of these models is the use of thorough conformational
sampling over a modest number of essential degrees of freedom. This approach yields converged results in
short computational times. These models are physically interpretable, because they are assembled from
well-defined components that can be tested. In addition, the efficiency of these models will enable statisti-
cally significant validation studies to be carried out. It should therefore be possible to provide users with
functional computational tools [112].
A simple dynamic corral model for the lateral diffusion of transmembrane proteins in the membrane by the
cytoskeleton, proposed by Leitner et al. [113], can predict the average time of proteins to escape from the
corral. The dynamic corral acts as a gate which when open permits an otherwise trapped protein to escape
to a neighboring corral in the cytoskeletal network. It has been solved for the escape rate over a wide range
of parameters of the model, and compare these results with Monte Carlo simulations. Upon introducing
measured values of the model parameters for Band 3 in erythrocyte membranes, it is possible to estimate
the value for one unknown parameter, the average rate at which the corral closes [113].
In the study of Gabhann et al. [114], the relative contribution of placental growth factor (PlGF)-induced
VEGF displacement to the synergy is quantified using a mathematical model of ligand-receptor binding to
examine the effect on ligand-receptor complex formation of VEGF and PlGF acting together. Parameters
specific to the VEGF-PlGF system are used based on existing data. The model is used to simulate in
silico a specific in vitro experiment in which VEGF-PlGF co-operation is observed. It is been shown that,
whereas a significant change in the formation of endothelial surface growth factor-VEGFR1 complexes is
predicted in the presence of PlGF, the increase in the number of VEGFR2-containing signaling complexes
is less significant; these results were shown to be robust to significant variation in the kinetic parameters of
the model. This is the first computational model describing transport and binding of VEGF to its receptors.
It has been constructed this model to describe unsteady in vitro situations as a first step to modeling
more complex, dynamic in vivo situations. In a subsequent work, Gabhann et al. [115] compared Monte
Carlo simulations of the stochastic binding of the one isoform of VEFG (VEGF-165) and VEGFR-1 and
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VEGFR-2 on cells in vitro to equivalent deterministic simulations performed using the full kinetic method
previosly described [114]. Gabhann et al. have investigated the behavior of VEGF-VEGF receptor binding
to endothelial cells using deterministic and stochastic methods, looking in particular at the area over which
the cell is ’integrating’ the signals from its activated receptors. For the first model type, they found that the
agreement between the stochastic and deterministic results depended upon the area over which the fractional
occupancy is averaged, which is equivalent to the area over which the cell is integrating the signals from its
activated receptors. For the second stochastic model type, results agree with the deterministic models over
all areas, ligand and receptor densities tested. The deterministic models are suitable for simulating in vitro
experiments of VEGF-VEGF receptor system on endothelial cells [115].
The compartment model described by Stefanini [116] provides informative quantitative biological details
such as VEGF distributions in tissue and in blood, as well as the sensitivity of VEGF distribution to specific
biological parameters. This model was formulated to represent both VEGF transport throughout the entire
human body and the distribution of free and bound VEGF at the molecular level in tissues, of two isoforms
of the VEGF-A family.
In another study [117], it is analysed the dynamics of VEGF retention in a controlled in vitro situation of
human umbilical vascular endothelial cells (HUVECs) in Matrigel. They shown that fluorescent VEGF accu-
mulates in pericellular areas and colocalizes with VEGF binding molecules. Analysis of fluorescence recovery
after photobleaching reveals that binding/unbinding to matrix molecules dominates VEGF dynamics in the
pericellular region. Computational simulations using experimental measurements of kinetic parameters show
that matrix retention of chemotactic signals can lead to the formation of reticular cellular networks on a
realistic timescale. Taken together, these results show that VEGF binds to matrix molecules in proximity
of HUVECs in Matrigel, and suggest that bound VEGF drives vascular network patterning. Gao et al.
[118] shows the diffusive process of free receptors on a flat membrane wrapping around an infinitely long
cylindrical and spherical ligand-coated particle. Golestaneh and Nadler presented a work [119] about the
deformation and adhesion behaviors of cells in the presence of receptors and ligands by improving the exist-
ing models as Boal [120] and others authors. An isotropic continuum fluid membrane model was proposed
for the cell membrane based on membrane theory. This novel constitutive model engaged the intensity of
the presence of receptors on the deformation and adhesion of the cell through introduction of spontaneous
area dilation. Additionally a nonlinear binding force relation was proposed based on charge-induced dipole
interaction between receptors and ligands, which was enriched by a consideration of shielding phenomenon
which is in agreement with intrinsic behavior of bonds. Therefore the diffusion of the receptors on the cell
membrane was formulated under the influences of receptor-receptor and receptor-ligand interactions. The
current study was allocated to investigate the adhesion and deformation of a cell by applying the developed
model. Additionally, the influences of variety of membrane, binding and electrolytic constitutive coefficients
on the cell adhesion and deformation behaviors were investigated. The results obtained shown that the
ligands density on the substrate has strong effect on the adhesion and deformation of the cell. The novelty in
this work is the introduction of the intrinsic membrane area dilation due to the presence of receptors [119].
A general model for the dynamic rearrangement of the cytoskeleton that incorporates cell contractility has
been presented by Deshpande et al. [146]. It is shown that the model captures the general contractile
features observed in experimental studies including: (i) the decrease of the forces generated by the cell with
increasing substrate compliance, (ii) the influence of cell shape and boundary conditions on the development
of structural anisotropy, and (iii) the high concentration of the stress fibers at the focal adhesions [146]. The
model has been extended to account for additional phenomena, such as focal adhesion formation with the
stresses in the connecting fibers [147]. More recently, the study presented by Ronan et al. couples a mixed
mode thermodynamic and mechanical framework, in a fully 3D implementation, that predicts focal adhesion
formation and growth with a material model that predicts stress fibre formation, contractility [148].
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Glossary
AIDS Acquired Immunodeficiency Syndrome
Ang Angiopoietin
ADP Adenosine Diphosphate
ATP Adenosine Triphosphate
BMP/R Bone Morphogenetic Protein/BMP Receptors
Dll4 Delta-like-ligand-4
EC Endothelial Cell
ECM Extracellular Matrix
FRAP Fluorescence Recovery After Photobleaching
FA Focal Adhesion
FAK Focal Adhesion Kinase
FGF Fibroblast Growth Factor
GAG Glycosaminoglycan
HSPG Heparan Sulphate Proteoglycans
IFN-α Interferon-α
PDGF/PDGFR Platelet Derived Growth Factor /PDGF Receptor
PLGF Placenta Growth Factor
TGF-β Transforming Growth Factor-β
TKR Tyrosine Kinase Receptor
TNF-α Tumor Necrosis Factor-α
VEGF/R Vascular Endothelial Growth Factor / VEGF receptor
VPF Vascular Permeability Factor
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Chapter 2

Experiments and data

2.1 Introduction

The following Chapter includes a brief description of the experiments and the analysis employed in our
research, as Fluorescence Recovery After Photobleachig (FRAP), Surface Plasmon Resonance (SPR) and
time-lapse analysis, to investigate phenomena that are occurring on the cell membrane. These experiments
were conducted to determine the parameters necessary to run computational simulations. Some parameters
values were extracted from the current literature as well. The following parameters have been investigated:
the concentrations of the species involved in function on the time, receptor diffusivity coefficient, cell ra-
dius, thermodynamic parameters (equilibrium constant, Gibbs free energy). Mechanical properties (elastic
modulus) of endothelial cells and kinetics constants in a bulk solution are previously described in Chapter
1. Understanding the experimental procedures, the environmental and boundary conditions of living cells,
is essential to be able to characterize the system.

2.2 Biological background on cell membrane

The plasma membrane surrounds the cell boundaries and separates the cytosol and the extracellular environ-
ment. It takes many kinds of membrane proteins to enable a cell to communicate with its environment [3].
At this aim, the plasma membrane contains proteins (e.g. VEGF receptors) that act as sensors of external
signals (e.g. VEGF or Gremlin), allowing the cell to change its behavior in response to environmental cues
[3]. These proteins or receptors working as sensors, transferring information across the membrane reaching
the nucleus and modifying its DNA. Some proteins work as links, connecting the cytoskeleton to the ECM
(e.g. integrins, described below), while others serve as receptors to detect and transduce chemical signals in
the cell’s environment.
Biological membranes have a common structure: each is a very thin film of lipid and protein molecules, held
together primarily by noncovalent interactions [3]. Cell membrane is a dynamic and fluid system because
is constituted by lipid molecules, which yield the basic fluid structure of the membrane. This structure is
called lipid bilayer, composed by a double layer of 5 nm thick, serving as a impermeable barrier to the
transit of water-soluble molecules (Figure 2.1).

The most abundant membrane lipids are phospholipids. These have a polar head group containing a phos-
phate group and two hydrophobic hydrocarbon tails (Figure 2.2). In addition, lipid bilayer contains glycol-
ipids and cholesterol. Glycolipids are sugar-containing lipid molecules, and instead of a phosphate-linked
head group, they have sugars attached [3].
Generally, lipid molecules, in a cell membrane, are small compared to protein molecules, and there are always
a large additional number of lipid molecules than protein molecules (about 50 lipid molecules for each protein
molecule in cell membranes that are 50% protein by mass) [3]. Membrane proteins have several different
functions because are not identical in structure and in the way they associate with the lipid bilayer [3]. The
fluidity of a lipid bilayer depends on both its composition and its temperature, and it can be observed a phase
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Figure 2.1: A three-dimensional schematic view of a cell membrane and
the general arrangement of its lipid and protein constituents. Source
[3].

Figure 2.2: A two-dimensional view of a cell mem-
brane. Source [3].

segregations in which specific lipids form separated domains, called lipid rafts. In 1972 the fluid-mosaic
membrane model of membrane structure was put foward by Singer and Nicolson, built on thermodynamic
fundamentals of organization of membrane lipids and proteins and their lateral mobility within the cell
membrane structure [124]. Outcomes to the relationship among growth factor receptors and lipid rafts are
described in [125] and it is presented a model for understanding the different observations regarding the role
of membrane microdomains in the regulation of growth factor receptor functions.
Lipid rafts have been shown to affect cancer cell migration [126], but the underlying mechanisms are still
not well understood. Lipid rafts can control the dynamics of actin cytoskeleton and focal adhesion in cell
migration [126] and may regulate the signal transduction [127]. Experimental evidence [127] suggests that
there are probably several different mechanisms through which rafts control cell signaling. For istance, lipid
rafts may include incomplete signaling pathways that are triggered when a receptor is recruited into the raft
[127].

Lateral diffusion. Many membrane proteins extend through the lipid bilayer, and hence are called trans-
membrane proteins, with part of their mass on either side. Cell-surface receptors are usually transmembrane
proteins that stick to ligands in the ECM and generate different intracellular signals inside the cytosol matrix
[3]. These proteins are able to move laterally within the cell membrane. The lateral motility of cell-surface
receptors is sustained by their localization in microdomains and by cytoskeletal interactions [128]. Studies
demonstrate [128] how cells direct different cytosolic signaling pathways although initiated by the same lig-
and. It is possible to alter the lateral diffusivity of cell-surface receptors by changing membrane fluidity,
cooperation with cytoskeletal elements, scaffolding proteins, or membrane components allows for specific
downstream signaling pathways and concludes in distinct cellular reactions [128, 129]. It is well-known that
cytoskeleton can affects cell membrane receptor diffusivity. Lateral diffusion rates of membrane proteins can
be measured by using the technique of fluorescence recovery after photobleaching, described later, and single
molecule tracking.

Protein dynamics. A central challenge for biology research is to understand the wide networks of proteins
interplay that module and control cellular processes. Proteins are necessary for most biological processes,
but knowing their function is awkward because proteins inside cells are not just objects with chemically
reactive surfaces. They localize to specific environments (that is, membranes, cytosol, organelle lumen or
nucleoplasm), undergo diffusive movement, and often have mechanical parts and are coupled to chemical
events [130, 131]. The discovery and development of Green Fluorescent Protein (GFP) from the jellyfish
Aequorea victoria, and more recently Red Fluorescent Protein (DsRed) from the sea anemone Discosoma
striata, have revolutionized the research ability to analyse protein localization, dynamics and interactions
in living cells [130, 132]. In so doing, these fluorescent proteins allow the investigation of molecule func-
tions within the complex environment of the cell. Any protein can be tagged with GFP, a β-barrel-shaped
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protein that contains an amino-acid triplet (Serine-Tyrosine-Glycine) that undergoes a chemical rearrange-
ment to form a fluorophore. A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent
chemical compound that can re-emit light upon light excitation. Advances in GFP reserch, for instance the
optimization of the expression of GFP in different cell types and the identification of their variants with
more favourable spectral properties, including increased brightness, relative resistance to the effects of pH
variation on fluorescence, and photostability [130, 132], has been helpful for this research field. Paralleling
to these developments, others progress in fluorescence imaging methods and microscope systems are crucial
to visualize the localization of GFP fusion proteins, to quantify their concentrations and to investigate their
mobility and interactions.

2.3 Experiments

2.3.1 Fluorescence Recovery After Photobleachig (FRAP) analysis

The mobility of a fluorescent protein can be evaluated using a specific type of photobleaching technique called
fluorescence recovery after photobleaching (FRAP). In a typical FRAP experiment, a fluorescent molecule
is irreversibly bleached within a small region of interest (ROI) using high intensity laser light. Fluorescence
recovers the group of bleached molecules by replacing through unbleached molecules from outside the ROI
[130, 133, 134]. GFPs are ideal for using them in FRAP analysis because they can be bleached without
noticeable damage of the cell. From quantitative FRAP studies, two kinetic parameters of a protein can
be obtained: the mobile fraction, Mf , which is the fraction of fluorescent proteins that can diffuse into the
bleached region during the time span of the experiment, and the diffusion constant D| , which is a measure
of the rate of protein motion with no presence of flow or active transport. D| describes the mean squared
displacement that a protein traverses through a random path on time and has unit of measure area per
time [µm2 s−1]. A typical FRAP curve, which provides information on D| and Mf is shown in Figure 2.3(a).
The mobile fraction provides a measure of the extent to which the fluorescent protein can move within cells.
It is determined by calculating the ratio of the final to the initial fluorescence intensity in the bleached
region, corrected for the amount of fluorescence removed during photobleaching. When the mobile fraction
is less than 100%, some fluorescent molecules might be irreversibly bound to a fixed/anchored substrate.
Alternatively, non-diffusional factors, such as diffusion barriers or discontinuites within the structure where
a protein localizes, might be responsible for the lower mobility [130].

Figure 2.3: Fluorescence recovery after photobleaching. (a) Plot of fluorescence inten-
sity in a region of interest versus time after photobleaching a fluorescent protein. (b)
Example of cells expressing vesicular stomatitis virus envelope glycoprotein VSVG-GFP
in the endoplasmic reticulum under control conditions (top panel) or in the presence
of tunicamycin, a mixture of homologous nucleoside antibiotics (bottom panel) [130].
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Diffusion theory. The diffusion constant for a particle in a free volume is described by the Stokes-Einstein
formula:

D| =
k T

6π η `
(2.1)

where D| is the diffusion constant, T is the absolute temperature, η is the viscosity of the solution, k is the
Boltzmann’s constant and ` is the molecule radius. Absolute temperature is usually constant within cells,
then the main factors underlying D| are the radius of a protein and the viscosity of the environment within
which it is diffusing. Membranes have a much higher viscosity than cytoplasm, because the presence of the
cholesterol, then the lateral diffusion of a protein embedded in the cell membrane is slower than soluble protein
diffusivity within cytoplasm [130]. Even though viscosity and cell radius are key properties, other factors
have an important role in determining protein diffusion rates. These include protein-protein interactions
or binding to a matrix that might slow or immobilize a protein, and collisions with other molecules, which
hinder free diffusion. Such factors often prevent proteins from diffusing at their theoretical limit inside cells.
For this reason, the value of D| by FRAP analysis must be carefully interpreted [132].

2.3.2 Surface Plasmon Resonance (SPR) experiment

The use of biosensors employing surface plasmon resonance (SPR) provides excellent instrumentation for a
label-free and for real-time probe of biomolecular interactions. SPR is a powerful technique for monitoring
the affinity and selectivity of biomolecular interactions, for analysis of association and dissociation rate
constants and modeling of biomolecular interaction kinetics, as well as for equilibrium binding analysis [135].

Figure 2.4: A typical SPR setup is shown for one flow
cell in a SPR instrument. The gold surface of a sen-
sor surface can be modified chemically to allow the
attachment of biomolecule of interest. The analyte
is then injected and flowed over the chip surface to
detect its binding with the chip-immobilized protein.

Figure 2.5: In the sensor device, the bind-
ing between the analyte and the immobilized
molecule, is continusly monitored. From the
plot shown in this Figure it is possible the ex-
traction of kinetics constants.

The SPR theory is based on a physical process of light-metal film interaction, shown in Figure 2.4. A
material having a high refractive (with respect to medium) index is coated with thin gold layer. This
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material is treated with monochromatic light with a specific angle and some of the energy is transferred to
free electron of the gold layer and forms surface plasmons. This plasmon will end up with specific refractive
index. Immobilized proteins can be attached to the gold surface with a material. An analyte, molecule in the
soluble phase, is sent through the channels and if association or dissociation (Figure 2.5) happens between
the immobilized material and analyte the refractive index will be changed which we can measure with high
precision in real time. This phenomenon can be used for the biomolecule detections.

2.3.3 Time-lapse analysis

Considerable improvement in optics hardware, electronic imaging sensors, and a wealth of fluorescent probes
and labeling methods, light microscopy, over the past decades, has allowed sensitive time-lapse imaging of
cells and single molecules. The time-lapse imaging studies consist of four successive steps: 1) planning of
the experiment and acquisition of the image data, 2) preprocessing of the data to correct for systemic as
well as random errors and to enhance relevant features, 3) analysis of the data by detecting and tracking
the molecules significant to the biological questions underlying the study, and 4) analysis of the resulting
trajectories to test predefined hypotheses or detect new phenomena. Time-lapse experiments involve the
acquisition of not only spatial information, but also temporal information.

2.4 Results

2.4.1 Receptor diffusivity D| R from FRAP analysis

In order to measure the VEGFR-2 diffusivity D|R on the cell membrane, we performed FRAP analysis on
EC culture expressing Enhanced Yellow Fluorescent Protein (EYFP)-labeled extracellular domain (ECD)
of VEGFR-2 (ECD-VEGFR2-EYFP). The rate of fluorescence recovery provides quantitative information
about the kinetics of diffusion of fluorescent molecule in the photo-bleached area. To measure the dynamics
of VEGFR-2 on the cell membrane, fluorescence was recorded every minute for 10 minutes in an irreversibly
photo-bleached membrane region of ECD-VEGFR2-EYFP EC in the absence or in the presence of 50 ng/mL
of VEGF-A or Gremlin. In our experimental conditions, 77% of ECD-VEGFR2-EYFP in the plasma mem-
brane turns out to be in a mobile form, with a lateral diffusion coefficient of D|R = 0.198µm2 s−1 in untreated
ECs. Both VEGF-A or Gremlin treatments decrease the receptor mobility respectively to 0.098µm2 s−1 and
0.052µm2 s−1 (Fig. 2). All these data highlight, shown in our work [137], that non-activated receptors are
mainly free to move on the cell membrane, thus suggesting that VEGFR-2 phosphorylation, its dimeriza-
tion, and its interaction with membrane co-receptors or intracellular signaler reduce its motility. FRAP data
support our former observations [136] that VEGFR-2 is rapidly recruited and immobilized in the membrane
in close contact with ligands. These events lead to increase the receptor concentration in the basal side of
the cell.

2.4.2 Ligand concentration from SPR analysis

Measures from SPR lead the ligand concentration of 620 RU, where ligand is the analyte injected in the flow
chamber; RU is the unit of measure which means Resonant Unit where 100 RU = 0.10 ng

mm2 = 0.10 ·10−15 g
µm2 .

Then the ligand concentration measured by SPR is given by

cSPRL = 620 RU = 0.620
ng

mm2
= 0.620 · 10−15 g

µm2
(2.2)

The ligand weight, WL, is measured as 22 ÷ 24 kDa = 22000 ÷ 24000 Dalton , that in grams means
WL = (22000÷ 24000) · 1.6605 · 10−27 · 103 g.

First of all, it is necessary to calculate the ligand molar weight ML, measured in [ g
mol ] as the product of the

ligand weigth and the Avogadro’s number NA, which leads to

ML = WL ·NA = (22000÷ 24000) · 1.6605 · 10−27 · 103 g · 6.02214129 · 1023, (2.3)

and by using the average of the molecule weight, ML becomes
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Figure 2.6: VEGF-A and Gremlin reduce VEGFR-2 motility on EC surface. (A) FRAP
analysis was performed on cell plasma membrane of serum-starved ECD-VEGFR2-
EYFP over-expressing ECs treated or not with VEGF-A or Gremlin. Images were
acquired at one per minute for 12 minutes, 2 before and 10 after bleaching. The
bleached area is indicated by a square and the recovery time is indicated over the
images as seconds after photobleaching. (B) Collected images were analyzed using
simFRAP ImageJ plugin to calculate diffusion coefficients. The graph shows diffusion
coefficient mean s.d. of control, VEGF-A, and Gremlin treated cells [137].

ML = 23000 · 1.6605 · 10−27 · 103 g · 6.02214129 · 1023 = 22999.48
g

mol
(2.4)

Then, the initial concentration of ligands [ mol
µm2 ] is as follows

cinL =
cSPRL

ML
=

0.620 · 10−15 g
µm2

22999.48 g
mol

= 2.69 · 10−20 mol

µm2
(2.5)

The density of ligands, considered as a dimeric molecule which bounds two receptors, which are monomeric
molecules, is given by

cinL = 2.69 · 10−20 mol

µm2
·NA = 2.69 · 10−20 · 6.022 · 1023 = 16.20 · 103 ligands

µm2
. (2.6)

2.4.3 Time-lapse analysis to asses the VEGFR-2 recruitment

Time-laspse experiments have been conducted to analyze VEGFR-2 recruitment. ECD-VEGFR2-EYFP
co-expressing GM7373 cells1 were cultured on glass coverslips that were flipped upside-down on Gremlin- or
fibrinogen- coated microslides. The coating process, shown in Figure 2.7, is how the EC surface was covered
with ligands. Time-lapse analysis of Z-stack sections was performed to follow the recruitment of VEGFR-2
at the basal side of cells during cell adhesion to the substratum. As shown in Figure 2.8, VEGFR-2 rapidly
moved to the membrane portion in close contact with immobilized Gremlin (specific ligand for VEGFR-2) but
not with fibrinogen (FG) (a specific ligand for αvβ3 integrin but not for VEGFR-2). VEGFR-2 recruitment
driven by Gremlin was already detectable 6 to 8 minutes after EC/Gremlin interaction [136].
The time-lapse analysis provides us normalized fluorescence intensity on substratum during cellular adhesion
after 120 minutes. For the case of interest, we used the values for the VEGFR-2 recruitment with immobilized
Gremlin on the substrate shown on Table and Figure 2.8 A”.

1Foetal bovine aortic endothelial GM7373 cells were grown in Dulbecco’s modified Eagle medium containing vitamins,
essential and non-essential amino acids[136].
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Figure 2.7: Endothelial cells cultured on glass
coverslips that are flipped upside-down on
Gremlin- or fibrinogen- coated microslides. [136]

Figure 2.8: A’. Images show ECD-VEGFR2-EYFP (green) and β3-ECFP (red) distri-
bution at the basal portion of cells in contact with the fibrinogen- or Gremlin-coated
surface at 30 minutes with a 3D reconstructions. A”. Quantification of normalized
fluorescence of ECD-VEGFR2-EYFP (green lines) and β3-ECFP (red lines) on FG- or
Gremlin-coated surfaces during cell adhesion [136].

ECD-VEGFR2-EYFP co-expressing GM7373 cells were seeded and cultured on coverslips for 24 hours in
FCS-free Endothelial Cell Basal Medium. Coverslips were then flipped on immobilized Gremlin or FG coated
µslides. Z-stack images in time-lapse were recorded for 120 minutes using a Zeiss Axiovert 200M epifluores-
cence microscope equipped with a Plan-Apochromat 63x/1.4 NA oil objective and ApoTome system. The
data have been used to determine key parameters and information that will be explained in the next chap-
ters. The fluorescence intensity is proportional to the total receptor (free plus bound) concentration on the
cell membrane.
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time [min] normalized fluorescence of VEGFR-2

0 1, 8125
2 2, 6775
4 3, 6175
6 8, 8875
8 12, 0225
10 17, 4375
12 20, 1325
14 19, 665
16 20, 4075
18 22, 86
20 23, 0375
22 23, 2725
24 24, 915
26 25, 865
28 27, 88
30 26, 9075
60 39, 271833
120 36, 814

Furthermore, another experiment to assess whether VEGFR-2 redistributes on the EC membrane when
challenged by free ligands has been performed. Adherent ECs over-expressing the ECD-VEGFR2-EYFP
were exposed for 2 hours to a linear concentration gradient of free ligands, including Gremlin or VEGF-A, in
a 2D chemotaxis assay. Figure 2.9A shows that ECD-VEGFR2-EYFP is equally distributed on non-treated
ECs (t0), while the gradient of ligands induces the ECD-VEGFR2-EYFP to be recruited in the lamellipodia
at the leading edge of migrated ECs (t30). Together, these data demonstrate that free ligands are able to
induce EC polarization, leading to VEGFR-2 relocation on the surface of ECs. Although VEGFR-2 ligands
are usually considered as soluble molecules, in vivo they are bound and immobilized in the ECM or on
the cell membrane by heparan-sulphate proteoglycans. To characterize the influence of the immobilized
VEGFR2-ligands on the VEGFR-2 rearrangement on the cell membrane, we plated ECs on ligand-coated
cell plates. Similarly to immobilized Gremlin, immobilized VEGF-A induces the recruitment of VEGFR-2
to the plasma membrane at the basal aspect of ECs, thus leading to a localized and directional receptor
activation (Fig. 2.9B). The concentration of VEGFR-2 at the apical side of the cell is diminished by the
recruitment of VEGFR-2 at the basal portion of adherent cells, as demonstrated by the reduction of soluble
ligand binding ability (Fig. 2.9C).

2.4.4 Final stationary value x∞

VEGFR2-GM7373 cells were seeded on substrate-bound FG (Figure 2.10 a) or Gremlin (Figure 2.10 b).
After 4 hours, cells were washed and incubated with free Gremlin for 90 minutes at 4◦ C. Then, cells were
washed three times with phosphate buffered saline (PBS)2 or with PBS plus 1.5 mol

L NaCl to remove Gremlin
bound to heparan sulfate proteoglycans. Finally, VEGFR2-bound Gremlin was detected by immunofluores-
cence analysis. The apical portion of immunostained cells was photographed using a Zeiss Axiovert 200M
epifluorescence microscope equipped with a Plan-Apochromat 63X/1.4 NA oil objective and ApoTome sys-
tem and apical VEGFR2-bound Gremlin was quantified in 20 cells/sample using AxioVision Extended Focus
module and Image-Pro Plus software (Figure 2.10 c). Data are expressed as percentage ± s.d. of Gremlin
positive area in respect to the total cell area.

2Phosphate buffered saline (PBS) is a balanced salt solution commonly used in the bio-laboratory. The essential function
of a balanced salt solution is to maintain pH and osmotic balance as well as provide cells with water and essential inorganic
ions. PBS is generally utilized to maintain cells for the short term in a viable condition while the cells are manipulated outside
of their regular growth environment. One of the early formulas of PBS was developed by Renato Dulbecco, published in 1954
[138] which are termed DPBS for Dulbecco’s phosphate buffered saline.
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Figure 2.9: VEGF-A and Gremlin induce VEGFR2 rearrangement on EC surface. (A)
ECD-VEGFR2-EYFP ECs were stimulated by a VEGF-A or Gremlin gradient for 2
hours, fixed and analysed using a Zeiss Axiovert 200M system. Arrows indicate ECD-
VEGFR2-EYFP-enriched cell lamellipodia. (B) HUVECs adherent on Fibrinogen or
VEGF-A-enriched substrates were stained for VEGFR-2 (green) and actin (red) and
analysed using a LSM510 Meta confocal microscope. Images show the basal portion of
adherent cells with the orthogonal z reconstruction of the whole cell (630; white bar:
10 m). (C) VEGFR2-EC, seeded on immobilized Gremlin or on coverglass for 4 hours,
were incubated with 150 ng/mL of Gremlin for 90 minutes at 4 ◦C and washed with
NaCl. VEGFR2-bound Gremlin, in the apical portion of the cells, was detected by
immunofluorescence analysis using a Zeiss Axiovert 200 M microscope system (630x;
white bar: 10 µm). Data are expressed as percentage ± s.d. of Gremlin positive area
with respect to the total cell area (n = 20 cells/sample) [137].

When there is not VEGFR-2 recruitment, just the 2% of the apical side of ECs is covered by receptors, while
when there is VEGFR-2 recruitment, just the 0.57% of the apical side is coated. In fact, for the case of
interest, these data provide evidence for the final stationary value x∞ = 0.73 furnished by the ratio of these
values.

2.4.5 Receptor concentration

From the current literature, we achived the value of the receptors on the surface of the cell equal to 7000±1700
binding sites/cell, from experimental evidence [31]. The binding sites are refered at the monomeric molecule
but we have the ligands which are dimeric molecule; for this reason, the receptor density is multipied by the
factor two.
From experimental evidence, the cell radius is taken ` = 20µm, and the cell area A = 4π`2 = 5026µm2, by
assuming a spherical geometry. The initial concentration of receptors is as follow

cinR = 2 · 7000± 1700 receptor/cell

A ·NA
= 4.3 · 10−24 mol

µm2
(2.7)

Then, the receptor density is given by

cinR = 2 · 7000± 1700 receptor/cell

A
= (2.78÷ 3.46)

receptor

µm2
. (2.8)

2.4.6 Gibbs free energy and equilibrium constant

From the activation energy of the VEGF/VEGF-2 interactions in [139], display in Figure 2.11, the average
of the Gibbs free energy ∆G is given by

∆G = −(8.9 + 8.6 + 8.5 + 8.3 + 7.5 + 7.1 + 7.5 + 6.6)/8 = −7.875
kcal

mol
= −32949

J

mol
(2.9)
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Figure 2.10: VEGFR-2 recruitment by
substrate-bound Gremlin decreases its
density at the apical side of ECs [137].

Figure 2.11: Thermodynamic parameters of VEGF/VEGFR-2 interactions determined
by isothermal titration calorimetry (ITC), namely a physical technique used to deter-
mine the thermodynamic parameters of interactions in solution [139].

This value will be used to determine the equilibrium constant, by using the equation [140]

Keq(T ) = exp

(
−∆G(T )

RT

)
(2.10)

with the temperature T = 37◦C = 310.15◦K and the gas constant R = 8.3144621 J
mol ◦K .

2.5 Conclusion

Time-laspse experiments have been performed to analyze VEGFR-2 recruitment on the EC membrane.
Both immobilized Gremlin and immobilized VEGF-A induce the relocalization of VEGFR-2 to the plasma
membrane at the basal aspect of ECs, thus leading to a localized and directional receptor activation. The
major outcome are that VEGFR-2 has a lateral mobility of about D|R = 0.198µm2 s−1, as measured by
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means of FRAP experiments, and that free and ECM-immobilized ligands induce VEGFR-2 rearrangement
on EC plasma membrane. After ligand interaction, VEGFR-2 dimerizes and transduces an intracellular
signaling via its relocation on the cell membrane and the recruitment of intracellular proteins. All these
data, collected in our work [137], highlight that non-activated receptors are mainly free to move on the
cell membrane, thus suggesting that VEGFR-2 phosphorylation, its dimerization, and its interaction with
membrane co-receptors or intracellular signaler may reduce its motility.
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Chapter 3

Receptor-ligand thermodynamical
model

3.1 Introduction

We propose a preliminar thermodynamic model which describe the VEGFR-2 relocation driven by growth
factors justified by experimental evidence previously described. In particular, we are referring to the time
lapse analysis that provide the receptor diffusion during cellular adhesion to the gremlin-immobilized sub-
strate after two hours. We are interested in kinetics and diffusion that are confined to two dimensions, by
trying to develop a tecnique to infer key parameters from experimental measurements suitably interpreted
through an reaction-diffusion model. The main challenge of our research may be to understand the VEGFR-2
mobility and the features that influence its relocation to predict the receptor behavior in order to control its
movement toward the abluminal part of the endothelial cell membrane. Our preliminary model of the process
focuses only on the reaction and diffusion of VEGFR-2, with a very simplified geometry and a cell-substrate
contact dynamics. Receptor and ligand are schematically represented as the reactants of a single chemical
reaction which produces the receptor-ligand complex.

3.2 VEGFR2-ligand thermodynamical model

3.2.1 Stoichiometry and chemical kinetics

Let us introduce notation [140] for a generic reaction scheme∑
i

ν
(j)
i Ai = 0; i = 1, . . . , r; j = 1, . . . , s (3.1)

where Ai are the species symbols, r the species number and j the number of chemical reactions. Rewriting
the j-th reaction as ∑

i

ν+j
i Ai =

∑
i

ν−ji Ai (3.2)

ν+j
i are the forward stoichiometric coefficients and ν−ji the backward coefficients of the j-th reaction,

ν
(j)
i = ν−ji − ν

+j
i (3.3)

the net stoichiometric coefficients. Denoting concentrations by ci from standard chemical kinetics, we may
write the net rate of reaction j as

rj = k+
j (T )

∏
i

(ci)
ν+j
i − k−j (T )

∏
i

(ci)
ν−ji = r+

j − r
−
j (3.4)
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where k+
j (T ) and k−j (T ) are the forward and backward reaction rate constants at temperature T , and the

net density of production (if positive) or consumption (if negative) of species i,

wi =
∑
j

ν
(j)
i rj (3.5)

At equilibrium, the law of mass action is

Kc
eq(T ) =

∏
i

(ci)
ν
(j)
i (3.6)

where Kc
eq(T ) is the equilibrium constant based on the concentrations.

By the principle of detailed balance, we have, at any temperature T

k−j (T ) =
k+
j (T )

Kc
eq(T )

(3.7)

so that we may write

rj = k+
j (T )

[∏
i

(ci)
ν+j
i − 1

Kc
eq(T )

∏
i

(ci)
ν−ji

]
(3.8)

The above assumes low concentrations, but can be generalized to high concentrations as follows. Denoting
activities by ai, interpreted as ”effective concentrations”, we rewrite the net rate of reaction j as

rj = k̃+
j (T )

∏
i

(ai)
ν+j
i − k̃−j (T )

∏
i

(ai)
ν−ji (3.9)

Next we write chemical potential as

µi = µ0
i (T ) +RT ln ai (3.10)

and we insert them in the general chemical equilibrium condition for reaction j∑
i

ν
(j)
i µeq

i = 0 (3.11)

to obtain ∑
i

ν
(j)
i µ0

i (T ) +RT
∑
i

ν
(j)
i ln aeq

i = 0 (3.12)

that is ∏
i

(aeq
i )ν

(j)
i = Keq(T ) (3.13)

where

Keq(T ) = exp

(
−∆Go(T )

RT

)
(3.14)

where ∆Go(T ) is the standard Gibbs free energy given by

∆Go(T ) =
∑
i

ν
(j)
i µ0

i (3.15)

Inserting aeq
i in Eq. (3.9), from the condition rj = 0 at the equilibrium, we obtain the detailed balance

relation
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k̃+
j (T )

k̃−j (T )
= Keq(T ) (3.16)

One possible choice for the dependence of the activity on concentration is

ai =

ci
cmax
i

1− ci
cmax
i

(3.17)

where cmax
i is some prescribed saturation value. For low concentrations ci � cmax

i we have

ai =
ci
cmax
i

(3.18)

Comparing Eq. (3.9) with Eq. (3.4) we see that

k̃±j (T ) = k±j (T )
∏
i

(cmax
i )±ν

(j)
i (3.19)

and, at equilibrium, ∏
i

(ceq
i )ν

(j)
i = Kc

eq(T ) (3.20)

Kc
eq(T ) =

∏
i

(cmax
i )ν

(j)
i Keq(T ) . (3.21)

3.2.2 Balance equations for 2D spherical geometry

In our model, we consider concentration fields ci(θ, φ, t) on the cell membrane surface, measured in
[

number of molecules
µm2

]
each obeying the local balance equations

∂ci
∂t

= D| i∇
2
2 ci + wi (3.22)

When they are known, we may compute the number of species on a portion of surface Ω, and the net rate
of production (if positive) or consumption (if negative) of species i using the relations

nΩ
i (t) =

∫
Ω

ci(θ, φ, t) dA (3.23)

WΩ
i =

∑
j

ν
(j)
i

∫
Ω

rj(θ, φ, t) dA =

∫
Ω

wi dA (3.24)

For simplicity, we consider spherical coordinates to map the cell assumed of constant radius `. The balance
equations are obtained by considering a generic control surface Ω delimited by the boundary ∂Ω and writing

ṅΩ
i = −ṅΩ→

i +WΩ
j (3.25)

where, assuming a fixed (time independent) control surface, we have

ṅΩ
i =

d

dt

∫
Ω

ci dA =

∫
Ω

∂ci
∂t

dA (3.26)

ṅΩ→
i =

∫
∂Ω

~hi · ndP =

∫
Ω

∇2 · ~hi dA = −D| i
∫

Ω

∇2
2 ci dA (3.27)

where the species’ flux ~hi is given by the Fick’s law,
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(a) (b)

Figure 3.1: Cell geometry. Spherical coordinates: `, cell radius; θ, zenith and φ azimuth
angle. (b) Control surface Ω, boundary ∂Ω, the unit vector n is orthogonal to ∂Ω and
tangent to the spherical surface.

~hi = −D| i∇2 ci

[
µm2

s

1

µm

molecule

µm2
=

molecule

s µm

]
(3.28)

where the gradient operator is

∇2 = iθ
1

`

∂

∂θ
+ iφ

1

` sin θ

∂

∂φ
(3.29)

and the Laplacian

∇2
2 ci =

1

`2 sin θ

∂

∂θ

(
sin θ

∂ci
∂θ

)
+

1

`2 sin2 θ

(
∂2ci
∂φ2

)
(3.30)

and, therefore, ∫
Ω

∂ci
∂t

dA =

∫
Ω

[
D| i∇

2
2 ci + wi

]
dA (3.31)

which by the arbitrariness of the choice of Ω implies the local form

∂ci
∂t

= D| i∇
2
2 ci + wi . (3.32)

3.2.3 Particular cases of interest

Consider first the simple reaction scheme between ν free receptors R and a free ligand L to form a recep-
tor/ligand complex C = RνL , as illustrated in Figure 3.2 for ν = 1 and ν = 2.
The single-reaction scheme for either case is

ν R + L � C (3.33)
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The nonzero stoichiometric coefficients are ν+
R = ν, ν+

L = 1, ν−C = 1, νR = −ν, νL = −1, νC = 1.

(a) (b)

Figure 3.2: (a) Chemical reaction between a free receptor and a free ligand. (b)
Chemical reaction between two free monomeric receptors and a free dimeric ligand.

Assuming low concentrations, the reaction rate is given by

r = k+cR
νcL − k−cC = k+

(
cνR cL −

cC
Kc

eq

)
(3.34)

so that

wC = r, wR = −νr, wL = −r (3.35)

The equilibrium constant based on concentrations becomes

Kc
eq =

ceq
C

(ceq
R )ν ceq

L

(3.36)

Next, we need to model the fact that only portions of the membrane surface are in contact with the substrate
where ligands L (and, therefore, also complexes C) are constrained. We define a ”contact function” α(θ, φ, t)
that is equal to zero where there is no contact and, therefore, the reaction cannot take place, and equal to
unity where there is contact. For numerical reasons, we assume that α is a smooth function so that instead
of a sharp step from 0 to 1 we assume a (possibly very steep but) smooth transition from 0 to 1. In our
azimutal symmetry, we take

α(θ, φ, t) = sigm(θ, π − θA(t)) (3.37)

where sigm denotes a suitable sigmoidal function, i.e., such that sigm(θ, θ0) is a smooth increasing function
changing rapidly from 0 to 1 around θ0, such as 1

1+exp(b(θ0−θ)) for a sufficiently large b1.

For the angle span of attached spherical cap, we assume a simple ramp during the attachment phase assumed
to last up to time τA, after which θA remains constant,

θA(t) =

{
θ0
A + t

τA
(θ∞A − θ0

A) for t ≤ τA
θ∞A for t > τA

(3.38)

Therefore, the local net reaction rate is given by

r =
(
k+cR

νcL − k−cC
)
α = k+

(
cνRcL −

cC
Kc

eq

)
α (3.39)

The balance equations (3.22) become

1For future reference, we note that the derivative be−bx

(1+e−bx)2
of the sigmoidal function 1

1+e−bx
is an approximation of the

delta function.
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Figure 3.3: The angle span of attached spherical θA.


∂cR
∂t = D|R∇2

2 cR − ν r
∂cL
∂t = D| L∇2

2 cL − r
∂cC
∂t = D|C∇2

2 cC + r

(3.40)

where
cR is the concentration or density of receptors on the ECM

[
number of molecules

µm2

]
cL is the concentration of ligands
cC is the concentration of the receptor-ligand complexes

D|R is the diffusivity of receptors
[
µm2

s

]
D| L,D|C are the diffusivities of the ligands and complexes, that we assume negligibly small since the ligands
have no mobility on the substrate.

We assume as initial conditions:

cR(θ, 0) = c0R, cL(θ, 0) = c0L, cC(θ, 0) = 0

Balance equations, using the explicit form of the 2D Laplacian and assuming azimuthal symmetry (∂/∂φ =
0), can be rewritten as 

∂cR
∂t =

D|
R

`2 sin θ
∂
∂θ

(
sin θ ∂cR∂θ

)
− ν r

∂cL
∂t = −r
∂cC
∂t = +r

(3.41)

Additionally, it is convenient to rewrite the balance equations in dimensionless form. One possible way to
choose dimensionless variables is as follows. For time we choose the standard Fourier number
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t̃ =
D|R t
`2

⇒ t =
`2 t̃

D|R
(3.42)

where ` is the cell radius, t the time and D|R the receptors diffusivity.
So, the dimensionless time at the end of the attachment phase, is given by

τ̃A =
D|R τA
`2

(3.43)

For the equilibrium constant we set
K̃ = Kc

eqB
ν (3.44)

where B is a reference concentration that we choose later. For concentrations we set

R =
cR
B
, L =

cL
B
, C =

cC
B

(3.45)

so that

r = k+Bν+1

(
RνL− C

K̃

)
(3.46)

Substituting in the balance equation

∂cC
∂t

= +r (3.47)

we obtain

∂C

∂t̃
=
k+Bν `2

D|R

(
RνL− C

K̃

)
α (3.48)

We now choose B so that the multiplicative term k+Bν `2

D|
R

of eq. (3.48) becomes 1, i.e., we set

Bν =
D|R
k+ `2

(3.49)

As a result, we obtain the important governing dimensionless parameter of the problem K̃

K̃ =
Kc

eq D|R
k+`2

(3.50)

In terms of the dimensionless net reaction rate

r̃ =

(
RνL− C

K̃

)
α =

r α

k+Bν+1
(3.51)

the balance equations can finally be written as
∂R
∂t̃

= 1
sin θ

∂
∂θ

(
sin θ ∂R∂θ

)
− ν r̃

∂L
∂t̃

= −r̃
∂C
∂t̃

= +r̃

(3.52)

with uniform initial conditions that are made possible by our use of the contact function α

R0(θ, 0) =
c0R
B

= c0R
k+ `2

D|R
(3.53)

L0(θ, 0) =
c0L
B

= c0L
k+ `2

D|R
(3.54)
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C0(θ, 0) =
c0C
B

= 0 (3.55)

We can for convenience change variable θ to

z = − cos θ (3.56)

so that the range (0, π) for θ corresponds to (−1, 1) for z,

dz = sin θ dθ (3.57)

1

sin θ

∂

∂θ

(
sin θ

∂R

∂θ

)
=

∂

∂z

(
(1− z2)

∂R

∂z

)
(3.58)

and integrals over portions of spherical surface rewrite as∫
Ω

c(θ, t) dA =

∫ π

0

c(θ, t) 2π`2 sin θ dθ =

∫ 1

−1

c(z, t) 2π`2 dz (3.59)

The boundary conditions (no fluxes and no gradients in concentrations at θ = 0 and θ = π due to symmetry)
are the following: (

∂R

∂z

)
z=−1

=

(
∂R

∂θ

)
θ=0

= 0,

(
∂R

∂z

)
z=1

=

(
∂R

∂θ

)
θ=π

= 0 (3.60)

(
∂L

∂z

)
z=−1

=

(
∂L

∂θ

)
θ=0

= 0,

(
∂L

∂z

)
z=1

=

(
∂L

∂θ

)
θ=π

= 0 (3.61)

(
∂C

∂z

)
z=−1

=

(
∂C

∂θ

)
θ=0

= 0,

(
∂C

∂z

)
z=1

=

(
∂C

∂θ

)
θ=π

= 0 (3.62)

The area of the portion of surface where contact with the substrate has been established, is

AC = AL =

∫ π

π−θA
2π`2 sin θ dθ =

∫ 1

− cos(π−θA)

2π`2 dz = 2π`2 (1 + cos(π − θA)) =

= 2π`2 (1− cos θA) = AR a(t)

(3.63)

where, for shorthand, we define

a(t) =
AC
AR

=
1− cos θA

2
, a∞ = a(∞), a0 = a(0) . (3.64)

3.2.4 Final stationary conditions

At the end of the process we reach a stationary state with uniform concentration of receptors c∞R =
n∞R
AR

on

the entire spherical surface of area AR = 4π`2 and uniform c∞C =
n∞C
A∞C

of complexes on the substrate, where

A∞C is the area of the portion of substrate that eventually gets involved during the process.
Thus, the overall number of free plus bound receptors in contact with the substrate is given by

n∞R+νC |substrate = (c∞R + ν c∞C )A∞C = A∞C
n∞R
AR

+ ν n∞C =
A∞C
AR

ARBR∞ + ν A∞C BC∞ (3.65)

or, normalized by the initial overall number of receptors, n0
R = ARBR0,

x∞ =
n∞R+νC |substrate

n0
R

=
A∞C
AR

R∞
R0

+ ν
A∞C
AR

C∞
R0

= a∞
R∞ + ν C∞

R0
(3.66)
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At the generic time t,

x =
nR+νC |substrate

n0
R

=
1

n0
R

∫
ΩL

(cR + ν cC) dA =
1

ARR0

∫
Ω

(R+ ν C)α dA (3.67)

and, clearly, we have

nR|substrate
n0
R

=
1

ARR0

∫
Ω

Rα dA,
n∞R |substrate

n0
R

= a∞
R∞
R0

nC |substrate
n0
R

=
1

ARR0

∫
Ω

Cα dA,
n∞C |substrate

n0
R

= a∞
C∞
R0

Note that at t = 0, R+ ν C = R0 as diffusion has had no time to have effects and, therefore,

x0 = a0 =
1− cos θ0

A

2
(3.68)

The final stationary concentrations can be computed directly because in the contact substrate they are
uniform and obey the chemical equilibrium condition

Kc
eq =

c∞C
(c∞R )ν c∞L

or K̃ =
C∞

(R∞)ν L∞
(3.69)

and the overall numbers of receptors and ligands (free plus bound) are invariant, i.e.,

c∞R AR + ν c∞C A∞C = c0RAR (3.70)

(c∞L + c∞C )A∞C = c0LA
∞
C (3.71)

Notice that the actual overall number of ligands involved in the process is c0LA
∞
C where c0L is their initial

concentration in the substrate and A∞C is the area of the portion of substrate that eventually gets involved
during the process. Rearranging, we have

c∞R = c0R − ν c∞C
A∞C
AR

(3.72)

c∞L = c0L − c∞C (3.73)

or, in terms of dimensionless concentrations,

R∞ = R0 − ν C∞
A∞C
AR

(3.74)

L∞ = L0 − C∞ (3.75)

so that the equilibrium condition becomes

C∞(
R0 − ν C∞

A∞C
AR

)ν
(L0 − C∞)

= K̃ (3.76)

which can be solved for C∞ for the given initial R0 and L0, and the assumed values of ν, K̃, A∞C , AR. In
Matlab we solve this equation using the standard function fsolve.
Combining, Eqs. (3.66) and (3.74), we obtain

x∞ = a∞ +
ν C∞
R0

a∞(1− a∞) (3.77)

and, therefore,
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C∞
R0

=
x∞ − a∞

ν a∞(1− a∞)
(3.78)

R∞
R0

=
1− x∞
1− a∞

(3.79)

L∞
R0

=
L0

R0
− x∞ − a∞
ν a∞(1− a∞)

(3.80)

(c0R)ν Kc
eq = K̃ Rν0 =

x∞−a∞
νa∞(1−a∞)(

1−x∞
1−a∞

)ν [
L0

R0
− x∞−a∞

νa∞(1−a∞)

] (3.81)

These relations are important to extract quantitative information from experimental data.

3.3 Results

Since for our experimental data L0

R0
� C∞

R0
, Eq. (3.81) can be simplified to

(c0R)ν Kc
eq

c0L
c0R

= K̃ Rν0
L0

R0
≈ x∞ − a∞
νa∞(1− a∞)

(
1− a∞
1− x∞

)ν
(3.82)

The reaction-diffusion model and comparisons with experimental data just outlined has been implemented
in Matlab using the standard function pdepe to solve the system of partial differential equations.
Figure 3.4 shows a plot of x versus as a function of dimensionless time t̃. From the latter, it is interesting
to note the change of slope and convexity that occurs at time τ̃A. This is important because, as seen in
Chapter 2, the available measurements of fluorescence intensity, from time lapse analysis, can be assumed
to be experimental data proportional to nR+νC |substrate. However, the proportionality constant is unknown
from experiment therefore, in Figure 3.4 we plot these data normalized so that the final stationary value
corresponds that of x∞ obtained from the model, i.e., in Figure 3.4 we plot:

xexp =
nexpR+νC |substrate
nexp,∞R+νC |substrate

x∞ (3.83)

where x∞ = 0.73 from the considerations described on the previous Chapter. The experimental data confirm
the expected change of slope and convexity at about τexpA = 10 min. From this observation and Eq. (3.43)
we obtain

τ̃A =
D|R τ

exp
A

`2
= 0.315 (3.84)

where we used D|R = 0.198µm2/s taken from Chapter 2. Taking the derivative of x from Eq. (3.67) with

respect to t̃ we can evaluate the two contributions to the slope of the curve x = x(t̃) shown in Figure 3.4.
The derivative with respect to t̃ can be decomposed into a part due to the diffusion and into a mechanical
part

dx

dt̃
=

dx

dt̃

∣∣∣∣
diff

+
dx

dt̃

∣∣∣∣
mech

(3.85)

Using the balance equations (3.52) and Eqs. (3.59) and (3.43) we obtain the component due to diffusion
into the attached substrate 2

2Recall that (1− z2A) = 1− cos2 θA = sin2 θA.
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Figure 3.4: VEGFR2 recruitment by substrate-bound gremlin. The red asterisks in-
dicate the experimental data, while the blue asterisks point to the model data from
Matlab

dx

dt̃

∣∣∣∣
diff

=
1

ARR0

∫
Ω

(
∂R

∂t̃
+ ν

∂C

∂t̃

)
α dA =

2π`2

ARR0

∫ 1

− cos θA(t)

∂

∂z

[
(1− z2)

∂R

∂z

]
dz =

= −1

2
(1− z2

A)
∂R/R0

∂z

∣∣∣∣
t,zA(t)

= −1

2
sin2 θA(t)

∂R/R0

∂z

∣∣∣∣
t,zA(t)

(3.86)

where zA(t) = cos θA(t) and the component due to the attachment rate is 3

dx

dt̃

∣∣∣∣
mech

=
1

ARR0

∫
ΩL

(R+ ν C)

(
∂α

∂t̃

)
dA =

=


1
2 sin θ0

A
θ∞A −θ

0
A

τ̃A
for t = 0

1
2 sin θA(t)

θ∞A −θ
0
A

τ̃A
R+ν C
R0

∣∣∣
t,zA(t)

for t ≤ τA

0 for t > τA

(3.87)

From the experimental data in Figure 3.4 we can estimate,

xexp0 ≈ 0.0348 (3.88)

dxexp

dt

∣∣∣∣
0

≈ 1.38× 10−4s−1 (3.89)

and at τexpA = 10 min,

xexpA ≈ 0.335 (3.90)

dxexp

dt

∣∣∣∣
0

≈ 1.38× 10−4s−1 (3.91)

dxexp

dt

∣∣∣∣+
xexpA

≈ 1.8× 10−4s−1 (3.92)

3Recall that α(θ, t) = sigm(θ, π− θA(t)), therefore, ∂α/∂t = −(∂θA/∂t)∂sigm(θ, θ0)/∂θ0|θ0=π−θA ≈ (∂θA/∂t)δ(θ− π+ θA)
where (∂θA/∂t) = (θ∞A −θ

0
A)/τA for t ≤ tA. The delta function picks up in the integral the value of the integrand at θ = π−θA.
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Figure 3.5: The derivatives with respect to time of experimental data.

dxexp

dt

∣∣∣∣−
xexpA

≈ 9.6× 10−4s−1 (3.93)

from which we can infer

dx

dt

∣∣∣∣exp
mech,0

= 1.38× 10−4s−1 (3.94)

dx

dt

∣∣∣∣exp
diff,τA

= 1.8× 10−4s−1 (3.95)

dx

dt

∣∣∣∣exp
mech,τA

= 7.8× 10−4s−1 (3.96)

because at t = 0 the distribution is uniform and so the diffusive component is zero; and at t = τ+
A the

mechanical component drops to zero as the attachment process is assumed to stop.

Combining Eqs. (3.68) and (3.88) we obtain

θ0
A = arccos(1− 2xexp0 ) ≈ 0.119π = 21.5◦ (3.97)

Combining Eqs. (3.94) with (3.87) for t = 0 yields

(θ∞A − θ0
A) sin θ0

A = 0.1656 (3.98)

from which we obtain

θ∞A = 0.263π = 47.4◦ (3.99)

z∞A = cos θ∞A = − cos(π − θ∞A ) = 0.677 (3.100)

a∞ = 0.1615 (3.101)
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Figure 3.6: Representative frame of the receptors concentration (red line), the contact
area between cell and substrate with immobilized-ligands (black line), the complex
concentration (blue line), the free receptor plus the complex concentration (green line).

(c0R)ν Kc
eq

c0L
c0R

= K̃ Rν0
L0

R0
=

4.3

ν
(3.154)ν =

{
13.6 for ν = 1

21.4 for ν = 2
(3.102)

Using these values and Eq. (3.96) into (3.87) evaluated at t = τA yields

R+ ν C

R0

∣∣∣∣
τA,z∞A

=
2 τA

(θ∞A − θ0
A)
√

1− (z∞A )2

dx

dt

∣∣∣∣
mech,τA

= 2.82 (3.103)

Similarly, using Eq. (3.95) into Eq. (3.86) evaluated at t = τA, we obtain

−
D|R
`2

∂R/R0

∂z

∣∣∣∣
τA,z∞A

=
2

1− (z∞A )2

dx

dt

∣∣∣∣
diff

= 6.65× 10−4s−1 (3.104)

and, with D|R = 0.198µm2/s, and ` = 20µm,

−∂R/R0

∂z

∣∣∣∣
τA,z∞A

= 1.27 (3.105)

This ’constraint’ is shown in Fig. 3.6.
We now assume the following initial concentrations of receptors on the cell membrane and ligands on the
substrate

c0R =
7000

4π `2
= 1.39

molecule

µm2
(3.106)

c0L = 16000
molecule

µm2
(3.107)

As a result, Eq. (3.102) yields

k+

k−
= Kc

eq =

{
8.3× 10−16 µm2

molecule for ν = 1

9.62× 10−4 µm2

molecule for ν = 2
(3.108)
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The only parameter that remains to be identified is k+, which then inserted in Eq. (3.50) fixes the dimen-

sionless parameter K̃.
Condition (3.103) is difficult to implement because the value of R + ν C varies from a small number to a
large number precisely at z∞A where it needs to be estimated from the simulation. For this reason we do

not use it directly. Rather, we use condition (3.105) with ∂R/R0

∂z evaluated just outside of the attachment
boundary , i.e., for z just below z∞A .
Representative frames of video made from model data are shown in Fig. 3.7. The video is generated with
MATLAB, which describe the evolution of the species concentration.
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Figure 3.7: Representative frames of the receptors concentration (red line), the contact
area between cell and substrate with immobilized-ligands (black line), the complex
concentration (blue line), the free receptor plus the complex concentration (green line).
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Figure 3.8: The resulting xA versus the assumed values of K̃ and `.

To complete at best our objective in this work, we need to extract an estimate of the parameters K̃ and `.
Regarding ` we have measured the average volume of the cells in the experimental setup, Vcell ≈ 30000µm3

from which we could infer a spherical radius of about ` = 20µm. However, the actual cell geometry is rather
far from spherical, therefore, we expect some discrepancies and we run a number of simulations by letting K̃
vary over a wide range and ` over a limited range around 20µm. The results about the value of xA are shown
in Figure 3.8, where we plot the resulting xA versus the assumed values of K̃ and `. We see that in the limit
of K̃ → 0, the values of xA for each assumed ` ’saturate’ to a constant value, indicating that for relatively
large values of k+ the reaction rate is so fast that essentially there is no delay to reach chemical equilibrium.
This limit corresponds to an assumption used in the model presented in the next Chapter. Extracting from
the data shown in Figure 3.8 the subset that yield values of xA in a narrow range around the observed value
of 0.335 (refers to Eq.(3.90)) we obtain the plot in Figure 3.9 showing the matching values of K̃ for the
various assumed values of the cell radius `.

Figure 3.9: The matching values of K̃ for
the various assumed values of the cell radius
`.
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3.4 Conclusion

A preliminary thermodynamical model has been proposed to mimic the VEGFR-2 recruitment and relo-
calization driven by ligand-immobilized substrate. From the experimental evidence, provided by time lapse
analysis, we based our assumptions: at the beginning, we consider an uniform receptors concentration and
at the end of the process we reach a stationary state with a uniform complex concentration; in addition we
define a contact function α to mimic che cell ’adhesion’ on the ligand-enriched substrate. This model takes
into account of chemical kinetics and provides a dimensionless parameter K̃ which depends on receptor diffu-
sivity D|R, cell radius `, forward reaction rate k+ and equilibrium constant based on the concentrations Kc

eq.
Dimensionless partial differential equations have been written on spherical coordinates and implemented on
a MATLAB code by using a pdepd solve. Summarizing, the model predicts:

• the important correlation between the ratio of initial concentration on receptors R0 and ligand L0 with
the equilibrium constant;

• the overall number of free plus bound receptors normalized by the initial over number of receptors in
contact with the substrate in comparison with time lasps measuments;

• the change of slope at about t = 10 min, which corresponds to the point between the mechanical and
the diffusion phases and the final stationary value x;

• the initial and the final contact angles θ0
A and θ∞A , respectively, during cell attachment phase;

• the evolution of the concentrations of the three species;

• the matching values of K̃ at the given xexpA and for the variuos cell radius `.

The analysis in this chapter differs from that in [137], the consecutive model, described in the next chapter,
in that the reactions are not assumed at chemical equilibrium and therefore the model requires a reasonable
estimate of the forward reaction rate constant k+. So far we found no experimental data from which to extract
such rate constant for the reaction occurring on the cell membrane. However, we think that following the
line of analysis in [141] and [94] data from bulk experiments complemented with appropriate surface tension
measurements could yield the required surface rate constant.
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Chapter 4

A chemo-diffusion-mechanical model

4.1 Introduction

We describe the relocation of VEGFR-2 on the lipid bilayer membrane during the cell adhesion to ligand-
enriched extracellular matrix (ECM) by means of a chemo-transport-mechanical model. As previously de-
scribed, the cell adhesion entails several concurrent phenomena, including cell deformation from an initially
shape to a final spread configuration, resulting in an increased interaction between basal cell membrane
and ligand enriched-substrate. A mathematical model of the processes described above has been developed
[137]. The present model accounts for diffusion of VEGFR-2 along the cellular membrane and for ligands-
receptors chemical reactions. The model takes advantage of achieved descriptions of the processes taking
place in physically similar systems, as Li-ion batteries [142, 143]. The governing equations for the relocation
of VEGFR-2 on the membrane under the below modeling assumptions have been nondimensionlized and
multiplied by test functions. The weak form obtained by their integration over the spatial domain can be
transformed to a first order Ordinary Differential Equation (ODE) in time if the discretization is performed
via separated variables. Therefore, nodal unknowns depend solely on time, while test and shape functions
solely on space. Time advancing has been achieved by finite differences, using a backward Euler scheme.
Discretization of the unknown fields by means of standard linear shape functions leads to the numerical
approximation via the Finite Element Method in each time step. The result of this study is threefold:
formulating a mathematical model of VEGFR-2 recruitment in endothelial cell, simulating the dynamics
of VEGFR-2 in endothelial cell seeded on ligand-enriched ECM, and finally co-designing experimental and
numerical investigations to characterize the dynamic lateral diffusion of VEGFR-2 receptors on the plasma
membrane and their interactions with immobilized ligands. The key features of experimental evidence on
VEGFR-2 relocation are well captured by a diffusion-reaction model, whereby the evolving geometry of
the membrane is extremely simplified. The model is mathematically rigorous and self-consistent, in that it
stems from continuity equations (for mass, energy, and entropy), standard chemical kinetics, thermodynamic
restrictions, and constitutive specifications [144, 145]. The partial differential equations of the model have
been implemented in a computer code, with the ultimate goal to predict conditions for angiogenesis.
The outcomes of this Chapter are shown on the pubblished paper on Scientific Reports [137] and on a paper
recently accepted on Mathematical Problems in Engineering [160].

4.2 Modeling VEGFR2 diffusion driven by its specific ligand

4.2.1 Mass balance equations

A general formulation for the chemo-transport-mechanics problem is here tailored to model the relocation
of VEGFR-2 driven by its specific ligand on the lipid bilayer membrane (henceforth denoted with Ω). The
interaction between receptors (R) and ligands (L) is described as a chemical reaction, which produces a
receptor-ligand complex (C)

50



R + L
k+

�
k−

C, (4.1)

where k+ and k− are the kinetic constants of the forward and backward reaction respectively. The reaction
rate w(6.44), measured in [molm3s ], quantifies the net formation of (C) as the difference between the forward
and backward reaction rates.

Complex internalization and its return back to the surface are not considered in this model. Therefore, the
mass balance equations in the integral form are defined, per each species I, on the membrane Ω and on the
curve Γ, shown on Figure 4.1, as follows:

d

dt

∫
Ω

cI(~x, t) dS = −
∮

Γ

~hI · ~t⊥ dl +

∫
Ω

sI(~x, t) dS (4.2)

by considering the line integral of Γ, which represents the circulation of the projection of ~hI around the
closed space curve Γ. Let consider the latter line integral: the only contribution is the projection of the flux
~hI along the vector tangent ~t⊥. The line integral can be written as∮

Γ

~hI · ~t⊥ dl =

∮
Γ

~hI · (~tq × ~n) dl =

∮
Γ

(~n× ~hI) · ~tq dl =

∮
Γ

(~n× ~hI) ~dl (4.3)

denoting with ~n the cell membrane unit normal, ~t⊥ and ~tq the tangent and parallel vectors, respectively. By
using the Stokes’ Theorem, the line integral leads to∮

Γ

(~n× ~hI) ~dl =

∫
Ω

curl
[
~n× ~hI

]
· ~ndS (4.4)

The mass balance equations (4.2) can be rewritten as

d

dt

∫
Ω

cI(~x, t) dS = −
∫

Ω

curl
[
~n× ~hI

]
· ~ndS +

∫
Ω

sI(~x, t) dS (4.5)

and finally, its local form, as

∂cI
∂t

+ curl
[
~n× ~hI

]
· ~n = sI ∀~x ∈ Ω (4.6)

by denoting with

divΩ

[
~hI

]
:= curl

[
~n× ~hI

]
· ~n (4.7)

Then, we can write the local form of the mass balance equations as follows:

∂cR
∂t

+ divΩ

[
~hR

]
+ w(6.44) = sR , (4.8a)

∂cL
∂t

+ divΩ

[
~hL

]
+ w(6.44) = sL , (4.8b)

∂cC
∂t

+ divΩ

[
~hC

]
− w(6.44) = sC . (4.8c)

Symbols in Eqs. (4.8) have the following meaning1: cβ (with β = R,L,C ) is the molarity (i.e. the number

of moles per unit area) of a generic species β; ~hβ is the mass flux in terms of molecules, i.e. the number of
molecules of species β measured per unit length per unit time, and is a tangent vector field on the membrane;

1Concentrations cβ are defined in space and time, i.e. cβ = cβ(~x, t). The same holds for ~hβ , w(6.44), and sβ . Functional
dependence is specified when necessary only, to favor readability.
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Figure 4.1: Membrane surface domain Ω and the closed curve Γ. The unit vector
normal ~n and the tangent and parallel vector ~t⊥ and ~tq.

sβ is the rate in number of molecules per unit volume per unit time at which species β is generated by sources,
and t is the time.
Ligands, whose degradation is negligible, are immobilized in the substrate as they are in vitro. The complex
are assumed to be immobile as well, i.e.

~hL = ~hC = ~0 . (4.9)

Since receptors are free to move along the membrane, reaction (6.44) portrays a conversion of mobile to
trapped receptors and vice-versa.
Equations (4.8) are defined on the cell membrane. Accordingly, the divergence operator has to be defined
on the same surface. Using an important identity, by which

curl
[
~n× ~hR

]
= ~ndiv

[
~hR

]
− ~hR div [~n ] + (∇ [~n ]) ~hR −∇

[
~hR

]
~n (4.10)

The surface divergence becomes

divΩ

[
~hR

]
= ~n · curl

[
~n× ~hR

]
= div

[
~hR

]
− (∇

[
~hR

]
~n) · ~n . (4.11)

Mass balance equations (4.8) shall be accompanied by the balance of force in order to model the mechanical
deformation of the cell, whose boundary - the membrane - is the geometrical support of equations (4.8).
Modeling the evolution of the Laplace-Beltrami operator that presides formulation concurrently with the
large deformation of the cell is a phenomenally ambitious task, which is in progress motivated by the
promising outcomes here shown. In the present work, we surrogate the mechanics with some simplifying
assumptions.

4.2.2 Surrogated mechanics

During the co-designed experimental test, the cell progressively spreads out on the substrate. Since the
latter is enriched with immobilized ligands, the cell surface in contact with the support increases with time
and results in a supply of available ligands for the chemical reaction (6.44) to occur. Mechanical models for
cell spreading involve very sophisticated descriptions of active and passive behavior of cells [146, 147, 148],
leading to simulations of impressive computational burden. In the present work we do not account explicitly
for the mechanical evolution of the cell, which keeps its original shape. Rather, we surrogate the effects of its
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change in geometry on the chemo-diffusive equations (4.8) by introducing a source term of ligands sL whose
expression is calibrated from experimental evidence. The following expression for sL in Eq. (4.8b) is taken:

sL(x, t) =
cL
t
H[ t− x

v
] H[ t− t+

x

v
] (4.12)

The path of reasoning beyond Eq. (4.12) is equivalent to consider the cell as rigid and the substrate much
more deformable, so that the latter envelopes the spherical cell, as depicted in Fig. 4.2.

Figure 4.2: Surrogated mechanics: the cell-substrate contact dynamics is simulated
by assuming that it is the substrate that gets deformed by the cell membrane, thus
inducing a supply of ligands captured by function sL in eq. (4.12).

Figure 4.3: Effects of cell deformation mimicked through a supply of ligands sL ex-
pressed by the eq.(4.12) onto the membrane. To the left, spatial evolution of the mass
supply sL and the the right is represented its time-cumulate.

In Eq. (4.12), H[−] is the Heaviside step function, cL = 72 ligands/µm2 is the concentration of substrate-
immobilized ligand available for reaction (6.44), tf is the time required for the complete mechanical defor-
mation of the cell, v = π`/2tf is the velocity of mechanical deformation (assumed to be constant until tf ), `
is the cell radius, t� tf is a parameter that identifies a finite time required for binding, x is the curvilinear
abscissa of our simplified geometry, t the generic time. In view of Eq.(4.12), the supply of ligands at point
x on the membrane remains zero until t < x/v; then, in the time span between t = x/v and t = x/v + t, it
increases rapidly from zero to cL. Figure 4.3 shows the spatial evolution of the mass supply sL and of the
total amount of ligands parametrized in time: at each location, ligands smoothly reach the saturation limit
of 44.83 ligands/µm2.
We assume:

sR = sC = 0, (4.13)

since complex is provided by w(6.44) only, and receptors are not generated.
In view of the above, mass balance equations (4.8) finally become:
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∂cR
∂t

+ divΩ

[
~hR

]
+ w(6.44) = 0 (4.14a)

∂cL
∂t

+ w(6.44) − sL(x, t) = 0 (4.14b)

∂cC
∂t
− w(6.44) = 0 (4.14c)

4.2.3 Weak form

The weak formulation of balance equations (4.14) comes out after multiplication by a suitable set of time
independent test functions - here denoted with a superposed caret - and from an integration upon the
membrane, exploiting Green’s formula to reduce the order of differentiation. Consider the mass balance
(4.14a) as a prototype:∫

Ω

ĉR

{
∂cR
∂t

+ divΩ

[
~hR

]
+ w(6.44)

}
dS = (4.15)

=

∫
Ω

ĉR
∂cR
∂t

dS +

∫
Ω

divΩ

[
ĉR ~hR

]
−∇Ω [ ĉR ] · ~hR dS +

∫
Ω

ĉR w
(6.44) dS

=

∫
Ω

ĉR
∂cR
∂t

dS −
∫

Ω

∇Ω [ ĉR ] · ~hR dS +

∫
Ω

ĉR w
(6.44) dS = 0 .

In the former identity, a surface gradient operator arises in view of the integration by parts of the divergence
term. Such a surface gradient, on the spherical smooth surface of the membrane, is defined as

∇Ω [ ĉR ] = ∇ [ ĉR ]− (~n · ∇ [ ĉR ])~n (4.16)

with ~n the cell membrane unit normal. Within weak formulations a contribution is usually defined on the
boundary in view of the two-dimensional version of the divergence theorem. This is not the case for the cell
membrane Ω since it is a closed surface. The weak form of equations (4.14b, 4.14c) can be easily derived
following the same path of reasoning.
In conclusion, the weak form of the balance equations can be written in the time interval [0, tf ] as:

Find y ∈ V [0,tf ] such that
∂

∂t
b (ŷ, y(t)) + a(ŷ, y(t)) = f(ŷ) ∀ŷ ∈ V (4.17)

where

b (ŷ, y) =

(∫
Ω

ĉR cR + ĉL cL + ĉC cC

)
dS ,

a (ŷ, y) = −
∫

Ω

∇Ω [ ĉR ] · ~hR dS +

∫
Ω

(ĉR + ĉL − ĉC) w(6.44) dS ,

f (ŷ) =

∫
Ω

ĉL sL dS

with y = {cR, cL, cC} and ŷ = {ĉR, ĉL, ĉC}. Column y collects the time-dependent unknown fields. Column
ŷ collects the steady-state test functions that correspond to the unknown fields in y.

To computationally solve the (either weak (4.17) or strong (4.14)) problem, constitutive equations must
be specified, which is the subject of Section 4.2.4. Ellipticity of the operators, functional and numerical
properties of the solution and of its approximation depend on the constitutive assumptions and on the
choice of the correct functional spaces V [0,tf ],V. However the identification of these spaces falls beyond the
scope of the present paper.
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4.2.4 Thermodynamics

4.2.4.1 Energy Balance

In view of the assumptions made on the geometrical evolution of the membrane, there is no need to distinguish
between material and spatial time derivative. When dealing with composite functions of the form φ(a(z), z)
we will identify the total derivative with the roman symbol d and the partial derivative with the symbol ∂.
It thus holds:

d

d z
φ(a(z), z) =

∂φ

∂ a

da

d z
+
∂φ

∂ z

This notation will be used in the time derivative of internal and Helmholtz free energies, and of entropy.

4.2.4.2 Energy Balance

Denote with Ω the membrane, i.e. the spatial domain of problem. Consider an arbitrary region P ⊂ Ω. The
first law of thermodynamics represents the balance of the interplay among the internal energy of P, the heat
transferred in P and the power due to mass exchanged on P. The energy balance for the problem at hand
reads:

dU
dt

(P) = Qu(P) + Tu(P) , (4.18)

where Qu is the power due to heat transfer and Tu is the power due to mass transfer. Denoting with ∂P the
bounding closed curve of P, they read:

Qu =

∫
P
sq dS −

∮
∂P

~q · ~t⊥ dΓ (4.19a)

Tu =

∫
P
µuL sL dS −

∮
∂P

µuR
~hR · ~t⊥ dΓ (4.19b)

The time variation of net internal energy U thus corresponds to the power expenditure of two external agents:
a heat contribution Qu, where sq is the heat supplied by external agents and ~q is the heat flux vector; a
mass contribution Tu in which the scalar µuβ denotes the change in specific energy provided by a unit supply
of moles of species β = L,R.
Since the geometry remains unchanged, one can define specific internal energy u per unit mass or per unit
surface, since none of them changes during the process. We choose to define it per unit surface, namely:

U(P) =

∫
P
udS . (4.20)

Standard application of the surface divergence theorem and of mass balances (4.8) leads from (4.19) to

Qu =

∫
P
sq dS −

∫
P

divΩ [ ~q ] dS (4.21a)

Tu =

∫
P
µuL sL dS −

∫
P

divΩ

[
µuR

~hR

]
dS (4.21b)

The first law of thermodynamics is thus stated as follows:∫
P

du

dt
dS =

∫
P
sq dS −

∫
P

divΩ [ ~q ] dS −
∫
P

divΩ

[
µuR

~hR

]
dS +

∫
P
µuL sL dS (4.22)

It must hold for any region P, since the latter is arbitrary. After simple algebra, the local form of the first
principle thus reads:
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du

dt
= sq − divΩ [ ~q ]− divΩ

[
µuR

~hR

]
+ µuL sL = sq − divΩ [ ~q ]− µuR divΩ

[
~hR

]
− ~hR · ∇µuR + µuL sL =

= sq − divΩ [ ~q ]− µuR
(
−∂cR
∂t
− w(6.44)

)
− ~hR · ∇Ω [µuR ] + µuL sL =

= sq − divΩ [ ~q ] + µuR
∂cR
∂t

+ µuR w
(6.44) − ~hR · ∇Ω [µuR ] + µuL sL

(4.23)
It is possibile to sum the mass balance Eq.s (4.14b)− (4.14c), since are equal to zero:

du

dt
= sq − divΩ [ ~q ] + µuR

∂cR
∂t

+ µuL
∂cL
∂t

+ µuC
∂cC
∂t
− ~hR · ∇Ω [µuR ] + (µuR + µuL − µuC)w(6.44) . (4.24)

4.2.4.3 Entropy balance equations

The second law of thermodynamics represents the balance of the interplay among the internal entropy of P
and the entropy transferred in P due to mass exchange and heat transferred on P. The entropy balance for
the problem at hand reads:

dS

dt
(P) − dSirr

dt
(P) = Qη(P) + Tη(P) , (4.25)

where S is the net internal entropy of P, Sirr is the entropy produced inside P, Qη the entropy per unit
time due to heat transfer, Tη the entropy per unit time due to mass transfer. The individual contributions
read:

Qη =

∫
P

sq
T

dS −
∮
∂P

~q

T
· ~t⊥ dΓ , (4.26a)

Tη =

∫
P
µηL sL dS −

∮
∂P

µηR
~hR · ~t⊥ dΓ . (4.26b)

The scalar µηβ denotes the change in specific entropy provided by a unit supply of moles of species β. Equation
(4.25) stems from the non-trivial assumption that mechanics does not contribute directly to the total entropy
flow in the entropy balance equation. The second law of thermodynamics states that:

dSirr
dt
≥ 0. (4.27)

Analogously to the energy counterpart, we define the specific internal entropy η per unit volume. Standard
application of the divergence theorem and of mass balances (4.14) leads to∫

P

d

dt
η − sq

T
+ divΩ

[
~q

T

]
− µηL sL + divΩ

[
µηR

~hR

]
dS ≥ 0 (4.28)

By multiplying per T ≥ 0∫
P
T

dη

dt
− sq + T divΩ

[
~q

T

]
− T µηL sL + T divΩ

[
µηR

~hR

]
dS ≥ 0 (4.29)

By noting that

T divΩ

[
~q

T

]
= divΩ [ ~q ] + T ~q · ∇Ω [T ] (−T−2) = divΩ [ ~q ]− 1

T
~q · ∇Ω [T ] (4.30)

and

T divΩ

[
µηR

~hR

]
= T µηR divΩ

[
~hR

]
+ T ~hR · ∇Ω [µηR ] (4.31)
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The entropy imbalance (4.29) becomes

∫
P
T

dη

dt
− sq + divΩ [ ~q ]− 1

T
~q · ∇Ω [T ] + T µηR divΩ

[
~hR

]
+ T ~hR · ∇Ω [µηR ]− T µηL sL dS ≥ 0 (4.32)

by replacing −sq + div [ ~q ] by using the energy balance (4.24)

∫
P
T

dη

dt
− 1

T
~q · ∇Ω [T ] + TµηR divΩ

[
~hR

]
+ T ~hR · ∇Ω [µηR ]− T µηL sL dS+

+

∫
P
−du

dt
+ µuR

∂cR
∂dt

+ µuL
∂cL
∂t

+ µuC
∂cC
∂t
− ~hR · ∇Ω [µuR ] + (µuR + µuL − µuC)w(6.44) dS ≥ 0

(4.33)

By exploiting mass balance equations (4.8), the entropy imbalance becomes

∫
P
T

dη

dt
− du

dt
− 1

T
~q · ∇Ω [T ] + TµηR

[
−∂cR
∂t
− w(6.44)

]
+ TµηL

[
−∂cL
∂t
− w(6.44)

]
+ TµηC

[
−∂cC
∂t

+ w(6.44)

]
+ T ~hR · ∇Ω [µηR ] dS+

+

∫
P
µuR

∂cR
∂t

+ µuL
∂cL
∂t

+ µuC
∂cC
∂t
− ~hR · ∇Ω [µuR ] + (µuR + µuL − µuC)w(6.44) dS ≥ 0

(4.34)

∫
P
T

dη

dt
− du

dt
− 1

T
~q · ∇Ω [T ] +

∂cR
∂t

[µuR − T µ
η
R] +

∂cL
∂t

[µuL − TµηL] +
∂cC
∂t

[µuC − TµηC ] + T ~hR · ∇Ω [µηR ] +

+

∫
P
µuR

∂cR
∂t

+ µuL
∂cL
∂t

+ µuC
∂cC
∂t
− ~hR · ∇Ω [µuR ] + (µuR − T µ

η
R + µuL − TµηL − µ

u
C + TµηC)w(6.44) dS ≥ 0

(4.35)
Let denote with the symbol µβ the quantity

µβ = µuβ − T µ
η
β (4.36)

and with the symbol A(6.44) the following

A(6.44) = −µR − µL + µC (4.37)

∫
Ω

T
dη

dt
− du

dt
− 1

T
~q · ∇Ω [T ] +

∂cR
∂t

[µR] +
∂cL
∂t

[µL] +
∂cC
∂t

[µC ] + T ~hR · ∇Ω [µηR ] dV+

+

∫
Ω

µuR
∂cR
∂t

+ µuL
∂cL
∂t

+ µuC
∂cC
∂t
− ~hR · ∇Ω [µuR ] + (µR + µL − µC)w(6.44) dV ≥ 0

(4.38)

by noting that:
T ~hR · ∇Ω [µηR ] = ~hR · ∇Ω [T µηR ]− ~hR · ∇Ω [T ] µηR (4.39)

one finally writes the entropy balance as:

∫
P
T

dη

dt
−du

dt
− 1

T
~q·∇Ω [T ]+µR

∂cR
∂t

+µL
∂cL
∂t

+µC
∂cC
∂t
−A(6.44) w(6.44)−~hR·∇Ω [µR ]−

(
~hR · ∇Ω [T ]

)
µηR dS ≥ 0 .

(4.40)
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4.2.4.4 Helmholz Free Energy

The specific Helmholtz free energy is defined as:

ψ = u− T η (4.41)

and is taken as a function of temperature and concentrations, ψ (T, cR, cL, cC). It thus holds:

T
dη

dt
− du

dt
= − dψ

dt
− η ∂T

∂t
= − ∂ψ

∂cL

∂cL
∂t
− ∂ψ

∂cR

∂cR
∂t
− ∂ψ

∂cC

∂cC
∂t
−
(
η +

∂ψ

∂T

)
∂T

∂t
(4.42)

which can be inserted in (4.40) to derive the entropy imbalance in the final form:∫
P

(
− ∂ψ

∂cR
+ µR

)
∂cR
∂t

+

(
− ∂ψ

∂cL
+ µL

)
∂cL
∂t

+

(
− ∂ψ

∂cC
+ µC

)
∂cC
∂t
−
(
η +

∂ψ

∂T

)
∂T

∂t
dS+∫

P
− 1

T
~q · ∇Ω [T ]−A(6.44) w(6.44) − ~hR · ∇Ω [µR ] dS ≥ 0

(4.43)

where ~q = ~q + T µηR
~hR.

4.2.4.5 Thermodynamic restrictions

The inequality (4.43) must hold for any region P, since the latter was arbitrarily taken. Therefore, the
following local inequality, usually termed after Clausius-Duhem, yields(

− ∂ψ

∂cR
+ µR

)
∂cR
∂t

+

(
− ∂ψ

∂cL
+ µL

)
∂cL
∂t

+

(
− ∂ψ

∂cC
+ µC

)
∂cC
∂t
−
(
η +

∂ψ

∂T

)
∂T

∂t
+

− 1

T
~q · ∇Ω [T ]−Aw(6.44) − ~hR · ∇Ω [µR ] ≥ 0

(4.44)

This inequality must hold for any value of the time derivative of the temperature and of the concentrations
cR, cL, and cC . Since they appear linearly in the inequality, the factors multiplying them must be zero, as
otherwise it would be possible to find a value for the time derivatives that violate the inequality. Therefore,
the following restrictions apply

µR =
∂ψ

∂cR
, µL =

∂ψ

∂cL
, µC =

∂ψ

∂cC
, η = −∂ψ

∂T
(4.45)

In view of formula (4.45), the amount µβ declared in eq. (4.36) acquires the meaning of chemical potential
and hence the term A(6.44) in eq. (4.37) turns out to be the affinity of the reaction (6.44).

Equation (4.45) yields to the so called Clausius-Plank inequality:

− 1

T
~q · ∇Ω [T ]−A(6.44) w(6.44) − ~hR · ∇Ω [µR ] ≥ 0 (4.46)

that splits under the assumptions of Curie’s principle and thermal equilibrium in the following set of in-
equalities:

~hR · ∇Ω [µR ] ≤ 0 , (4.47a)

A(6.44) w(6.44) ≤ 0 . (4.47b)

4.2.5 Constitutive theory

We will assume henceforth that the system is in thermal equilibrium. The Helmholtz free energy density is
furthermore additively decomposed into three separate parts:

ψ (cR, cL, cC) = ψR(cR) + ψL(cL) + ψC(cC) (4.48)

58



The free energy density of mobile guest atoms interacting with a host medium is described by an ideal
solution model, which provides the following free energy density for the continuum approximation of mixing
of the generic species β = R,L,C :

ψβ(cβ) = µ0
β cβ +RTcmaxβ [ϑβ lnϑβ + (1− ϑβ) ln(1− ϑβ)] (4.49)

where ϑβ = cβ/c
max
β is the ratio between the concentration and the saturation limit for each species. The

chemical potential µβ can be written accordingly to the equation (4.45) as

µβ =
∂ψ

∂cβ
= µ0

β +RT (lnϑβ − ln (1− ϑβ)) (4.50)

A strategy to satisfy the thermodynamic restriction (4.47a) is to model the flux of receptors by Fickian-

diffusion, that linearly correlates ~hR to the gradient of its chemical potential µR:

~hR = −MR(cR) ∇Ω [µR ] (4.51)

by means of a positive definite mobility tensor MR. The following isotropic non linear specialization for the
mobility tensor MR

MR(cR) = u|R c
max
R θR (1− θR) 1 (4.52)

accounts for saturation. In formula (4.52): θR = cR/c
max
R ; cmaxR is the saturation limit for receptors.

The mobility u|R > 0 represents the average velocity of receptors when acted upon by a force of 1 N/mol
independent of the origin of the force. Definition (4.52) represents the physical requirement that both the
pure (cR = 0) and the saturated (cR = cmaxR ) phases have vanishing mobilities. Neither the mobility u|R
nor the saturation concentration cmaxR are assumed to change in time. Such a limitation can be removed
without altering the conceptual picture if experimental data indicate an influence of temperature, stresses,
or concentrations. Noting that

∇Ω [µR ] = RT
1

cmaxR

1

ϑR(1− ϑR)
∇Ω [ cR ]

Fick’s Law (4.51) specializes as follows
~hR = −D|R∇Ω [ cR ] (4.53)

where D|R = u|RRT is the receptor diffusivity.

4.2.6 Chemical kinetics

The chemical kinetics of reaction (6.44) is modeled via the law of mass action:

w(6.44) = k+ ϑL
(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)
(4.54)

At chemical equilibrium, as w(6.44) = 0 and A(6.44) = 0, the concentrations obey the relation

k+

k−
=

ϑeq
C

(1− ϑeq
C )

(1− ϑeq
R )

ϑeq
R

(1− ϑeq
L )

ϑeq
L

= exp

[
−µ

0
C − µ0

L − µ0
R

RT

]
= K(6.44)

eq (4.55)

which defines the constant of equilibrium K
(6.44)
eq of reaction (6.44).
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4.2.6.1 Infinitely fast kinetics

Experimental evidences [137] show that: (i) the equilibrium constant is high, thus favoring the formation of
ligand-receptor complex and the depletions of receptors and ligands; (ii) the diffusion of receptors on the cell
membrane is much slower than interaction kinetics. Accordingly, it can be assumed that the reaction kinetics
is infinitely fast, in the sense that the time required to reach chemical equilibrium is orders of magnitudes
smaller than the time-scale of other processes. For these reasons we assume that the concentrations of species
are ruled by thermodynamic equilibrium at all times, and the concentration of complex cC is related to the
others by the equation A(6.44) = 0, i.e. from eqs. (4.37) and (4.50)

A(6.44) = ∆G0 +RT (lnϑC − lnϑR − lnϑL − ln (1− ϑC)− ln (1− ϑL)− ln (1− ϑR)) = 0 (4.56)

where ∆G0 = µ0
C − µ0

L − µ0
R is the standard Gibbs free energy. Far from saturation, when cβ � cmaxβ ,

cC =
cR cL
α

(4.57)

having denoted with α the following constant:

α =
cmax
R cmax

L

cmax
C

exp

(
∆G0

RT

)
. (4.58)

4.2.7 Governing Equations

The conditions (4.57) can be rewritten as

cR cL = α cC (4.59)

with

α =
cmax
R cmax

L

cmax
C

exp

(
µ0
C − µ0

R − µ0
L

RT

)
(4.60)

By deriving (5.3) respect to time, by using the chain rule, we obtain

α
∂ cC
∂t

=
∂ (cR cL)

∂t
= cL

∂ cR
∂t

+ cR
∂ cL
∂t

(4.61)

Then

∂ cC
∂t

=
1

α

[
cL

∂ cR
∂t

+ cR
∂ cL
∂t

]
(4.62)

Eq. (4.14c) becomes:

1

α

[
cL

∂ cR
∂t

+ cR
∂ cL
∂t

]
= w(1) (4.63)

substituting (4.14a)

1

α

[
cL

∂ cR
∂t

+ cR
∂ cL
∂t

]
= −∂cR

∂t
− divΩ

[
~hR

]
(4.64)

(cL
α

+ 1
) ∂ cR

∂t
+
cR
α

∂ cL
∂t

+ divΩ

[
~hR

]
= 0 (4.65)

From Eq.s (4.14a) and (4.14b)

∂cR
∂t

+ divΩ

[
~hR

]
=
∂cL
∂t
− sL(x, t) (4.66)

∂cR
∂t

+ divΩ

[
~hR

]
− ∂cL

∂t
+ sL(x, t) = 0 (4.67)
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The governing equations are the following:

cR cL = α cC (4.68a)(cL
α

+ 1
) ∂ cR

∂t
+
cR
α

∂ cL
∂t

+ divΩ

[
~hR

]
= 0 (4.68b)

∂cR
∂t

+ divΩ

[
~hR

]
− ∂cL

∂t
+ sL(x, t) = 0 (4.68c)

Initial conditions are imposed for the initial concentrations:

cR(t = 0) = c0R (4.69a)

cL(t = 0) = c0L (4.69b)

cC(t = 0) = 0 . (4.69c)

4.2.8 Weak form and numerical solution

The weak formulation in space results from multiplying the strong form of governing equations by a suitable
set of tests functions and performing an integration upon the domain. Specifically, the weak form Eq. (4.65),
defining with ĉR a test function, reads:∫

Ω

((cL
α

+ 1
) ∂ cR

∂t
+
cR
α

∂ cL
∂t

+ divΩ [−D|R∇Ω [ cR ] ]

)
ĉR dS = 0 (4.70)

Applying the divergence theorem over Ω, the former equation transforms as follows:∫
Ω

(cL
α

+ 1
) ∂ cR

∂t
ĉR dS +

∫
Ω

cR
α

∂ cL
∂t

ĉR dS + D|R
∫

Ω

∇Ω [ cR ] · ∇Ω [ ĉR ] dS = 0 (4.71a)

The weak form of (4.67), defining with ĉL a test function, reads after easy algebra:∫
Ω

ĉL
∂ cR
∂t

dS −
∫

Ω

ĉL
∂ cL
∂t

dS + D|R
∫

Ω

∇Ω [ cR ] · ∇Ω [ ĉL ] dS +

∫
Ω

ĉL sL(x, t) dS = 0 (4.71b)

The weak form (4.71) can be transformed in a first order Ordinary Differential Equation (ODE) in time if
discretization is performed via separated variables, with spatial test ϕi(x) and shape functions ϕj(x) and
nodal unknowns that depend solely on time. The usual Einstein summation convention is taken henceforth
for repeated indexes.

cR = ϕRk (x) cRk(t), ∇Ω [ cR ] = ∇Ω

[
ϕRk (x)

]
cRk

cL = ϕLj (x) cLj(t), ∇Ω [ cL ] = ∇Ω

[
ϕLj (x)

]
cLj

ĉR = ϕRi (x), ∇Ω [ ĉR ] = ∇Ω

[
ϕRi (x)

]
ĉL = ϕLi (x), ∇Ω [ ĉL ] = ∇Ω

[
ϕLi (x)

]
The non linear ODEs read:(∫

Ω

ϕRi (x)ϕRk (x)ϕLj (x) dS

)
cLj(t)

α

∂ cRk(t)

∂t
+

(∫
Ω

ϕRi (x)ϕRk (x) dS

)
∂ cRk(t)

∂t
+

+

(∫
Ω

ϕRi (x)ϕRk (x)ϕLj (x) dS

)
cRk(t)

α

∂ cLj(t)

∂t
+ D|R

(∫
Ω

∇Ω

[
ϕRk (x)

]
· ∇Ω

[
ϕRi (x)

]
dS

)
cRk(t) = 0

(4.72a)(∫
Ω

ϕLi (x)ϕRk (x) dS

)
∂ cRk(t)

∂t
−
(∫

Ω

ϕLi (x)ϕLj (x) dS

)
∂ cLj(t)

∂t
+

∫
Ω

ϕLi sL(x, t) dS+
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+ D|R

(∫
Ω

∇Ω

[
ϕRk (x)

]
· ∇Ω

[
ϕLi (x)

]
dS

)
cRk(t) = 0 (4.72b)

For the time discretization of problem (4.72) finite difference schemes are generally used [149], for which the
time derivatives of the concentrations are replaced by the finite differences as

∂ cRk
∂t

' cRk(t+ ∆t) − cRk(t)

∆t
,

∂ cLj
∂t
'
cLj(t+ ∆t) − cLj(t)

∆t
. (4.73)

We make recourse to the Backward Euler method, that leads to the following non linear problem in cRk(t+∆t)
and cLk(t+ ∆t):

(∫
Ω

ϕRi (x)ϕRk (x)ϕLj (x) dS

)
cLj(t+ ∆t)

α

cRk(t+ ∆t)

∆t
−
(∫

Ω

ϕRi (x)ϕRk (x)ϕLj (x) dS

)
cLj(t+ ∆t)

α

cRk(t)

∆t
+

+

(∫
Ω

ϕRi (x)ϕRk (x) dS

)
cRk(t+ ∆t)

∆t
−
(∫

Ω

ϕRi (x)ϕRk (x) dS

)
cRk(t)

∆t
+

+

(∫
Ω

ϕRi (x)ϕRk (x)ϕLj (x) dS
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4.2.9 Dimensionless concentrations

We multiplied each component by a factor R T
cbulk

to achieve an energy on time, as a power
[
J
s

]
. But we have

that the dimensionless concentrations c∗β

c∗R =
cR
cbulk

, c∗L =
cL
cbulk

cR = c∗R cbulk, cL = c∗L cbulk

ĉR = ĉ∗R cbulk, ĉL = ĉ∗L cbulk

Then we have to multiplied for the term R T
cbulk

c2bulk.

The governing equations of the problem are the following
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(4.76)

4.2.10 Newton Raphson method

To solve the nonlinear equations f(x, y) we use the Newton Raphson method,

f(x, y) ' f(x(k), y(k)) +Dg
[
f(x(k), y(k))

]
= 0 (4.77)

As usual in the Gateaux-derivative Dg sense, the Newton-Raphson scheme at iteration (k) yields
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[
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]
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d
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[
f
(
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)]∣∣∣∣
ε=0

(4.78)

From now on just for the notation, we neglect the space dependence of the shape functions, then ϕIi (x) = ϕIi .

Eq. (4.75) becomes
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From Eq. (4.76) we obtain
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4.2.11 Update linearized method (UP)

We propose an alternative method to solve the nonlinear equations so-called update linearized method (UP),
that, from Eq. (4.75), leads to
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and from Eq. (4.76), we obtain:
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4.3 Results

To simulate the interaction between VEGFR-2 and its immobilized ligand, we assume a fixed membrane
geometry and account for the effects of cell adhesion with a supply of ligands onto the cell surface at
a prescribed rate, sL. Owing to this modeling simplification, the actual time-evolving geometry of the
membrane becomes relatively unimportant and thus, for maximal simplicity, we analyze it as a circumference
of radius ` = 20µm and assume that the time-dependent concentrations depend on the curvilinear coordinate.
The model was implemented in a finite element code as a script in Wolfram Mathematica version 10 and
calibrated. The simulations run until the final time tF = 7200 s at the constant temperature 310.15 K with
a substrate-adsorbed ligand concentration of 44.83 ligands/µm2.
Parameters for the in silico simulation (see Table 4.1) were defined by in vitro assays. The cell radius `
was calculated from the measure of radius of 50 endothelial cells using Zeiss Axiovert 200 M microscope;
receptor diffusivity D|R was obtained by FRAP analysis as previously described in Chapter 2. The amount
of VEGFR-2 on cell membrane per area was calculated by dividing the number of high affinity binding sites,

Table 4.1: Material parameters used in the simulations and their bibliographic source.

Parameter Notation Value Units Ref.

cell radius ` 20 µm [137]

receptor diffusivity D|R 0.198 µm2

s [137]
initial concentration of R c0R 4.8 units

µm2 [31]

initial concentration of L c0L 0 units
µm2 [31]

equilibrium constant K
(6.44)
eq 354059 − [139]

gremlin saturation cmaxL 16000 units
µm2 [31]

other saturations limit cmaxR cmaxC
units
µm2 [137]
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obtained by radiolabeled binding experiments [94] for cell surface area.

As depicted in Fig. 4.4 that represents the overlay of the outcomes of simulation (green line) and in
vitro experiments (red dots) [136] normalized to the value of VEGFR-2 at the final time tF , VEGFR-
2 recruitment induced by immobilized ligands shows three phases of complex formation marked by circled
roman numbers: an initial plateau (I), a steep branch (II), and finally an evolution with a lower formation rate
(III). Our numerical simulations allow connecting these three phases to three distinct mechanisms dominated
by different limiting factors. The initial plateau is governed by the cell-ligand contact (I), the second steep
phase (that ends at 600 s) is due to a chemo-mechanical evolution, induced by the cell attachment and
deformation (II), and the final slow phase reflects the diffusive slow motion of the receptors from the apical
to the basal membrane that is in contact with the substrate (III).
The first phase starts when a small portion of membrane gets in contact with the substrate, which provides a
sudden supply of ligands that immediately trap the available receptors. This phase is very rapid, because the
reaction rate is the controlling factor (in our model assumed infinite), and fully depletes the concentration
of free receptors, because the equilibrium constant is very large. The second phase (calibrated in 10 minutes
from experiments) is rate-controlled by the mechanical deformation of the cell, which provides additional
supply of ligands that afresh immediately react with the available receptors on the newly formed contact
area. The mechanical deformation of the cell and the VEGFR-2 recruitment are influenced by the chemical
affinity of the VEGFR2-gremlin binding reaction coupled with intracellular cortical actin dynamics. In our
co-designed experimental and theoretical study, the cell adhesion is not mediated by integrin engagement,
even though integrin involvement cannot be completely ruled out. We observed that in our experimental
conditions substrate-immobilized growth factors act as a cell-adhesive stimulus for endothelial cells, which
is weaker than the ECM. The cell surface becomes depleted of free receptors very rapidly where the cell
adheres to the substrate. When the mechanical deformation terminates and the cell is eventually spread, the
diffusion of receptors becomes the rate-controlling mechanism. During this final phase, receptors that diffuse
through the boundary of the contact surface are immediately trapped and immobilized by the ligands on the
substrate. Therefore, the VEGFR2-gremlin complex tends to accumulate at the boundary of the basal aspect
of the cells in close contact with ECM. Such a localization was observed in the ventral plasma membrane
(VPM) of endothelial cells adherent on gremlin-enriched surfaces. A higher concentration of receptors at the
cell boundary could have relevant biological implications for the cell, which may sense ligand concentration
variation and migrate in the direction of stimulus production.
The quantitative correspondence between experimental and numerical outcomes suggests that the number
of well-oriented ligands available for the receptor binding is much smaller than the total amount of im-
mobilized ligands. As shown in Fig. 4.4, the simulated evolution in time of the overall amount of bound
VEGFR2-ligands complex on the membrane overlaps the experimental outcomes we previously observed
[136], validating of the model.

Figure 4.4: Time evolution of the
VEGFR2-gremlin complex formation on
the EC membrane. Comparison is made
between the VEGFR-2 total fluores-
cence intensity (free and bound) in con-
tact the substrate (red dots) and the
numerical simulation data (green lines).
To allow comparisons, both sets of data
have been normalized to the values
reached at the final time tF = 7200 s.

Numerical simulations predict the evolution of the concentration of free receptors cR during 2 hours of cell
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stimulation. Figure 4.5A quantifies cR at each location along the membrane at different times. Exploiting
the axial symmetry of the simulations, each curve on the right side of Figure 4.5A depicts the spatial
concentration profile every minute. At t = 0 the distribution of receptors is uniform at the concentration
cR = 4.8 receptors/µm2. After 60 s, the concentration profile is perturbed and decreases at the bottom of
the cell due to receptor-ligand complex formation. As time goes by, starting from 120 s, an enlarging zone
with negligible concentration cR ≈ 0 of free receptors is visible at the basal side of the cell (point A), due
to the engagement of free receptors by immobilized ligands. At the end of the simulation, at tF = 7200 s,
the concentration of unbound receptors at the apical side amounts at cR = 0.5 receptors/µm2. The chemo-
mechanical transport model allows concluding that the depletion of free receptors is due to three concurrent
factors: i) the infinitely fast kinetics of the ligand-receptor interaction; ii) the high equilibrium constant,
that favors the formation of ligand-receptor complex; iii) the evidence that diffusion of the receptor on the
cell membrane is much slower than interaction kinetics.
The depletion propagates with time, so that at tf = 600 s, after the cell is completely adhered, the lower
portion of the cell membrane is essentially empty of free receptors. Since no further supply sL is provided
afterwards, the process becomes diffusion-dominated, and it slowly evolves towards a final steady state.
The thick blue curve plots the distribution of free receptors at the end of the simulation at time tF . The
maximum concentration of free VEGFR-2 at tF is 0.49 receptors/µm2 and a steady state has not yet been
reached. Numerical simulations predict that after 2 hours of adhesion (at tF = 7200 s) a zone with high
ligand-receptor complex concentration manifests at the boundary of the contact area. Figure 4.5B depicts
the evolution of complex cC in space (X axis) and time (different colors) at the basal aspect of ECs. Such
distribution profile was confirmed experimentally in EC ventral plasma membranes (VPMs), as shown in Fig.
4.5C. VPMs were obtained by an osmotic shock of endothelial cells, that preserves only the basal portion of
cell membrane in close contact with ECM, allowing the visualization of the recruited receptors VEGFR-2.
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Figure 4.5: The chemo-mechanical transport model describes VEGFR2 relocation dy-
namics. (A) Time evolution of the spatial concentration cR of free VEGFR-2 along the
cell membrane. Each curve plots the distribution of free receptors at different times
t = 60n, with n = 0, 1, 2, . . . 120 s from the beginning of the experiment at t = 0
to the final time tF = 7200 s. (B) Spatial evolution of the concentration cC of the
receptor-ligand complex at various times. The curves report the numerical simulation:
points A, B, and C correspond to those in (A). (C) ventral plasma membrane staining
for VEGFR-2 confirms peaks in the intensity of fluorescence at the boundary of the
substrate/membrane contact surface.

4.4 Conclusion

We developed a multi-physics model to describe and predict the effects of ligands on VEGFR-2 relocation
during the endothelial cell activation. The interaction between ligands and receptors has been modeled by
a chemical reaction that produces a complex. The model accounts for finite reaction kinetics, although
simulations have been carried out assuming that the reaction kinetics is infinitely fast. The time-scale of the
VEGFR2-ligand binding reaction is in fact assumed to be much faster than the time-scale of the mechanical
deformation of the cell and of the diffusion of receptors on cell membrane. The effect of the mechanical
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deformation of the cell has been accounted for in the model, by surrogating the explicit description of the
cell spreading/deformation with a given increase in time of the surface area available for the chemical reaction
by means the function sL. Under these assumptions, we recovered the experimental evidence that the motion
of receptors and their subsequent trapping into immobile VEGFR2-ligands complexes proceed in a sequence
of three phases, and we characterized those phases with different rate-controlling factors. The model predicts
the amount of well-oriented ligands available for the receptor binding, by noticing that this value is much
smaller than the total number of immobilized ligands cmaxL .
The key features of our experimental evidence on VEGFR-2 relocation are captured well. In particular,
through the numerical simulations carried out in this Chapter, we evaluated:

• the time evolution of the spatial concentration of free receptors VEGFR-2 along the cell membrane;

• the spatial evolution of the ligand-receptor complex concentration at various time, with high concen-
tration manifest at the boundary of the contact area.
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Chapter 5

VEGFR-2 and integrin interaction
model

5.1 Introduction

Motivated by the biological background summarized in Chapter 1, we are interested in evaluating the in-
terplay between the VEGFR-2/ligand complex and the integrins. The models described in Chapters 3 and
4 do not take into account such complex biophysics mechanisms and the angiogenesis processes cannot be
fully understood without a detailed analysis of the mechanics of the cell incorporating the key features of the
remodeling of the cytoskeleton. In the present Chapter, the mathematical model described in the previous
Chapter will be extended in order to account for the integrins interaction. This section aims at building
up the weak form of the balance equations to be used on a computer code eventually enabling a numerical
approximation of the partial differential equations of the problem.

5.2 VEGFR-2 and Integrin interaction model

5.2.1 Chemical reactions

In Chapters 3 and 4 a single chemical reaction has been described, which simulates the interaction between
VEGFR-2 and its specific ligand (either VEGF or gremlin). By increasing the complexity of the model, we
add here two more interactions among:

• low affinity integrin and its specific ECM ligand (either fibrinogen or fibronectin), leading to high
affinity integrins cluster responsible of stress fibers and FA formation and

• low affinity integrin and the VEGFR2/VEGF complex, forming another complex type.

By noting that

1. VEGF or gremlin are responsible to the VEGFR-2 recruitment, and fibrinogen is the specific ECM
ligand able to bind integrins. They are both immobilized to the ECM, mimicked by the substrate;

2. low affinity integrins are able to diffuse on the cell membrane, as for VEGFR-2;

3. high affinity integrins are trans-membrane proteins that are not able to diffuse on the cell membrane.

We define the species as following

• IL is the low affinity integrin,

• LI is the specific ligand for integrin (for example: fibrinogen, fibronectin),

• IH denotes the high affinity integrin,
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• C(1) describes the complex resulted from the interaction between the low affinity integrin IL and its
specific ligand LI,

• R, is the Vascular Endothelian Growth Factor Receptor 2 (VEGFR-2),

• LR defines the specific ligand, as VEGF-A121, VEGF-A165 (canonical ligands) and gremlin (non-
canonical ligand),

• C(2) describes the receptor-ligand complex, that is able to trigger the first intra-cellular signal that
leads to downstream signaling pathway, altered gene expression, and cell proliferation,

• C(3) identifies the complex produced from low affinity integrin and the complex C(2) of the reaction
(5.1b) that drives a long-term VEGFR phosphorilation needed to trigger the first intra-cellular signal.

The chemical reactions reads

IL + LI = IH LI = C(1) (5.1a)

R + LR = C(2) (5.1b)

IL + C(2) = C(3) (5.1c)

where (5.1a) is the “focal adhesion”reaction, (5.1b) is the reaction that leads to receptor and ligand binding
and the (5.1c) is the interplay between integrin and the VEGFR2/ligand complex.

By assuming that

• ligands LI and integrins IH are not able to diffuse on the substrate and on the cell membrane, respec-
tively

• ligands LR and complex C(2) are not able to diffuse on the substrate and on the cell membrane,
respectively

we can now write the mass balance equations.

5.2.2 Mass conservation of species

Denoting with cI as the concentration of species I, measured in
[

number of molecules
µm2

]
, mass balance equations

read,

∂cIL
∂t

+ divΩ

[
~hIL

]
= −w(1) − w(3) (5.2a)

∂cLI

∂t
= −w(1) + sLI (x, t) (5.2b)

∂cC(1)

∂t
= +w(1) (5.2c)

∂cR
∂t

+ divΩ

[
~hR

]
= −w(2) (5.2d)

∂cLR

∂t
= −w(2) + sLR(x, t) (5.2e)

∂cC(2)

∂t
= +w(2) − w(3) (5.2f)

∂cC(3)

∂t
= +w(3) (5.2g)

The gremlin/VEGF LR mass supply sLR(x, t) is defined as in Section “Surrogated mechanics”in Chapter
4, and the fibrinogen LI mass supply sLI (x, t) mimics the contact between the cell membrane and the
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substrate. The mass balance equations are written for seven unknown concentrations of the species .
In the assumption of infinitely fast chemical kinectics, as previously described in Chapter 4, for each reaction
A + B � C, we can write the reagents as function of the product, by a term α,

cA cB = α cC (5.3)

with

α =
cmaxA cmaxB

cmaxC

exp

(
µ0

C − µ0
A − µ0

B

RT

)
(5.4)

Specifically, we can write

cIL cLI = α(1) cC(1) (5.5)

with

α(1) =
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cmaxLI

cmax
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(
µ0
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IL
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LI

RT

)
=
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cmaxLI
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(
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RT

)
(5.6)

cR cLR = α(2) cC(2) (5.7)

with
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cIL cC(2) = α(3) cC(3) (5.9)

with
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cC(1) =
1

α(1)
cIL cLI (5.11a)

cC(2) =
1

α(2)
cR cLR (5.11b)

cC(3) =
1

α(3)
cIL cC(2) (5.11c)

The time derivative of Eq.s (5.11) yields:

∂ cC(1)

∂t
=

1

α(1)

[
cIL

∂ cLI

∂t
+ cLI

∂ cIL
∂t

]
(5.12)

∂ cC(2)

∂t
=

1

α(2)

[
cR

∂ cLR

∂t
+ cLR

∂ cR
∂t

]
(5.13)

∂ cC(3)

∂t
=

1

α(3)

[
cIL

∂ cC(2)

∂t
+ cC(2)

∂ cIL
∂t

]
(5.14)

From the mass balance equations (5.2d) and (5.2e) we obtain the following equation:
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∂cR
∂t

+ divΩ

[
~hIL

]
=
∂cLR

∂t
− sLR(x, t) (5.15)

The mass conservation Eq.s (5.2b) and (5.2c) lead to

∂cC(1)

∂t
= −∂cLI

∂t
+ sLI (x, t) (5.16)

by replacing the time derivative (5.12), we obtain after simple algebra

∂cLI

∂t

(
1

α(1)
cIL + 1

)
+

1

α(1)
cLI

∂ cIL
∂t

= sLI (x, t) (5.17)

From Eq. (5.2f), by replacing Eq.s (5.2e) and (5.2g), yields

∂cC(2)

∂t
+
∂cC(3)

∂t
= −∂cLR

∂t
+ sLR(x, t) (5.18)

Finally, we replace the time derivatives (5.13) and (5.14) as well as the relation (5.11b), so to write

1

α(2)

[
cR

∂ cLR

∂t
+ cLR

∂ cR
∂t

]
+

1

α(3)

[
cIL

∂ cC(2)

∂t
+ cC(2)

∂ cIL
∂t

]
= −∂cLR

∂t
+ sLR(x, t) (5.19)

1

α(2)

[
cR

∂ cLR

∂t
+ cLR

∂ cR
∂t

]
+

1

α(3)

[
cIL

∂

∂t

(
1

α(2)
cR cLR

)
+

1

α(2)
cR cLR

∂ cIL
∂t

]
= −∂cLR

∂t
+sLR(x, t) (5.20)

From Eq. (5.2a), substituting Eq.s (5.2b) and (5.2g), leads to

∂cC(3)

∂t
=
∂cLI

∂t
− ∂cIL

∂t
− divΩ

[
~hIL

]
− sLI (x, t), (5.21)

which, by using the time derivative (5.14) and the relation (5.11b), becomes

1

α(3)

[
cIL

∂

∂t

(
1

α(2)
cR cLR

)
+

1

α(2)
cR cLR

∂ cIL
∂t

]
=
∂cLI

∂t
− ∂cIL

∂t
− divΩ

[
~hIL

]
− sLI (x, t) (5.22)

In summary, the governing equations are the following:

∂cR
∂t

+ divΩ

[
~hR

]
=
∂cLR

∂t
− sLR(x, t)

∂cLI

∂t

(
1

α(1)
cIL + 1

)
+

1

α(1)
cLI

∂ cIL
∂t

= sLI (x, t)

1

α(2)

[
cR

∂ cLR

∂t
+ cLR

∂ cR
∂t

]
+

1

α(3)

[
cIL

∂

∂t

(
1

α(2)
cR cLR

)
+

1

α(2)
cR cLR

∂ cIL
∂t

]
= −∂cLR

∂t
+ sLR(x, t)

1

α(3)

[
cIL

∂

∂t

(
1

α(2)
cR cLR

)
+

1

α(2)
cR cLR

∂ cIL
∂t

]
+ divΩ

[
~hIL

]
=
∂cLI

∂t
− ∂cIL

∂t
− sLI (x, t),

where cR, cLR , cIL , and cLI are the unknown concentrations of VEGFR-2 receptor, integrin and their specific
ligands, respectively. By using the same procedure shown in Chapter 4, the governing equations have been
written in the strong form. The next step is to rewrite these equations in a discretized weak form.
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5.2.3 Discretized weak form

Definig the test function ĉ1 for Eq. (5.15), standard mathematical passages lead from∫
Ω

(
∂cR
∂t

+ divΩ

[
~hR

]
− ∂cLR

∂t
+ sLR(x, t)

)
ĉ1 dS = 0 (5.24)

to: ∫
Ω

ĉ1
∂cR
∂t

dS −
∫

Ω

ĉ1
∂cLR

∂t
dS + D|R

∫
Ω

∇Ω [ cR ] ∇Ω [ ĉ1 ] dS +

∫
Ω

ĉ1 sLR dS = 0 (5.25)

Analogously, by denoting with ĉ2 test function Eq.(5.17), one has∫
Ω

ĉ2

α(1)
cIL

∂cLI

∂t
dS +

∫
Ω

ĉ2
∂cLI

∂t
dS +

∫
Ω

ĉ2

α(1)
cLI

∂ cIL
∂t

dS −
∫

Ω

ĉ2 sLI (x, t) dS = 0 (5.26)

Finally defining ĉ3 as the test funcion for Eq. (5.20)

∫
Ω

ĉ3

α(2)
cR

∂ cLR

∂t
dS +

∫
Ω

ĉ3

α(2)
cLR

∂ cR
∂t

dS +

∫
Ω

ĉ3

α(3) α(2)
cR cLR

∂ cIL
∂t

dS+∫
Ω

ĉ3

α(3) α(2)
cR cIL

∂ cLR

∂t
dS +

∫
Ω

ĉ3

α(3) α(2)
cLR cIL

∂ cR
∂t

dS +

∫
Ω

ĉ3
∂ cLR

∂t
dS −

∫
Ω

ĉ3 sLR(x, t) dS = 0

(5.27)

and indicating with ĉ4 the test funcion for Eq. (5.22):

∫
Ω

ĉ4

α(3) α(2)
cR cLR

∂ cIL
∂t

dS +

∫
Ω

ĉ4

α(3) α(2)
cR cIL

∂ cLR

∂t
dS +

∫
Ω

ĉ4

α(3) α(2)
cIL cLR

∂ cR
∂t

dS+

+

∫
Ω

ĉ4
∂ cIL
∂t

dS −
∫

Ω

ĉ4
∂ cLI

∂t
dS + D| IL

∫
Ω

∇Ω [ cIL ] ∇Ω [ ĉ4 ] dS +

∫
Ω

ĉ4 sLI dS = 0

(5.28)

It is convenient to discretize the concentration fields by the finite element method, assuming the following
linear conbination as the approximate solutions:

cR = cR(x, t) = ϕRk (x) cRk (t) (5.29a)

ĉ1 = ϕRi (x) (5.29b)

cLR = cLR(x, t) = ϕL
R

h (x) cL
R

h (t) (5.29c)

ĉ2 = ϕL
I

i (x) (5.29d)

cIL = cIL(x, t) = ϕILj (x) cILj (t) (5.29e)

ĉ3 = ϕL
R

i (x) (5.29f)

cLI = cLI (x, t) = ϕL
I

m (x) cL
I

m (t) (5.29g)

ĉ4 = ϕILi (x) (5.29h)

by assuming that the approximate solution has to be a linear combination of space-dependence functions
so-called shape functions ϕIi (x), as shown on the previous Chapter. In Eq.s 5.29 Eistein summation notation
holds. From now on we neglect the shape funcions space dependence ϕIi = ϕIi (x) and for now the time-
dependence for the concentrations. Then the discrete problem becomes from Eq. (5.25)
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(∫
Ω

ϕRi (x)ϕRk (x) dS

)
∂ cRk (t)

∂t
−
(∫

Ω

ϕRi (x)ϕL
R

h (x) dS

)
∂ cL

R

h (t)

∂t
+

+ D|R

(∫
Ω

∇Ω

[
ϕRk (x)

]
∇Ω

[
ϕRi (x)

]
dS

)
cR
k (t) +

∫
Ω

ϕRi (x) sLR(x, t) dS = 0

(5.30)

From Eq. (5.26)

1

α(1)

(∫
Ω

ϕL
I

i (x)ϕILj (x)ϕL
I

m (x) dS

)
cILj (t)

∂ cL
I

m (t)

∂t
+

(∫
Ω

ϕL
I

i (x)ϕL
I

m (x) dS

)
∂ cL

I

m (t)

∂t
+

+
1

α(1)

(∫
Ω

ϕL
I

i (x)ϕILj (x)ϕL
I

m (x) dS

)
cL

I

m (t)
∂ cILj (t)

∂t
−
∫

Ω

ϕL
I

i (x) sLI (x, t) dS = 0

(5.31)

From Eq. (5.27)

1

α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
∂ cL

R

h

∂t
+

1

α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
cL

R

h

∂ cRk
∂t

+

1

α(3) α(2)

[(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cRk c

LR

h

∂ cILj
∂t

+

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj cRk

∂ cL
R

h

∂t

]
1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj cL

R

h

∂ cRk
∂t

+

(∫
Ω

ϕL
R

i ϕL
R

h dS

)
∂ cL

R

h

∂t
−
∫

Ω

ϕL
R

i (x) sLR(x, t) dS = 0

(5.32)

From Eq. (5.28)

R T

cbulk
c2bulk

{
1

α(3) α(2)

[(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk c

LR

h

∂ cILj
∂t

+

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk c

IL
j

∂ cL
R

h

∂t

]}
+

+
R T

cbulk
c2bulk

{
+

1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cILj cL

R

h

∂ cRk
∂t

+

(∫
Ω

ϕILi ϕILj dS

)
∂cILj
∂t

}
+

+
R T

cbulk
c2bulk

{
−
(∫

Ω

ϕILi ϕL
I

m dS

)
∂ cL

I

m

∂t
+ D| IL

(∫
Ω

∇Ω

[
ϕILj

]
· ∇Ω

[
ϕILi

]
dS

)
cILj +

∫
Ω

ϕI
L

i sLI (x, t) dS

}
= 0

(5.33)

Temporal discretization of problem is achived by finite difference scheme, as the Backward Euler method.
The time derivative of the concentrations are discretized such as

∂ cRk
∂t
' cRk (t)(t+ ∆t) − cRk (t)

∆t
=
cRk (t+ ∆t)

∆t
− cRk (t)

∆t
(5.34)

∂ cL
R

h (t)

∂t
' cL

R

h (t+ ∆t) − cLRh (t)

∆t
=
cL

R

h (t+ ∆t)

∆t
− cL

R

h (t)

∆t
(5.35)

∂ cILj (t)

∂t
'
cILj (t+ ∆t) − cILj (t)

∆t
=
cILj (t+ ∆t)

∆t
−
cILj (t)

∆t
(5.36)

∂ cL
I

m (t)

∂t
' cL

I

m (t+ ∆t) − cLIm (t)

∆t
=
cL

I

m (t+ ∆t)

∆t
− cL

I

m (t)

∆t
(5.37)
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From Eq. (5.30)

(∫
Ω

ϕRi ϕ
R
k dS

)
cRk (t+ ∆t)

∆t
−
(∫

Ω

ϕRi ϕ
LR

h (x) dS

)
cL

R

h (t+ ∆t)

∆t
+

+ D|R

(∫
Ω

∇Ω

[
ϕRk
]
· ∇Ω

[
ϕRi
]

dS

)
cRk (t+ ∆t) =

=

(∫
Ω

ϕRi ϕ
R
k dS

)
cRk (t)

∆t
−
(∫

Ω

ϕRi ϕ
LR

h dS

)
cL

R

h (t)

∆t
−
∫

Ω

ϕRi sL(x, t) dS

(5.38)

From Eq. (5.31)

1

α(1)

[(∫
Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
cILj (t+ ∆t)

cL
I

m (t+ ∆t)

∆t
−
(∫

Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
cILj (t+ ∆t)

cLIm (t)

∆t

]
+

+

(∫
Ω

ϕL
I

i ϕL
I

m dS

)
cL

I

m (t+ ∆t)

∆t
+

1

α(1)

(∫
Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
cL

I

m (t+ ∆t)
cILj (t+ ∆t)

∆t
+

− 1

α(1)

(∫
Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
cL

I

m (t+ ∆t)
cILj (t)

∆t
=

(∫
Ω

ϕL
I

i ϕL
I

m dS

)
cL

I

m (t)

∆t
+

∫
Ω

ϕL
I

i sLI (x, t) dS

(5.39)

From Eq. (5.32)

1

α(2)

[(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
cL

R

h (t+ ∆t)

∆t
+

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
cL

R

h (t+ ∆t)
cRk (t+ ∆t)

∆t

]
+

− 1

α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
cL

R

h (t+ ∆t)
cRk (t)

∆t
+

+
1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cL

R

h (t+ ∆t)
cILj (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cL

R

h (t+ ∆t)
cILj (t)

∆t
+

+
1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cRk (t+ ∆t)

cL
R

h (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cRk (t+ ∆t)

cL
R

h (t)

∆t
+

+
1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cL

R

h (t+ ∆t)
cRk (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cL

R

h (t+ ∆t)
cRk (t)

∆t
+

(∫
Ω

ϕL
R

i ϕL
R

h dS

)
cL

R

h (t+ ∆t)

∆t
=

1

α(2)

(∫
Ω

ϕL
R

i ϕRk ϕ
LR

h dS

)
cL

R

h (t)

∆t
+

(∫
Ω

ϕL
R

i ϕL
R

h dS

)
cL

R

h (t)

∆t
+

∫
Ω

ϕL
R

i sLR(x, t) dS

(5.40)

From Eq. (5.33)
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1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cL

R

h (t+ ∆t)
cILj (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cL

R

h (t+ ∆t)
cILj (t)

∆t
+

+
1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cILj (t+ ∆t)

cL
R

h (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cRk (t+ ∆t) cILj (t+ ∆t)

cL
R

h (t)

∆t
+

+
1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cL

R

h (t+ ∆t)
cRk (t+ ∆t)

∆t
+

− 1

α(3) α(2)

(∫
Ω

ϕILi ϕRk ϕ
LR

h ϕILj dS

)
cILj (t+ ∆t) cL

R

h (t+ ∆t)
cRk (t)

∆t
+

+

(∫
Ω

ϕILi ϕILj dS

)
cILj (t+ ∆t)

∆t
−
(∫

Ω

ϕILi ϕL
I

m dS

)
cL

I

m (t+ ∆t)

∆t
+

+ D| IL

(∫
Ω

∇Ω

[
ϕILj

]
· ∇Ω

[
ϕILi

]
dS

)
cILj (t+ ∆t) =

+

(∫
Ω

ϕILi ϕILj dS

)
cILj (t)

∆t
−
(∫

Ω

ϕILi ϕL
I

m dS

)
cL

I

m (t)

∆t
−
∫

Ω

ϕI
L

i sLI (x, t) dS

(5.41)

Multiply each component by factor R T
cbulk

to achieve a power
[
J
s

]
. Dimensionless concentrations c∗β are defined

as

c∗β =
cβ
cbulk

⇒ cβ = c∗β cbulk,

The same for the test functions ĉ∗β ,

ĉβ = ĉ∗β cbulk.

Then we multiply each equation by the term R T
cbulk

c2bulk = R T cbulk.

The Newton Raphson method for Eq. (5.38) reads:

R T cbulk


(∫

Ω

ϕRi ϕ
R
k dV

) c
(k)
R
k
(t+ ∆t)

∆t
−
(∫

Ω

ϕRi ϕ
LR

h dS

) c
(k)

LRh
(t+ ∆t)

∆t
+

+ D|R

(∫
Ω

∇Ω

[
ϕRk (x)

]
· ∇Ω

[
ϕRi
]

dS

)
c
(k)
R
k
(t+ ∆t) +

(∫
Ω

ϕRi ϕ
R
k dS

) ∆c
(k)
R
k

∆t
+

−
(∫

Ω

ϕRi ϕ
LR

h dS

) ∆c
(k)

LRh

∆t
+ D|R

(∫
Ω

∇Ω

[
ϕRk (x)

]
· ∇Ω

[
ϕRi
]

dS

)
∆c

(k)
R
k
+

−
(∫

Ω

ϕRi ϕ
R
k dS

)
cRk (t)

∆t
+

(∫
Ω

ϕRi ϕ
LR

h dS

)
cL

R

h (t)

∆t
+

∫
Ω

ϕRi sLR(x, t) dS

}
= 0

(5.42)

Eq. (5.39) leads to
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R T cbulk

 1

α(1)

(∫
Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
c
(k)
ILj

(t+ ∆t)
c
(k)

LIm
(t+ ∆t)

∆t
−
(∫

Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
c
(k)
ILj

(t+ ∆t)
cLIm (t)

∆t

 +

+

(∫
Ω

ϕL
I

i ϕL
I

m dS

) c
(k)

LIm
(t+ ∆t)

∆t
+

1

α(1)

(∫
Ω

ϕL
I

i ϕILj ϕL
I

m dS

)
cL

I

m (t+ ∆t)
c
(k)
ILj

(t+ ∆t)

∆t
+

− 1

α(1)

(∫
Ω

ϕL
I

i ϕILj ϕL
I
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From Eq. (5.40) we obtain the following lengthy expression
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and the Eq. (5.41) yields
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5.3 Conclusion

The numerical implementation of the governing equations has not been fully developed yet, but several
activities have been achieved:

1. The weak form of the balance equations of the three reactions has been written, which considers:

• the interaction between low affinity integrin (unbent configuration) and its specific ligand (e.g.
fibrinogen) that leads to a high affinity integrin (”bent” configuration) triggering stress fibers
formation and focal adhesion,

• the interaction between VEGFR-2 and VEGF which forms the complex VEGFR2/VEGF,

• the reaction between the low affinity integrins and the VEGFR2/VEGF complex which triggers
a long-term VEGFR-2 activation.

2. The weak form, with these three reactions, has been discretized in space, with Finite Element Method,
and in time, with Backward Euler scheme. To solve the nonlinear part, Newton-Raphson method has
been designed.

This model may provide new insights about the important interplay among different transmembrane pro-
teins and may be applied to other interactions among receptors and co-receptors, such as Neuropilin-1 and
VEGFR-2 [150]. Much work still needs to be done: we are working on the determination of the parameters
necessary for the computational implementation, such as the integrins diffusivity D| I , the initial concentra-
tion of low affinity integrin c0IL and its ligand c0LI , their saturation values cmax

IL
and cmax

IL
, the equilibrium

constants of reactions (5.1a) and (5.1c), shown on the following table:

Parameter Notation value unit

cell radius ` 20 µm

receptor diffusivity D|R 0.198 µm2

s

integrin diffusivity D| I ? µm2

s
temperature T 37 C
gas constant R 8.31 J

mol

initial concentration of receptor R c0R 3.46 molecule
µm2

initial concentration of gremlin/VEGF c0 16 · 103 molecule
µm2

initial concentration of low affinity integrin c0IL ? molecule
µm2

initial concentration of fibrinogen c0LI ? molecule
µm2

standard Gibbs free Energy ∆G(5.1b) −32949 J
mol

standard Gibbs free Energy (or Equilibrium constant) ∆G(5.1a) ? J
mol

standard Gibbs free Energy (or Equilibrium constant) ∆G(5.1c) ? J
mol

gremlin saturation cmaxLR 16 · 103 molecule
µm2

fibrinogen saturation cmaxLI ? molecule
µm2

integrin saturation cmaxIL
? molecule

µm2
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Chapter 6

Receptor-ligand model in large
deformations

6.1 Introduction

Modeling the relocation of VEGFR-2 on the lipid bilayer membrane in living cells involves the description
of coupled processes such as transport of mass and mechanical deformation. This coupled problem has been
solved in a simplified manner in Chapter 4, through a surrogated mechanical spreading of the cell. Such an
approach does not consider the mechanical governing equations at all, instead their effect are modeled by
introducing a fictitious source therm in the mass balance laws on the cell membrane.

In this chapter the description of such multi-physics phenomena on living cells is tackled with a rigor-
ous methodology in the framework of continuum mechanics. The description of these processes is rather
challenging. On one hand, the mechanical behavior of living cells exhibits large deformations that has to
be modeled through a non-linear solid mechanics theory. On the other, the chemo-transport processes of
interest take place on the cell membrane, leading to an additional degree of complexity.

The chapter is organized as follows: we first introduce the essential concepts of a finite deformation
formulation of the problem, starting from well-known definitions and conservation laws, i.e. balance laws
for diffusing species and balance of linear and angular momentum. In particular, in Section 6.3.2 the mass
balance equations are specialized for advecting surfaces, in order to deal with transport of proteins on
deformable cells. Models describing the mechanical response of living cells are finally reviewed in Section
6.5 along with some preliminary numerical examples.

6.2 Finite strain theory

Configuration and motions of continuum Bodies. The finite deformation theory [151] is based on the
following assumptions that strains and rotations are arbitrarily large, then the infinitesimal strain theory is
not accepted. If deformations are large, the deformed and undeformed configurations of the continuum body
B are meaningfully distinct. The configuration is a region occupied by B, embedded in three-dimensional
Euclidean space, which is determined exclusively at any istant of time. Each point of B can be identified
by the position vector (or referential position) ~X relative to the fixed origin O of the Cartesian orthogonal
reference system, to the reference configuration. The characterization of any quantity with respect to the
material coordinates ~X is called material or Lagrangian description, by observing what happens to the body
as it moves. The displacement vector ~u( ~X, t) describes the motion of each point in the solid deforming
under external actions. The displacent field, which contains all the displacement vectors, describes the
configuration changes of the body B. The Lagrangian description of the displacement vector is

~u( ~X, t) = ui ~ei (6.1)

where ~ei are the orthonormal basis vectors of the spatial coordinate system.
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The displacement field, expressed in terms of the material coordinates, is

~u( ~X, t) = ~x( ~X, t)− ~X (6.2)

where ~x are the spatial coordinates or current position in the Eulerian description, in which it is studied
what happens at the point of the body B as time changes.

Figure 6.1: Configuration and motion of a continuum body.

Deformation Gradient. The partial derivative of the displacement vector with respect to the material
coordinates yields the material displacement gradient tensor Grad [ ~u ], as

Grad [ ~u ] = Grad [ ~x ]− 1 = F− 1 (6.3)

where F is the deformation gradient tensor and 1 is the identity tensor. F( ~X, t) represents the gradient of

the mapping function ~χ( ~X, t) which describes the motion of the body B, i.e. ~x = ~χ( ~X, t). The material
deformation gradient tensor characterizes the local deformation at a material point with position vector
~X, by transforming a material line element arising from that point from the reference configuration to the
current or deformed configuration, assuming continuity in the mapping function ~χ( ~X, t). Thus we have,

d~x =
∂ ~x

∂ ~X
d ~X = Grad

[
~χ( ~X, t)

]
= F( ~X, t) d ~X (6.4)

F plays a central role in nonlinear solid mechanics and is a primary measure of finite deformations kinematics,
because it is the fundamental kinematic tensor that characterizes changes of material elements during motion;
F it is related to both the reference and current configurations and is said to be a two-point tensor. Note
that a unit vector ~N in the reference frame is not necessary mapped, through formula (6.4), to a vector of
unit length.

We now consider two material points P and Q (respectively p and q in the deformed configuration) given

by the position vector ~X and the distance between them is given by the vector d ~X (and d~x in the deformed
configuration). We can define the relative displacement vector d~u from

~x+ d~x = ~X + d ~X + ~u( ~X + d ~X) (6.5)

then

d~x = ~X − ~x+ d ~X + ~u( ~X + d ~X) = −~u( ~X) + d ~X + ~u ( ~X + d ~X) = d ~X + d~u (6.6)

The time derivative of the deformation gradient is

∂ F

∂ t
=

∂

∂ t

[
∂ ~x( ~X, t)

∂ ~X

]
=

∂

∂ ~X

[
∂ ~x( ~X, t)

∂ t

]
=

∂

∂ ~X

[
~V ( ~X, t)

]
(6.7)
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Figure 6.2: Displacement and position vectors of a typical particle.

where ~V is the material velocity, the velocity vector as a function of the material coordinates.

We define the Jacobian determinant, known as volume ratio, which performs the change in volume between
the reference and the current configuration at time t, as

J( ~X, t) =
dv

dvR
(6.8)

in which J is the determinant of the deformation gradient J( ~X, t) = detF( ~X, t) and dv and dvR denote in-
finitesimal volume elements defined in the current and reference configuration, respectively. The infinitesimal
volume element dv can be written as the product

dv = d~a · d~x = J d~aR · d ~X (6.9)

with d~a = da~n and d~aR = daR ~nR indicating vector elements of infinitesimal areas in the current and
reference configurations pointing to the outward normal to the infinitesimal surface, i.e. ~n and ~nR. By using
the linear tranformation (6.4) and the identity

~v ·AT ~u = ~u ·A~v = A~v · ~u (6.10)

equation (6.9) can be rewritten as

(FT d~a− J d~aR) · d ~X = 0 for all d ~X. (6.11)

Since F is invertible we find the so-called Nanson’s formula

d~a = J F−T d~aR (6.12)

which defines the mapping of infinitesimal area vectors. From equation (6.12) we can also find a relationship
between deformed and undeformed infinitesimal area, i.e.

j( ~X, t) =
da

daR
(6.13)

with j = J |F−T ~nR|.

Strain Tensors. We now introduce the changes of materials elements during motion in the form of second-
order strain tensors, both in reference and current frames. The right Cauchy-Green deformation tensor is
defined as
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C = FT F (6.14)

From definition (6.14), C is fully lagrangian, symmetric, and positive definite tensor. The inverse of C
identifies the so called Piola deformation tensor

B = C−1 = (FT F)−1 = F−1 F−T (6.15)

As a further strain measure, let introduce the Green-Lagrange strain tensor E as,

E =
1

2

(
FT F− I

)
=

1

2
(C− I) (6.16)

Then, in order to relate strains measures to quantities which are associated with the current configuration,
we can define the left Cauchy-Green tensor b which is defined by b = F FT , which is an important strain
measure in spatial coordinates.

Reynolds’ Transport Theorem. Suppose we have a spatial scalar field f(~x, t) describing some physical
quantity per unit volume (for example mass density or species concentration) and we want to compute the
material derivative of its integral over a volume advecting with the body, namely

d

dt

∫
Pt
f(~x, t) dv (6.17)

It can be proven that the time rate of change of the integral (6.17) result in two contributions: the local
time rate of change of the spatial scalar field f , and the rate of transport of f~v across the boundary surface
∂Pt (~v is the velocity of advection), i.e.

d

dt

∫
Pt
f dv =

∫
Pt

∂f

∂t
dv +

∫
∂Pt

f~v · ~nda (6.18)

Similarly, we can evaluate the material derivative of the surface integral of a spatial scalar field g(~x, t)
describing some physical quantity per unit of surface (i.e surface mass density or surface molar concentration),
i.e.

d

dt

∫
St
g(~x, t) da (6.19)

Also in this case, since the surface St advects with velocity ~v, we need to consider additional terms besides
the local time change of the spatial scalar field g (see [145] for the details)

d

dt

∫
St
g da =

∫
St

∂g

∂t
da+

∫
St

div [ g~v ] da−
∫
St
g
~n · d~n
|~n|2

da (6.20)

In equation (6.20), d = (l+lT )/2 refers to the rate of deformation tensor ( l = ∇ [~v ] is the velocity gradient).

6.3 General form of balance equations

6.3.1 Mass balance on a volume that advects

When species diffuse in large deformations setting, one has to account for two velocities: the velocity of
advection, and the velocity of the species. If we assume that there is no mass flux, density may change
because volumes either shrink or enlarge with velocity ~v. For the sake of generality, we consider a continuum
body with a set of particles occupying an arbitrary region Pt with boundary surface ∂Pt. The content of
diffusive species α in the body is characterized by its molar concentration Cα(~x, t), i.e. moles per unit current
volume. We assume that the time variation of of species content is due to flux across the boundary surface
∂Pt and species generation inside the volume Pt. The integral form of species conservation in the spatial
frame thus reads

84



d

dt

∫
Pt
Cα dv = −

∫
∂Pt

~hα · ~nda+

∫
Pt
Sα dv (6.21)

where ~hα = Cα ~vα is the flux vector of species α (~vα its the velocity of species α); Sα the generated mass
of species α, i.e. moles per unit current volume and unit time. Owing to equation (6.18) and divergence
theorem, the left hand side of equation (6.21) can be rewritten as

d

dt

∫
Pt
Cα dv =

∫
Pt

∂Cα
∂t

+ div [Cα~v ] dv (6.22)

that allows us to obtain the local form of conservation of species in the current configuration

∂Cα
∂t

+ div
[
Cα~v + ~hα

]
= Sα (6.23)

As customary, the referential forms of the conservation of diffusing species can be easily recovered by sub-
stituting formulae (6.8) - (6.12) in equation (6.21), obtaining

d

dt

∫
P
CαR dvR = −

∫
∂P
~hαR · ~nR daR +

∫
P
SαR dvR (6.24)

and

∂CαR
∂t

+ Div
[
~hαR

]
= SαR (6.25)

Note that the referential molar concentration CαR, referential flux ~hαR, and referential species supply SαR
have been introduced in (6.24) - (6.25) as

CαR = J Cα ~hαR = J F−1 ~hα SαR = J Sα (6.26)

6.3.2 Mass balance on a surface that advects

We now discuss the conservation of diffusing species on a surface that advects with velocity ~v (~x, t). For the
sake of generality we consider an open surface St bounded by a closed line Ct (see Fig. 6.3). Similarly to
the the approach followed in Section 6.3.1, the surface content of a diffusive species α is characterized by its
surface molar concentration cα(~x, t), i.e. moles per unit current surface. We assume that the time variation
of specis content is due to normal flux across the boundary Ct, as well as species generation on the surface
St. The integral form of species in the current configuration thus reads

d

dt

∫
St
cα da = −

∫
Ct
~hα · ~t⊥ d`+

∫
St
sα ds (6.27)

where ~hα is the flux vector of species α (as it was defined in Section 6.3.1); sα is the generated concentration
of species α, i.e. moles per unit current surface and unit time. Owing to equation (6.20), the left hand side
of equation (6.27) can be rewritten as

d

dt

∫
St
cα da =

∫
St

∂cα
∂t

da+

∫
St

div [ cα~v ] da−
∫
St
cα
~n · d~n
|~n|2

da (6.28)

As shown in Chapter 4, the line integral in equation (6.27) yields∫
∂Ct

~hα · ~t⊥ d` =

∫
St

divΩ

[
~hα

]
da (6.29)

where divΩ refers to the projected divergence operator, namely

divΩ

[
~hα

]
= div

[
~hα

]
−
(
grad [ cα ]~n

)
· ~n (6.30)
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Figure 6.3: Schematic representation of an advecting surface.

In addition we have that

div [ cα~v ] = divΩ [cα~v] + grad [cα~v]
~n

|~n|
· ~n
|~n|

= divΩ [cα~v] + cα
~n · l~n
|~n|2

(6.31)

Therefore, by substituting equations (6.28) - (6.29) - (6.31) into formula (6.27), we obtain

∫
St

∂cα
∂t

da+

∫
St

divΩ [cα~v] da+

∫
St

divΩ

[
~hα

]
da+

∫
St
cα
~n · l~n
|~n|2

da−
∫
St
cα
~n · d~n
|~n|2

da =

∫
St
sα ds (6.32)

that allows us to derive the local form of conservation of diffusing species in the current configuration as

∂cα
∂t

+ divΩ

[
cα~v + ~hα

]
= sα (6.33)

Note that the we have exploited the fact that

cα
~n · l~n
|~n|2

− cα
~n · d~n
|~n|2

= cα
~n ·w~n
|~n|2

= 0 (6.34)

since the so called spin tensor w = (l− l)/2 is skew-symmetric by definition.

Following the same path of reasoning of Section 6.3.1, the referential forms of the conservation of diffusing
species can be easily recovered by substituting formulae (6.4) - (6.13) into equation (6.27), obtaining

∂cαR
∂t

+ DivΩ [hαR] = sαR (6.35)

where the reference form of the projected divergence operator yields

DivΩ

[
~hαR

]
= Div

[
~hαR

]
−
(
Grad [ cαR ]~nR

)
· ~nR (6.36)

Note that the referential surface concentration cαR, referential flux ~hαR, and referential species supply sαR
have been introduced in (6.35) as

cαR = j cα ~hαR = j F−1 ~hα sαR = j sα (6.37)
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6.3.3 Balance of Linear and Angular Momentum

The quasi-static forms of balance of linear and angular momentum are briefly summarized in their spatial
and referential form. The local form of the spatial formulation is

div [σ ] +~b = ~0 σ = σT (6.38)

where the (symmetric) Cauchy stress tensor σ and the body forces for unit current volume ~b account respec-
tively for contact and action-at-a-distance forces (e.g. due to gravity). The referential form are instead

div [ P ] +~bR = ~0, PFT = FPT , (6.39)

where the (non-symmetric) First-Piola-Kirchoff stress tensor P and the body forces per unit reference volume
~bR are defined as follow

P = J σF−T ~bR = J~b (6.40)

An alternative stress tensor is the second Piola-Kirchhoff stress tensor S, which represents a very useful
stress measure in computational mechanics and in the formulation of constitutive equations. It is defined as

S = F−1 τ F−T (6.41)

where τ = J σ is the so-called Kirchhoff stress tensor (which differs from the Cauchy stress tensor by the
volume ratio J). Therefore we have that

S = F−1 P = ST (6.42)

which allows us to find a fundamental relationship between the First Piola-Kirchhoff stress tensor P and the
Second Piola-Kirchhoff stress tensor S

P = F S (6.43)

6.4 Modeling the receptors-ligands binding on advecting surfaces

6.4.1 Spatial formulation

As carried out in Chapter 4, the interaction between receptors (R) and ligands (L) is described as a chemical
reaction, which produces a receptor-ligand complex (C),

R + L
k+

�
k−

C, (6.44)

Ligands, whose degradation is negligible, and complex are assumed to be immobile. Since receptors are
free to move along the membrane, reaction (6.44) portrays a conversion of mobile to trapped receptors and
vice-versa. Its rate is denoted with w(6.44). Therefore, the spatial form of mass balance equations for the
three species involved in reaction (6.44) are

∂cR
∂t

+ divΩ

[
cR ~v + ~hR

]
+ w(6.44) = 0 (6.45a)

∂cL
∂t

+ divΩ [ cL ~v ] + w(6.44) = 0 (6.45b)

∂cC
∂t

+ divΩ [ cC ~v ]− w(6.44) = 0 (6.45c)

It is worth noting that here, differently from the governing equations derived in Chapter 4, the mechanics of
cell impacts on balance equations (6.45) through the advecting contribution divΩ [ cα ~v ] as derived in Section
6.3.1.
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Following the same path of reasoning of Chapter 4, the kinetics of reaction (6.44) is modeled by means of
mass action law, thus

w(6.44) = k+ ϑL
(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)
(6.46)

where k+ and k− are the forward and backward kinetic constants respectively. Symbol ϑα in equation (6.46)
denotes the molar fraction of species α, i.e.

ϑα =
cα
cmaxα

(6.47)

with cmaxα denoting the saturation limit of species α. Since ϑα are non-dimensional, the forward and backward
constants entail the dimensionality of w(6.44), i.e. the units of k+ and k− are

[
k+
]

=
[
k−
]

=

[
molecule

area

1

time

]
(6.48)

6.4.2 Referential formulation

The referential form of balance equations can be written as follow

∂cRR
∂t

+ DivΩ

[
~hRR

]
+ w

(6.44)
R = 0 (6.49a)

∂cLR
∂t

+ w
(6.44)
R = 0 (6.49b)

∂cCR
∂t
− w(6.44)

R = 0 (6.49c)

with

cRR = J cR cLR = J cL cCR = J cC ~hRR = J F−1~hR w
(6.44)
R = J w(6.44) (6.50)

as derived in Section 6.3.2. The term ϑα in formula is (6.46) is dimensionless and as such it should remain
unchanged with the configuration. In order for this to happen, cmaxα must change in the reference configura-

tion, not being a constant anymore in time. This makes sense since at each point ~X, the maximum amount
that can be stored depends upon the area at time t rather than at initial time t0. One thus defines

cmaxαR = j cmaxα (6.51)

accordingly

ϑα(~x, t) =
cα(~x, t)

cmaxα

=
cαR( ~X, t)

j( ~X, t)cmaxα

=
cαR
cmaxαR

= ϑα( ~X, t) (6.52)

Owing to formulae (6.50), (6.52), and (6.46), the rate of chemical reaction (6.44) holds

w
(6.44)
R = j

[
k+ ϑL

(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)

]
(6.53)

This expression suggests that the forward and backward costants are such in the current configuration but
thay change with time in the reference configuration according to

k+
R = j k+ k−R = j k− (6.54)

therefore equation (6.53) yields

w
(6.44)
R = k+

R

ϑL
(1− ϑL)

ϑR
(1− ϑR)

− k−R
ϑC

(1− ϑC)
(6.55)
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The mass balance equations (6.49) become

∂cRR
∂t

+ DivΩ

[
~hRR

]
= −

[
k+ ϑL

(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)

]
J |F−T ~nR| (6.56a)

∂cLR
∂t

= −
[
k+ ϑL

(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)

]
J |F−T ~nR| (6.56b)

∂cCR
∂t

=

[
k+ ϑL

(1− ϑL)

ϑR
(1− ϑR)

− k−
ϑC

(1− ϑC)

]
J |F−T ~nR| (6.56c)

with

~hRR(~x, t) = −D|R∇ΩR [cRR] (6.57)

and

∇ΩR [cRR] = ∇cRR − (∇cRR · ~nR) ~nR. (6.58)

6.5 Modeling the mechanical response of living cells

The fundamental equations described on the privious Sections are essential to characterize kinematics,
stresses and balance principles, and hold for any continuum body for all times. However, they do not
recognize the body’s material and they are not sufficient to establish the material response. For this aim,
we must introduce additional equations in the form of appropriate constitutive laws, which are provide
equations that approximate the observed physical behaviour of the material. The objective of constitutive
theories is to develop mathematical models for representing the real behavior of matter. We represent a
non-linear constitutive theory suitable to describe hyperelastic materials, in particular compressible, and a
recent theory proposed by [146] to describe the cell contractility.

6.5.1 A simple, Neo-Hookean model

A Neo-Hookean is a hyperelastic material model [151], constitutively described as

ΨNH(C) =
µ

2
(tr (C)− 3) , (6.59)

whence the second Piola stress tensor can be derived as usual

S = 2
∂ΨNH(C)

∂C
. (6.60)

For compressible materials, the regularized version of the Neo-Hookean model stems from the splitting

ΨNH(C) = ΨNH
vol (J) + ΨNH

iso (C̄) , (6.61)

where Ψvol(J) describes the volumetric elastic response and Ψiso(C̄) the isochoric elastic response. They
both are given scalar-valued function of J and C̄, whereby the latter is the modified right Cauchy-Green
tensor C = J2/3 C̄. We introduce a strain-energy function for compressible hyperelastic material in terms
of [152]

ΨNH
vol (J) =

K

2
(J − 1) ln(J) (6.62a)

ΨNH
iso (C̄) =

µ

2
(tr (C̄)− 3) (6.62b)
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where µ and K are the NeoHookean shear and bulk moduli. A class of nonlinear, viscoelastic constitutive
models has been proposed in [153] in terms of a set of internal variables Qi(t):

S = 2
∂ΨNH(C)

∂C
− J−2/3 dev

[∑
i

Qi(t)

]
(6.63)

where the deviatoric operator is defined as usual as

dev [ Qi(t) ] = Qi(t)− 1/3 (Qi(t) : C) C−1 . (6.64)

Different classes of viscoelastic models are based upon specific selections for Qi(t). We followed the approach
of [153], Chapter 10. Standard yet lengthy algebra, not reported here, leads to a straightforward integration
algorithm. The interested reader can refer to [153], Chapter 10.

Simulations with the HPC open source finite element library deal.II (http://www.dealii.org) have been
performed using the formulation above. We investigated the large mechanical deformations that occur in an
endothelial cell once it spreads from a spherical initial configuration onto a flat surface. This evolution indeed
takes place in the experimental tests described in Chapter 2. To this aim, we used the spherical configuration
as reference, and followed the evolution of the shape imposing a contact scheme on a flat surface, which is the
tangent plane to the sphere at its bottom. Contact algorithm entail the solution of variational inequalities,
since the admissible numerical approximation belongs to a convex set of admissible displacements. To solve
our problem we slightly modified a scheme proposed in [154] and already implemented in the tutorial section
of deal.II. Material parameters for the simulations are taken from [155]. The nucleus parameters have
been takes as 145, 985.4fN/µm2 for the shear modulus and 512, 820.5fN/µm2 for the bulk modulus. The
parameters for the cytosol have been reduced, since the cells considered in [155] were not endothelial and
a much higher deformation have been evidenced for the latter. We thus picked 36.49635fN/µm2 for the
shear modulus and 128.205fN/µm2 for the bulk modulus. Further analysis are required to calibrate these
last parameters. Following the experimental evidences described in Chapter 2, we selected a relaxation time
of half minute, and γ1 = 0.9 (namely, 90% of the stiffness is in the dashpot spring and only 10% in the
intrinsic stiffness). The cell radius ` amounts at 20.0 microns, whereby the nucleus radius is 3.5 microns in
the reference configuration.

The cell was loaded with rising load from time zero to the gravity weight in about a second. The cell
spread out in view of its viscous behavior, and the steady state configuration are printed in Figures 6.4 and
6.5. They show the plots of cell density, vertical displacement, and deformation. The white frame in the
background is the reference, initial configuration. The appearance of the nucleus is self-evident, in view of its
largest stiffness. For the sake of time, neither specific remeshing algorithms nor the mass balance equations
(6.56) have been implemented.

6.5.2 One-dimensional model for cell contractility. Stress generated by stress
fibers bundles

A general model for cell contractility [146], that relies on experimental studies [156], based on continuum
scale, explains why force vectors into living cells, acting on a compliant substrate, are occuring where no
stress fibers are visible. The model includes the formation and dissociation of stress fibers and the generation
of tension within the cell. In addition, the simulations data show the decrease of the forces generated by
the cell with increasing subtrate stiffness and include the cell shape and boundary conditions effects on
structural anisotropy [146]. Stress fibres (SFs) formation in a living cell is triggered by an activation signal
as an external cue, by the release of Ca2+ from the endoplasmic reticulum. The influx of Ca2+ activates
gelsolin, a protein that regulates actin filaments depolarization (i.e. formation of tiny fragments). The large
numbers of free ends generated in this manner are rapidly elongated by the monomeric actin group, forming
many long filaments, some cross-linked with some bundled by α−actinin. Phosphorylation triggered by
Ca2+ causes myosin II to preferentially assume its extended state. This promotes the assembly of myosin II
into bipolar filaments that enter into the α−actinin-bound actin filament bundles, resulting in the formation
of SFs. These fibres generate tension by cross-bridge cycling between the actin and the myosin filaments.
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(a) (b)

Figure 6.4: Evolution of the shape imposing a contact scheme on a flat surface. (a)
density, (b) vertical displacement. The nucleus clearly emerges. The white frame in
the background is the reference, initial configuration.

Figure 6.5: Evolution of the shape imposing
a contact scheme on a flat surface: cell defor-
mation measured by Fyy. The nucleus clearly
emerges. The white frame in the background
is the reference, initial configuration.

When the tension decreases, the actin filaments are no longer held in place by the bipolar myosin filaments
and the SFs disassemble [157]. A rapid transmission of the extracellular signal triggers the polymerization
of the actin filaments and the phosphorylation of the myosin. The signal level may be thought of as the
concentration of Ca2+, designated C (0 < C < 1) is assumed given by [146, 157]

C = exp

(
− ti
θ

)
(6.65)

where ti is the decay constant of the signal and θ is the time measured from the instant of the most recent
signal.
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The transduction of the signal results in: (i) the polymerization of the actin filaments and the bundling of
these filaments by α−actinin and (ii) the phosphorylation of myosin II, which promotes the assembly of the
myosin into bipolar filaments. The interaction between the myosin II heads and the actin filaments forms
contractile bundles. We characterize the activation level of the SF bundles by a dimensionless parameter,
η (0 ≤ η ≤ 1), defined as the ratio of the concentration of the polymerized actin and phosphorylated myosin
in the bundle to the maximum concentrations permitted by the biochemistry [146]. The formation and the
dissociation of the SFs, as parameterized through η, are represented by a first-order kinetic scheme,

dη

dt
=

(
[1− η]

C kf
θ

)
−
[(

1 − T

T0

)
η
kb
θ

]
(6.66)

where T is the tension in the SF and T0(η) the corresponding isometric tension for a given η and T0 = η Tmax.
The dimensionless constants kf and kb govern the rate of formation (forward) and dissociation (backward)
of the SFs, respectively. A tension versus velocity relation to describe the muscle mechanics has been written
by A.V. Hill [158],

(T + a)(v + b) = (T0 + a) b (6.67)

where T is the force, v is the shortening velocity, the isometric tension T0 defines the force against which
the muscle neither shortens nor lengthens and the speed vmax = b T0/a is the shortening velocity against no
load. Eq. (6.67) underlines the contractile behavior of SFs in non-muscle cell is similar to the Hill model
[159] and the tension in the SFs is generated by the cross-bridge cycling between the actin and the myosin
filaments. This force generation mechanism is similar (but not identical) to that in muscle cells.

v′ =
v

vmax
=

(1− T
T0

)

(1 + T
T0

1
k )

(6.68)

where k = a/T0 = b/vmax, usually assumed within the range 0.15 < k < 0.25 [159]. Eq. (6.68) is plotted in
Figure 6.6 for k = 0.25.

Figure 6.6: Hill’s force-velocity curve. The shorten-
ing part of the curve was calculated from Eq.(6.68)
with k = 0.25. Modified from [159]
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The influence of tension on the extension/shortening rate of the fibres is described by a Hill-like relation
[157], shown in Figure 6.7, described by,

T

T0
=


0 v

v0
< − η

kv

1 + kv
η

v
v0
− η

kv
≤ v

v0
≤ 0

1 v
v0
> 0

(6.69)

Here, v is the rate of change in the length of SF (positive for lengthening and negative for shortening). The
dimensionless constant, kv, is the fractional reduction in tension when the shortening rate increases by the
reference value, v0.

Figure 6.7: Hill tension-velocity relation for mus-
cle cells. The approximation of the Eq.(6.69) is
shown From [157] by the continuous line, while
the dashed line represents the Eq. (6.68).

Eq.s (6.66) and (6.69) are generalized to the SF intensive quantities σ and fiber strain rate ε̇ as the following
equations:

dη

dt
= [1− η] C

kf
θ
−
[(

1 − σf
σ0

)
η
kb
θ

]
(6.70)

σf
σ0

=


0 ε̇

ε̇0
< − η

kv

1 + kv
η

ε̇
ε̇0
− η

kv
≤ ε̇

ε̇0
≤ 0

1 ε̇
ε̇0
> 0

(6.71)

where σf is the stress in the SF bundle, σ0 is the isometric tension, and kv is the reduction in stress upon
increasing the shortening strain rate, ε̇ by a reference strain rate ε̇0 . Remembering that σ0 = η σmax we
obtain

dη

dt
= [1− η]

C kf
θ
−
[(
η − σf

σmax

)
kb
θ

]
(6.72)

σf =


0 u̇ < −η v0

kv

η σmax

(
1 + kv

η
u̇
v0

)
−η v0

kv
≤ u̇ ≤ 0

η σmax u̇ > 0

(6.73)
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6.5.3 Result: one-dimensional model

We consider a simple rheological model with a single SF (red line shown in Fig.6.8) and an elastic spring,
with elastic constant ks, connected in parallel. They undergo an assigned displacement u(t), on the right
side and are totally constrained on the left side as boundary conditions.

ks

u(t)

Figure 6.8: Contractility model: SFs, represented by the red line, and a spring in
parallel.

We decided to consider this model in according with the model for the contractility of the cytoskeleton
proposed by Deshpande at al. [157] and Ronan et al. [148] that define the total stress as a combination of
two contributions: (i) the active SF contractility and (ii) the passive elastic stress provided mainly by the
cytoskeleton filaments attached to the nuclear and plasma membranes, which means the passive material
surrounding the SFs.
The resulting total stress will be

σtot = σf + σs (6.74)

where σf is the stress on SFs, that is governed by the Eq. (6.73) and σs is the well-known spring stress,

σs = ks u(t) (6.75)

6.5.3.1 Dimensionless equations

It is convenient to rewrite all the parameters in dimensionless form. For time t, displacement u, velocity u̇,
stresses σ and ks we choose

t =
t

θ
⇒ C = exp

(
−t
)

(6.76)

u =
u

θ v0
, u̇ =

u̇

v0
(6.77)

σf =
σf
σmax

, σs =
σs
σmax

(6.78)

ks =
ks θ v0

σmax
(6.79)

using the chain rule we can write

∂η

∂t
=
∂η

∂t

∂t

∂t
=
∂η

∂t

∂θ t

∂t
=
∂η

∂t
θ (6.80)
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Eq.s (6.72) and (6.73) transform into the dimensionless governing equations,

σf =


0 u̇ < − η

kv

η
(

1 + kv
η u̇
)
− η

kv
≤ u̇ ≤ 0

η u̇ > 0

(6.81)

∂η

∂t
=
[
(1− η) exp(−t)kf

]
−
[
(η − σf (η)) kb

]
(6.82)

6.5.3.2 Numerical solution: backward Euler and Newton-Raphson methods

For the time discretization of the problem we use the finite difference method (the backward Euler method).
The backward Euler scheme is stable with no restriction on ∆t. Then the discrete problem becomes

∆η

∆t
=
[
(1− ηn+1) exp(−t)kf

]
−
[
(ηn+1 − σf (η)|n+1) kb

]
(6.83)

where

∆η = ηn+1 − ηn (6.84)

R(ηn+1) =
∆η

∆t
−
[
(1− ηn+1) exp(−t)kf

]
−
[
(ηn+1 + σf (η)|n+1) kb

]
(6.85)

Ones solve the non linear equation R(ηn+1) = 0 in order to find ηn+1 for each tn+1 by means of the Newton-
Raphson method,

R(k+1) ' R(k)|n+1 +
dR

dη

∣∣∣∣
η
(k)
n+1

δη
(k)
n+1 = 0 (6.86)

hence,

δη
(k)
n+1 = −R

(k)|n+1

dR
dη

∣∣∣
η
(k)
n+1

(6.87)

The residual is

R(k)|n+1 =
η

(k)
n+1 − ηn

∆t
−
[(

1− η(k)
n+1

)
exp(−tn+1) kf

]
+
[(
η

(k)
n+1 − σf (η

(k)
n+1)

)
kb

]
(6.88)

and its derivative,

dR

dη

∣∣∣∣
η
(k)
n+1

=
1

∆t
+ exp(−tn+1) kf + kb +

∂σfη
(k)
n+1)

∂η

∣∣∣∣∣
η
(k)
n+1

kb (6.89)

where

σf (η
(k)
n+1) =


0 u̇ < −η

(k)
n+1

kv

η
(k)
n+1

(
1 + kv

η
(k)
n+1

u̇

)
−η

(k)
n+1

kv
≤ u̇ ≤ 0

η
(k)
n+1 u̇ > 0

(6.90)

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 

 

σ
F

σ
S

σ

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

t

 

 

v

σ
F

η

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 

 

σ
F

σ
S

σ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

 

 

σ
F

σ
S

σ

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

t

 

 

v

σ
F

η

(d)

Figure 6.9: Case (1) (a) -(b) Linear function of u respect to time t: stress fibers stress
σf , spring σs and total tension σtot, velocity v, parameter η and stress fibers tension
σf . Case (2) (c) -(d): stress fibers σf , spring σs and total tension σtot velocity v,
parameter η and stress fibers tension σf .
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Results. Two different cases are plotted, choosing two displacements: case 1) a linear time-dependent
displacement has been taken u1(t) = t; case 2) a cosinusoidal time-dependent function has been considered
u2(t) = −0.2 cos(2πt). Fig. 6.9(a) shows the stress evolution with respect to time, for the case 1). The
spring tension increases linearly with Eq. (6.75); since we considered merely the velocity u̇ ≥ 0 the evolution
of σf follows Eq. (6.81). The plot in Fig. 6.9(b) shows the evolution in time of the velocity, the parameter
η and σf . Fig. 6.9(c) and 6.9(d) are the evolution for the case 2).
The time evolution of η follows Eq. (6.72) and is due to two contributions: (i) the first square bracket means
that the rate of the formation of the SF, which decreases with increasing fibre activation η and is proportional
to the strength of the decaying signal (ii) the second square bracket identifies the rate of dissociation, which
is proportional to the concentration of the polymerized actin and phosphorylated myosin II; the dissociation
rate is zero when the fibres are held at their isometric tension σ0, but increases linearly at lower tension.
Fig. 6.9(c) shows that the stress increases until t = 0.5 as long as the displacement is positive, so σf follows
the Eq. (6.81). After t = 0.5, σf decreases until vanishing.

96



6.6 Conclusion

The modeling of coupled chemo-mechanical processes on living cells has been discussed in this chapter.
Differently from the approach adopted in Chapter 4, the mechanical deformation of the cell has been described
rigorously in the framework of finite strain kinematics. In this way the transport of receptors on the cell
membrane is coupled with the mechanics through an advective contribution due to cell spreading. In order
to provide an exhaustive description, the conservation laws (i.e. conservation of diffusing species and balance
of linear of angular momentum) are first derived in abstract setting and then specialized to the problem at
hand. Subsequently, after having formulated the constitutive laws, the governing equations have been written
in both spatial and reference frames. The solution of the resulting coupled problem of transport, binding
reaction, and mechanics has been addressed numerically through the finite element method. Althoug the
numerical implementation has not been fully developed yet, some remarkable outcomes have been achived.
Among these, the spreading of a single cell on a rigid substratum has been simulated accounting for the
conctact-problem between cell and substrate. Future developments will be focus on coupling the receptor-
ligand binding surface equations with the simulated mechanical response of the cell.
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Chapter 7

Conclusions

The present PhD thesis concerned the coupling between cellular mechanics and VEGFR2/VEGF interactions.

Motivations. The motivations for a mechano-biological model of endothelial cells and either pro- or anti-
angiogenic factors have been described in Chapter 1. It has been clarified there why and how angiogenesis
plays a basic role in formation of new blood vessels and that therapeutic angiogenesis is considered a major
strategy for revascularizing ischemic tissue. Among several possible examples, it has been pointed out that
recovery of the vascular network after injuries prevents wound expansion and ulcer formation. Furthermore,
diseases such as limb, cardiac, coronary artery ischemias arise from reduced vascular perfusion. For this sake,
therapeutic angiogenesis is of prime importance for tissue engineering and regenerative medicine. Clinical
applications are still limited, mostly because of the lack of strategies capable to provide adequate amount of
oxygen and nutrients through blood vessels. Strategies to overcome this issue, such as the delivery of growth
factors (VEGF, BMP) that stimulate the recruitment of endothelial cells, are subject of abundant research.
In fact, the modulation of angiogenesis processes - such as the activation of vascular endothelial growth factor
receptors by ligands - can enhance these strategies. Angiogenesis plays a fundamental role in tumor growth
and cancer proliferation, too. Tumor development is sustained by angiogenesis, which is required to provide
the nutriments for cancer proliferation. Tumor angiogenesis is modulated by the interaction between specific
pairs of membrane receptors expressed by endothelial cells and extracellular ligands produced by the tumor
cell. The understanding of tumor angiogenesis leaded to the development of anti-angiogenic therapies, but
these therapies have not matched the expectations, yet.

Interdisciplinary nature of this work. Angiogenesis phenomena are still largely unknown. In vitro and
in vivo information from experiments are difficult to analyze, tailor, replicate. Disciplines as mathematics,
thermodynamics, and computational modeling can enable to fully understand how and why biological pro-
cesses work. Interdisciplinary is the keyword to success: recently, several ongoing collaborations between
contiguous scientific areas, such as biology and engineering, allowed achieving novel and impactful biolog-
ical insights in angiogenesis. Mathematical and computational approaches, if applied correctly, can boost
the discovery of general principles. Experimentalists and modelers shall work together, because predictive
capability of mathematical models will increase with the level of communication with experimentalists.

This thesis is the result of a first collaboration among the Mechanical and Industrial Engineering, Struc-
tural Engineering, and Molecular and Translational Medicine Departments at the University of Brescia. As
such, this research is the outcome of the interplay among several disciplines, as biology, thermodynamics,
solid mechanics, and numerical methods. The main goal was to describe the VEGFR-2 recruitment and
re-localization on endothelial cell membrane driven by ligands. We started from the simplest mathematical
description of the membrane phenomena by a chemo-diffusion preliminary model, which has been successfully
published in [137, 160]. Afterwards the model has been enriched, by adding complexity: we coupled inte-
grins and the cell mechanics in large deformations, with the ultimate aim of reproducing the real condition
for receptor relocation driven by growth factors. Summarizing, we investigated VEGFR-2 re-localization
modeling by means of
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• a preliminary thermodynamical and chemo-diffusion framework accounting for chemical kinetics on a
spherical geometry, presented in Chapter 3,

• a chemo-diffusion model through a discretized weak form with a simplified mechanics to describe the
cell-substrate contact on a surface, proposed in Chapter 4;

• interaction between VEGFR-2/ligand complex coupled with low affinity integrins through a mathe-
matical formulation taking into account the interplay with the latter co-receptors, presented in Chapter
5;

• the VEGFR-2 relocalization by considering cell spreading, contractility and the cell-substrate contact
accounting for large deformations, described in Chapter 6.

Computational simulations have been performed in Chapters 3 and 4 by comparison with experimental
evidence and co-designed tests have been carried out to validate our results. Experimental data necessary to
run the simulations, such as the receptor diffusivity and the species concentrations, are depicted in Chapter
2.

Co-designed experiments. Time-laspse experiments have been performed to analyze VEGFR-2 recruit-
ment on the EC membrane. Both immobilized Gremlin and immobilized VEGF-A induce the re-localization
of VEGFR-2 to the plasma membrane at the basal aspect of ECs, thus leading to a localized and di-
rectional receptor activation. The major outcome are that VEGFR-2 has a lateral mobility of about
D|R = 0.198µm2 s−1, as measured by means of FRAP experiments, and that free and ECM-immobilized
ligands induce VEGFR-2 rearrangement on EC plasma membrane. After ligand interaction, VEGFR-2
dimerizes and transduces an intracellular signaling via its relocation on the cell membrane and the recruit-
ment of intracellular proteins. All these data, collected in our work [137], highlight that non-activated
receptors are mainly free to move on the cell membrane, thus suggesting that VEGFR-2 phosphorylation,
its dimerization, and its interaction with membrane co-receptors or intracellular signaler may reduce its
motility.

Modeling. A simple thermodynamical framework has been proposed in Chapter 3 to mimic the VEGFR-2
recruitment and re-localization driven by ligands that are immobilized upon a substrate. From the exper-
imental evidence, provided by time lapse analysis, we based two main assumptions: at the beginning, we
consider an uniform receptors concentration and at the end of the process we reach a stationary state with
a uniform complex concentration; in addition we define a contact function α to mimic che cell ’adhesion’
on the ligand-enriched substrate. This model takes into account of chemical kinetics and provides a dimen-
sionless parameter K̃ which depends on receptor diffusivity D|R, cell radius `, forward reaction rate k+ and
equilibrium constant based on the concentrations Kc

eq. Dimensionless partial differential equations have been
written on spherical coordinates and implemented on a MATLAB code by using a pdepd solve. Summarizing,
the model predicts:

• the important correlation between the ratio of initial concentration on receptors R0 and ligand L0 with
the equilibrium constant;

• the overall number of free plus bound receptors normalized by the initial over number of receptors in
contact with the substrate in comparison with time lasps measuments;

• the change of slope at about t = 10 min, which corresponds to the point between the mechanical and
the diffusion phases and the final stationary value x;

• the initial and the final contact angles θ0
A and θ∞A , respectively, during cell attachment phase;

• the evolution of the concentrations of the three species;

• the matching values of K̃ at the given xexpA and for the variuos cell radius `.
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The model in Chapter 3 differs from that in the following Chapter and published in [137], in that the
reactions are not assumed at chemical equilibrium and therefore the model requires a reasonable estimate
of the forward reaction rate constant k+. So far we found no experimental data from which to extract such
rate constant for the reaction occurring on the cell membrane. However, we believe that following the line
of analysis in [141] and [94] data from bulk experiments complemented with appropriate surface tension
measurements could yield the required surface rate constant.

We developed in Chapter 4 a multi-physics model to describe and predict the effects of ligands on VEGFR-2
relocation during the endothelial cell activation. The interaction between ligands and receptors has been
modeled by a chemical reaction that produces a complex. The model accounts for finite reaction kinetics,
although simulations have been carried out assuming that the reaction kinetics is infinitely fast. The time-
scale of the VEGFR2-ligand binding reaction is in fact assumed to be much faster than the time-scale of
the mechanical deformation of the cell and of the diffusion of receptors on cell membrane. The effect of the
mechanical deformation of the cell has been accounted for in the model, by surrogating the explicit description
of the cell spreading/deformation with a given increase in time of the surface area available for the chemical
reaction by means the function sL. Under these assumptions, we recovered the experimental evidence that
the motion of receptors and their subsequent trapping into immobile VEGFR2-ligands complexes proceed
in a sequence of three phases, and we characterized those phases with different rate-controlling factors. The
model predicts the amount of well-oriented ligands available for the receptor binding, by noticing that this
value is much smaller than the total number of immobilized ligands cmaxL .
The key features of our experimental evidence on VEGFR-2 relocation are captured well. In particular,
through the numerical simulations carried out in this Chapter, we evaluated:

• the time evolution of the spatial concentration of free receptors VEGFR-2 along the cell membrane;

• the spatial evolution of the ligand-receptor complex concentration at various time, with high concen-
tration manifest at the boundary of the contact area.

The outcomes of this Chapter are shown on the pubblished paper on Scientific Reports, [137], and on a
paper recently accepted on Mathematical Problems in Engineering [160].

Such a model was further developed in Chapter 5, by including transmembrane proteins as the integrins that
are responsible of focal adhesion. The numerical implementation of the governing equations has not been
fully developed yet, but several goals have been achieved:

1. The weak form of the balance equations of three reactions has been written, which considers:

• the interaction between low affinity integrin (“unbent” configuration) and its specific ligand (e.g.
fibrinogen) that leads to a high affinity integrin (“bent” configuration) triggering stress fibers
formation and focal adhesion,

• the interaction between VEGFR-2 and VEGF which forms the complex VEGFR-2/VEGF,

• the reaction between the low affinity integrins and the VEGFR-2/VEGF complex which triggers
a long-term VEGFR-2 activation.

2. The weak form, with these three reactions, has been discretized in space, with Finite Element Method,
and in time, with Backward Euler scheme. To solve the nonlinear part, Newton-Raphson method has
been designed.

This model may provide new insights about the important interplay among different transmembrane pro-
teins and may be applied to other interactions among receptors and co-receptors, such as Neuropilin-1 and
VEGFR-2 [150].

The modeling of coupled chemo-mechanical processes on living cells has been discussed in Chapter 6. Differ-
ently from the approach adopted before, the mechanical deformation of the cell has been described rigorously
in the framework of finite strain kinematics. In this way the transport of receptors on the cell membrane is
coupled with the mechanics through an advective contribution due to cell spreading.
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In order to provide an exhaustive description, the conservation laws (i.e. conservation of diffusing species
and balance of linear of angular momentum) are first derived in abstract setting and then specialized to the
problem at hand. Subsequently, after having formulated the constitutive laws, the governing equations have
been written in both spatial and reference frames.
The solution of the resulting coupled problem of transport, binding reaction, and mechanics has been ad-
dressed numerically through the finite element method. Although the numerical implementation has not been
fully developed in the time-frame of this thesis, some remarkable outcomes have been achieved. Among these,
the spreading of a single cell on a rigid substratum has been simulated accounting for the conctact-problem
between cell and substrate.

Future developments will focus on coupling the receptor-ligand binding surface equations with the simulated
mechanical response of the cell [148, 161].
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