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Sommario

Questa tesi ha per oggetto la modellazione teorica e numerica di sistemi elettro-chemo-meccanici, con
particolare applicazione alle batterie agli ioni di litio.

Studi di carattere teorico e numerico non solo permettono di comprendere il reale comportamento delle
batterie agli ioni di litio, ma possono offrire un valido strumento a supporto delle indagini sperimentali per
la progettazione di nuove architetture e soluzioni tecnologiche.

Le batterie sono dispositivi intrinsecamente multi-scala, sia nello spazio che nel tempo. Infatti le carat-
teristiche macroscopiche (ad esempio lo spessore di una singola cella elettrochimica) sono maggiori, di alcuni
ordini di grandezza, delle dimensioni delle particelle che formano la microstruttura di un elettrodo poroso.
Per di più, i processi che caratterizzano l’intercalazione di ioni litio negli elettrodi avvengono addirittura a
scala atomistica.

Nel Capitolo 1 è esaminata l’abbondante letteratura riguardante la modellazione delle batterie agli ioni di
litio. In particolare, sono analizzate dettagliatamente le diverse tecniche di modellazione a livello microscopico
e macroscopico, nonchè le più recenti tecniche di modellazione multi-scala.

Il Capitolo 2 analizza il ruolo della saturazione nella modellazione degli elettroliti liquidi. Recenti analisi
numeriche mostrano chiaramente che la concentrazione di ioni litio può eccedere metà del limite di satu-
razione, specialmente nella regione vicino agli elettrodi. Questa osservazione mette in discussione l’ipotesi di
soluzioni infinitamente diluite, largamente utilizzata in letteratura, e suggerisce l’adozione di una teoria più
appropriata per soluzioni saturabili. Da questo studio conseguono due importanti risultati. In prima analisi
la saturazione non ha alcun effetto sulla diffusività degli ioni in soluzione. D’altra parte, la saturazione
impatta fortemente lo sviluppo del potenziale elettrico nell’elettrolita con differenze anche del 40 % rispetto
al caso di soluzioni infinitamente diluite.

La risposta chemo-meccanica di active particles costituenti gli elettrodi porosi è analizzata nei Capitoli
3, 4 e 5. Innanzitutto, una teoria generale per processi accoppiati di trasporto di massa, calore, meccanica e
reazioni chimiche con intrappolamento è proposta nel Capitolo 3. Questa teoria si fonda sulla termodinamica
di non-equilibrio nell’ipotesi di deformazioni e spostamenti infinitesimi. Le equazioni di bilancio sono formu-
late in termini di bilancio di massa, bilancio della quantità di moto e del momento angolare, conservazione
dell’energia e bilancio di entropia. Le relazioni costitutive, necessarie per l’identificazione delle equazioni
governanti, sono ricavate a partire dalle restrizioni termodinamiche e dalla scrittura dell’energia libera di
Helmholtz.

Nel Capitolo 4 si studia l’impatto dell’intrappolamento di ioni litio nella litiazione e delitiazione di una
particella sferica. Si evince che una reazione chimica può indurre una energia libera non-convessa, pro-
prio come nei materiali che mostrano trasformazioni di fase. Inoltre, i risultati numerici dimostrano che
l’intrappolamento di ioni litio nella particle può simulare le peculiarità di un processo di transizione di fase
del materiale ospitante.

Un modello chemo-meccanico per la risposta di active particles di LiCoO2 è proposto nel Capitolo 5. Il
litio cobalto ossido LixCoO2 mostra una transizione di fase del primo ordine tra x = 0.75 and x = 0.93.
Durante questa transizione di fase, la diffusione degli ioni litio nel materiale ospitante è influenzata dalla
formazione dell’interfaccia che separa le due fasi coesistenti. Inoltre, la transizione di fase influenza la risposta
meccanica della particle, inducendo un ingente stato di sollecitazione in corrispondenza dell’interfaccia. Allo
scopo di cogliere queste evidenze sperimentali, il modello analizzato nel Capitolo 4 è stato leggermente
modificato, introducendo una legge di evoluzione dei siti per l’intrappolamento nel materiale ospitante.

Il Capitolo 6 affronta la modellazione dell’intero elettrodo poroso. Tale componente è idealizzato come
un sistema a tre-fasi composto da active particles, conductive particles ed elettrolita. Le leggi di bilancio e
le condizioni di interfaccia sono state enunciate per ogni fase. Le relazioni costitutive, ricavate dalle leggi
della termodinamica, completano il sistema di equazioni governanti. Tale modello è stato opportunamente
validato mediante simulazioni numeriche.

i



Abstract

This thesis investigates the behavior of electro-chemo-mechanical systems through theoretical and nu-
merical analysis, with particular application to Li-ion batteries.

Theoretical and numerical studies not only provide a better understanding of the intimate behavior of
actual batteries under operational and extreme conditions, but they may tailor new materials and shape
new architectures in a complementary way to experimental approaches. Modeling can therefore play a very
valuable role in the design and lifetime prediction of energy storage materials and devices.

Batteries are inherently multi-scale, in space and time. The macrostructural characteristic lengths (the
thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the
microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which
atomistic intercalations occur.

In Chapter 1, a comprehensive overview and description of computational models and methods proposed
in recent years for batteries is provided. In particular, multi-physics modeling concepts, methodologies, and
simulations at different scales, as well as scale transition strategies are revised.

Chapter 2 focuses on the role of saturation in liquid electrolytes. Recent computational simulations of
ionic conductivity across the electrolyte of commercial batteries have shown that the concentration of ions
exceeds half the saturation limit near the electrodes. This observation implies that the widespread assumption
of infinite dilution far from saturation is questionable. An important result is found, that saturation has
no effect on the diffusivity, whereby the condition of electroneutrality is well approximated in the solution.
However saturation affects the electric potential up to 40 % near the electrodes for all charge rates.

The chemo-mechanical response of active particles of porous electrodes is investigated in Chapters 3, 4,
and 5. A general framework for coupled mass and heat transport, mechanics, and chemical reactions with
trapping is first provided in Chapter 3. It is rooted in non-equilibrium rational thermodynamics and assumes
that displacements and strains are small. Balance laws for mass, linear and angular momentum, energy, and
entropy are stated. Thermodynamic restrictions are identified, based on an additive strain decomposition
and on the definition of the Helmholtz free energy. Constitutive theory and chemical kinetics are studied in
order to finally write the governing equations for the multi-physics problem.

In Chapter 4 the impact of trapping of Li ions in investigated on a spherical particle upon lithiation and
delithiation. A chemical reaction may induce a non-convex free energy with multiple equilibrium configura-
tions, as expected in phase segregating materials. In addition, numerical analysis on the transient response
of the particle, show that trapping of Li ions may simulate the typical features of a phase-transition.

A chemo-mechanical model of the response of LiCoO2 particles is proposed in Chapter 5. A strong
first-order phase transition has been measured between x = 0.75 and x = 0.93 in LixCoO2. During this
phase-change, lithium diffusion in the electrode is influenced by the formation of a phase boundary separating
two coexisting phases. The phase-transition has impact on the mechanical response as well. Indeed a state of
stress results from the lattice parameter mismatch at the phase-interface. In order to meet the experimental
evidence, a slightly modification of the model analyzed in Chapter 4 is proposed here. In particular the
trap density will be considered non-constant during the process in order to simulate the phase diagram of
LiCoO2.

Chapter 6 focuses on the microscopic modeling of a porous electrode compound. The electrode mi-
crostructure is idealized here as a three-phase media made of active particles, conductive particles, and
electrolyte. Balance laws and interface conditions are derived for any component. Constitutive relations,
derived from thermodynamic principles, complete the set of governing equations. Validation of the numerical
algorithms descending from them have been carried out.
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Chapter 1

Literature Review

1.1 Introduction

Greenhouse gas reduction strategies call for developing and deploying innovative technologies. Industrial
production of high capacity energy storage devices is one of the major challenges to achieve a low-carbon
global economy in the long-term. Li-ion batteries, LIBs, currently have the highest energy storage density
of any rechargeable battery technology [1]. The present commercial realities, however, are not yet at such a
technological level to meet the requirements of ambitious actions to tackle climate change, as for powering
Electric Vehicles (EVs) to displace fossil fuel transport systems.

Since the commercial spreading begun by Sony in 1991 [2], Li-ion battery cells have been widely used
to supply electric portable devices such as mobile phones, laptop computers and cameras. Being the latter
characterized by limited lifetime, battery aging was not a central topic. The expected use of LIBs for high-
power and high-capacity demanding systems, as EVs [3], and for storage systems for renewable energy sources
makes contained capacity fading and power loss nowadays priorities for the world-wide research community.
Whereas experimental studies are the backbones of batteries investigation, modeling can provide fundamental
contributions, particularly in tailoring material performances and degradation.

Research activities carried out worldwide over the last few years call attention to the multi-scale and
multi-physics modeling of storage cells [4] to predict conditions to develop the next generation of batteries
for higher capacity and longer cycling life. Computational simulations, based on rigorous theoretical modeling
and coupled to validation and quantification of the uncertainties, have the potential to enhance batteries’
performances, tailor architectural configurations toward optimal functioning of energy storage devices, and
shape new materials for greater capacity and power release. Accurate reviews of battery management systems
in electric vehicles [5], of prognostics and health monitoring [6], of prominent phenomena occurring during
common operations as well as of the material response to solicitations and of the aging mechanism [7] have
been recently published. Apparently though, a careful account of the broad literature on computational
modeling and simulations appears not to have been considered yet, with a few exceptions [8].

This paper aims at filling this gap, by providing a comprehensive overview and description of compu-
tational models and methods proposed in recent years for batteries. Modeling of composite electrodes and
electrolytes - either solid or liquid, of core functioning of cells, of intercalation of lithium ions in active
materials and their multi physic description, with special emphasis on mechanical behavior and failure will
be reviewed and discussed. The main target is to underline the efforts of the scientific community in mod-
eling and simulating Li-ion batteries, by no means presuming to be exhaustive of the widespread literature
available on the topic.

Current challenges - including the lack of full 3D multi-scale modeling of the multi-physics processes
from atomistic to continuum, of hot spots generation, phase-segregations and mechanical failure - are also
identified and approaches to address them are devised.

The chapter is organized as follows. Section 1.2 illustrates basic concepts of Li-ion batteries, highlighting
the multi-physics processes that occur at different length and time scales. Sections 1.3-1.5 are the core of this
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review and examine several computational models for the processes of section 1.2 that have been developed
in recent years. Macroscopic models 1.3, microstructural models 1.4 as well as multiscale models 1.5 are
separately dealt with.

1.2 Processes, modeling, simulations.

Figure 1.1: Sketch of a Li-ion battery cell with porous electrodes. Additives are used to
create conductive networks in both electrodes, to increase the electronic conductivity.
Additives include large (graphite) and small (carbon black) conductive particles, which
are bound to the active particles that host Lithium by a polymer binder.

An electrochemical cell consists of two electrodes, a separator and, for liquid electrolytes, an electrolytic
solution. Electrons flow externally and through the electrodes, facilitated by a network of conductive parti-
cles. Mass and positive charges are transported in form of ions through the electrolyte from one electrode to
the other, to bring reactants to the interfaces where intercalation reactions occur. A sketch of a LIB cell is
depicted in Figure 1.1, whereas Figure 1.2 illustrates the main processes that take place during operations.
As shown in Figure 1.3, each process requires its own modeling.

As already pointed out [9], the term battery modeling is shared by different approaches, each of which
makes use of its own methodology to achieve specific targets. Some models for instance define the battery
as a black box , aiming at empirically describing its system-level characteristics, such as capacity, efficiency,
and voltage. Peukert’s law, which correlates the rate of discharge and the capacity, falls into this class
[10, 11]. Other mathematical models study the non-linear capacity/recovery effects in LIBs in a similar way
[12, 13, 14]. Equivalent circuit models simulate the battery with combination of variable voltage sources,
resistors, and capacitors [15, 16]. Several of these models have been developed in the literature [17], including
Thevenin equivalent circuit models [18], impedance-based models [19], and runtime-based models [20]. A
recent review can be found in [21].

Although those models have been quoted here for the sake of completeness, the present review focuses
on the multi-scale and multi-physics modeling of the processes that take place during charge/discharge,
from the atomistic size up to the cell size. This choice has a sound motivation, since theoretical and
computational modeling not only provide the ability of understanding the microscopic behavior of batteries
under operational and extreme conditions, but they may also be tailored to devise and shape new materials
as well as new architectures in a way complementary to the experimental approaches. Modeling of multi-
scale and multi-physics processes taking place during charge/discharge can therefore play the most valuable
role for battery design and lifetime prediction.
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Figure 1.2: A list of processes that take place in a battery during normal operation.
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Figure 1.3: A list of models for the processes that take place in a battery during normal
operation.

Any rigorous model of physical phenomena stems from a few pillars. They are, in order: the balance (or
continuity) equations; the thermodynamic analysis, in terms of energy and entropy balance; the constitutive
theory and specifications; in the presence of large deformations, objectivity shall also be properly investigated.
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Governing equations result from this fundamental sequence of tasks. Scientific rigor claims that this sequence
shall be respected, but this is unfortunately not always the case in the literature on battery modeling. In
particular, from the second law of thermodynamics restrictions arise that constitutive modeling should
account for [22, 23, 24, 25, 26]. Furthermore, in multi-scale approaches, the so called Hill-Mandel condition
must be considered, to guarantee that energy is neither artificially created nor annihilated in the scale
transitions.

Despite many progresses have been made in the last decades, modeling the complex microstructure of
a battery still represents an open challenge. The different nature of the phenomena involved (mechanical,
electrical, electrochemical, and thermal) and the interactions among them lead to complex mathematics
with a very high number of unknown fields (displacements, electric potential, concentrations, temperature).
Moreover all the fields are coupled through non-linear constitutive relations, thus leading to non linear partial
differential equations that require iterative algorithms to be numerically solved. As a further complexity in
order to achieve predictive capabilities, several parameters usually must be calibrated. Uncertainties in the
measurement of those parameters are significantly high for LIBs [27, 28].

Mass transfer entails a description of the movement of mobile ionic species. In the absence of convection,
as usually assumed under operation conditions, movement of species is governed by diffusion, driven by
gradients of concentration, or by migration, driven by an electric field. The intercalation reactions taking
place at the electrode-electrolyte interfaces, can be either described by Butler-Volmer-type equations or by
more complex analysis [29, 30, 9] of the phenomena that occur in the atomistic-size layers, termed after
Stern and Gouy-Chapman.

Both negative - carbonaceous, mainly graphite, (C) - and positive - LiCoO2 (LCO), LiNiO2 (LNO),
LiFePO4 (LFP), and LiMn2O4 (LMO) - electrodes intercalation materials exhibit phase transition [31, 32].
In some cases the transition is sharp (e.g. from crystalline to amorphous in Silicon) and can be clearly
defined by an atomically thick boundary [33] where a chemical reaction takes place. The material properties
may change among phases, thus leading to unexpected stress scenario which are under intense study. The
reaction rate at the front has been detected as one of the limiting factors for the electrode charge/discharge
rate.

Modeling power loss and capacity fade with electrochemical cycling - either in operating or non operat-
ing conditions - is becoming a major branch of research [34, 35, 36, 37, 38], especially in connection with
high-power and high-density cells that are prone to rapid degradation. The main mechanisms of aging can
be categorized in four groups, namely: surface film formation (solid electrolyte interphase (SEI), Lithium
plating), bulk changes (phase segregation), mechanical effects due to lithiation (fracturing, dissipation, grind-
ing), and parasitic reactions (corrosion, binder degradation). An up to date review of the literature on aging
of Lithium-ion batteries for electric vehicles can be found in [3], with special emphasis on physicochemical
transformations. Recent publications on aging and degradation accentuated the role of mechanical detri-
mental effects. Although individual mechanism strongly depend on the materials in the cell, general effects
can be pointed out. Phase-segregation and large volume changes in the active particles are associated with
the intercalation of Li in the hosting storage materials. Swelling induce inelastic effects, micro-cracks and
particle fracture, decrepitation or pulverization, loss of integrity and loss of electric contact with the current
collector, finally leading electrodes to die.

Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry
and mechanics [39, 40]. Volume expansion and fracturing of composite electrode components may occur dur-
ing battery standard operations. Active materials in composite electrodes experience swelling and shrinking
during cycling due to Li-ions insertion and extraction. Volume changes reported in the literature range be-
tween 6.5% for LMO [41] and about 10% for carbonaceous materials [42, 43]. Such an amount of deformation
may induce stress which in turn cause fracture and detachment of particles from the conductive network.
In this regard, experimental data have been reported for various active materials:, such as LCO [44], LMO
[45, 46], LFP [47, 48] and C [49, 50, 43, 51]. The problem is even more relevant in materials with large
storage capacity materials. For instance, the tremendous volume change experienced by Li-alloys, e.g., up
to 300% for Li-Si [52] causes fracturing after a small number of cycles.
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Deformations in composite electrodes may cause contact loss among their different components accom-
panied by irregular SEI growth that can modify the porosity of the solid matrix and reduce the overall ionic
conductivity.

Temperature influences drastically the performance of batteries under operation conditions. In extreme
conditions, temperature increase can initiate a sequence of detrimental effects, known as thermal runaway,
that may lead to a destructive result. Three paradigmatic mechanisms for thermal runaway have been
recently either experimentally discovered or numerically envisaged. The first mechanism [34, 53] relates
to deposition of metallic Lithium during charging, which may compromise cell safety because of dendritic
growth and internal short-circuiting. The deposition reaction occurs upon overcharge, fast charge, or at low
temperature. Thermally induced mechanisms have been experimentally investigated in [54] in the presence of
an external heat source, as for the failure of neighboring cells. They are fueled by the continuous exothermic
decomposition and reformation of the solid electrolyte interphase layer at negative electrode/electrolyte
interface, inducing a complex chain of events up to battery explosion. Drops in concentrations at the same
location, which have been predicted in the presence of fast charge/discharge processes [55, 56], can trigger
a similar series of events. Modeling and simulation of those mechanisms involve complex physical processes
coupled across a wide range of length and time scales.

1.3 Macroscopic models

Although multi-physics phenomena described in figure 1.2 take place at the length scale of the electrode
particles - namely three order of magnitudes below the battery cell size - or even at smaller scales, boundary
conditions that drive the response of batteries cannot be identified from experimental observations at those
scales. Boundary conditions are more naturally defined at the battery cell scale, and they depend upon
the process (galvanostatic/potentiostatic, charge/discharge) and upon the geometry of the cell (cylindrical,
pouch, others). The former remark, together with the quest of feasibility of numerical simulations for the
models described in figure 1.3 at the finest scale with the state of the art of high performance computing, lead
to the conclusion that the computational modeling of batteries must unavoidably be treated via multi-scale
approaches. Nevertheless, a large amount of research in batteries focused on one-dimensional, single scale
modeling, accounting in the best possible way for the underlying microstructure.

1.3.1 Macroscopic models for liquid electrolytes and separators

In liquid-electrolyte batteries, the inter-electrode medium is a composite structure formed by the electrolyte
and a separator membrane, that includes a network of interconnected and irregular pores. Most liquid
electrolyte models concern a single binary electrolyte, i.e. a solution of a binary salt, say LiX where X can
for instance [59] be PF6, plus a solvent in which the ionic concentration varies in the cell. Mass transfer
in an electrolytic solution requires a description of the motion of mobile ionic species Li+ and X− which
is due to diffusion, migration, and advection. Even though the latter contribution might be relevant for
some electrochemical systems [60, 61], especially under abuse or extreme conditions [62], advection is usually
neglected in LIBs models.

In many cases, the ionic transport is described assuming the electrolyte as an ideal infinitely diluted
solution. Under this hypothesis the energetic interactions between different species are neglected; hence,
the flux of a species is proportional to the gradient of its own electrochemical potential [63]. For systems
involving n different species, the set of n mass balance equations contains n + 1 unknowns, typically n
mass concentrations plus the electric potential. An additional equation is mandatory and the most common
selection in battery modeling is the electroneutrality condition [64].

Electroneutrality can be defined as follows: over macroscopic distances the difference in concentrations of
the ionic species is small compared to the ionic concentrations [65] and can be neglected. Such an assumption
is valid at material points “far” from the electrode/electrolyte interfaces, where high electric fields separate
positive and negative charges across very narrow layers.

Noteworthy, electroneutrality is not a fundamental law, but rather an approximation towards the solution,
which can lead to paradoxes if not consciously adopted. Dickinson et al. [66] have shown that electroneu-
trality does not constrain in any way the electric field to satisfy Maxwell’s equations. Danilov and Notten
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Figure 1.4: Sketch of a Lithium metal/liquid electrolyte separator/porous insertion elec-
trode cell and a FIB-SEM image of a LiCoO2 commercial electrode. Large active par-
ticles are clearly visible, together with the carbon additive particles that form a micro-
porous structure between them. Separator scanning electrode microscope images can be
found for instance in [57, 58].

[63], while discussing numerical simulations stemming from the electroneutrality assumption, pointed out an
unjustified electric field in spite a good estimation of the ionic concentration. More general formulations that
do not account for electroneutrality in the set of balance equations are required in multi-scale approaches
[67, 68, 55, 56]. Their description is thus postponed to section 1.5.

Separators have to be designed to prevent internal short circuiting while providing a path for ionic conduc-
tion in the liquid electrolyte throughout its open porous structure. Examples of separators are microporous
polymer membranes, non-woven fabric mats, and inorganic composite membranes. Although the separator
does not participate in the electrochemical reaction it influences the performance of Li-ion battery cells, as
experimentally observed by Djian et al. [69].

Morphological features are macroscopically accounted for through global parameters, such as porosity
and tortuosity . The former quantifies volume fraction occupied by the pores; the identification of an optimal
value is a compromise between the minimization of the ionic resistance, enabling high-specific battery power
(high porosity and large mean pore size), and the limitations dictated by the mechanical resistance of the
membrane, preventing the risk of inner battery electrical shorting (thick membrane and low porosity). The
tortuosity is a measure of how the conductive pathways deviate from an ideal condition of straight channel of
uniform cross section. Increasing tortuosity also increases the mean path length of ions, eventually favoring
undesired effects [70]. Many attempts can be found in the literature [71, 72, 73, 74, 75] to relate porosity and
tortuosity to effective conductivity and diffusivity of inhomogeneous media. The influence of the underlying
microstructure onto macroscopic material properties is a goal of homogenization theories, which will be
discussed in section 1.5.

As the integrity of the separator is crucial to the performance and safety of batteries, stress analyses for
the separator can be found in literature [58, 76], taking also into account the SEI layer and its growth as
one of the main degradation mechanisms [77].
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1.3.2 Macroscopic models for solid electrolytes

Solid electrolytes are of increasing interest due to their possible application in power microelectronic devices,
such as micro-electomechanical systems (MEMS), remote sensors, self powered integrated circuits and health
care implants [78, 79, 80]. Despite a generally limited ionic conductivity, up to three orders of magnitude
smaller than conventional liquid electrolytes [81], their application is characterized by undeniable advantages:
safety, high energy density due to usage of a pure Lithium metal anode is enabled yet ensuring stability,
no need for casting, no leakage, resistance to shock and vibration, resistance to pressure and temperature
variations, electrochemical stability [82, 83, 81, 84].

Inorganic glasses, with particular reference to lithium phosphorus oxynitride (LiPON), find application
in many solid state thin-film lithium batteries [85]. A widespread example is the Li/LiPON/LiCoO2 system,
investigated by Fabre et al. [83] and Danilov et al. [86]. LiPON solid electrolyte is a glass-forming system in
which immobile, oxygen-binded Lithium is transferred to mobile Lithium by means of a ionization reaction,
during which a negative charge is released. This process was described by Danilov et al., who made use of
the Nernst-Plank equation and the electroneutrality assumption to describe mass transport of Li-ion and
negative charges during a battery subjected to a discharge process. A simplified approach was pursued by
Fabre et al., who assumed the ionic concentration to be uniform in the bulk electrolyte during both charge
and discharge processes. The mobile charges being exclusively Li-ions, Ohm’s law was used to relate the
current density to the electric potential distribution across the LiPON. The effect of temperature on the
input parameters of the model was also studied.

Polymer electrolyte find application in three-dimensional [78] and flexible [87] batteries. Ionic transport
in these materials is related to the segmental motion of the polymer chains. The repeated association and
dissociation of the ions with the polymer segments and the continuous rearrangement of the latter allow ions
to be transferred from one electrode to the other [88]. As the motion of the polymer chains is enhanced
at temperatures above the glass transition temperature, higher ionic conduction are also observed at higher
temperatures [82]. For reviews on the ionic transport mechanisms in polymer electrolytes, their dependence
on temperature and modeling approaches at different scales the reader is referred to [89, 90].

Solid electrolyte have recently modeled from a continuum level perspective by N atsiavas et al. [91].
The latter investigated the effect of pre-stresses on the dendrites formation of lithium metal anode either in
contact with LiPON electrolyte or dioxolane-dimethoxy ethane, a soft polymer. In both cases the electrolyte
was modeled as a linear elastic material undergoing small deformations. A continuum model for diffusion
of multiple charged species in a solid medium in the presence of stress, electrostatic and chemical potential
gradient was developed by Bucci et al. [92]. The model, applied for the investigation of the effect of
mechanical stress in kinetic demixing and ambipolar diffusion (both phenomena are peculiar of solid oxide
fuel cell) is also amenable for solid electrolyte modeling.

1.3.3 Macroscopic models for porous electrodes

For porous heterogeneous electrodes, one-dimensional macroscopic mathematical models reflect reality only
in an average sense, that must be properly defined. Porous electrodes are in fact multi-phase structures,
which include a network of interconnected and irregular pores and channels [58]. They consist of active
particles bound by a polymer to a network of conducting particles, see Figure 1.4. Storage materials are
subjected to Lithium intercalation, while conducting particles provide a conductive path that enhances the
electronic mobility from the current collector to the active particles surface. Lithium transport in form of
ions takes place in the electrolytic solution. The porous configuration increases the effective interfacial area
per unit volume between the electrolyte and the active material, favoring the intercalation of lithium. The
rate at which the latter occurs depends on the structure and on the material properties of the phases of the
composite electrodes [64]. These factors influence the potential drop and concentration changes in both the
solution and solid phases [93].

From the seminal works by Newman and coworkers [94, 95] a multitude of models based on the so-
called porous electrode theory have been applied to the insertion electrodes. The approach circumvents the
description of the complex microstructural geometry and processes, by considering macroscopic averaged
quantities “over a region of the electrode small with respect to the overall dimensions but large compared to
the pore structure” [64]. Two components, occupying different domains, are considered: an homogeneous
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separator - in which only the electrolytic solution is present - and multi-component porous electrodes - in
which the electrolytic solution and the solid matrix are treated as superposed continua, ensuring connectivity
between all points of the electrode [96] - both present at any point of the domain.

The model entails a set of partial differential equations, which describe the processes at the cell scale in
an averaged, phenomenological way. The unknown fields are: the molar concentration ci of species i (both
in the separator and in the porous electrodes); the electric potentials φe and φs of the electrolyte and of the
solid phase respectively. The fields are assumed to be continuous functions in time and space. Porosity ε
accounts for the void volume fraction, filled by the electrolytic solution. It equals unity in the separator and
is strictly smaller than one in the porous electrodes [97, 98].

Mass conservation equation
∂ ε ci
∂t

+ div
[
~hi

]
= Ri , (1.1)

is enforced to any mobile species i in the electrolytic solution. It relates variations of the molar concentration
to the molar mass flux ~hi and to the mass supply Ri. The latter is identically equal to zero in the separator
(unless chemical reactions are explicitly considered) while it macroscopically accounts for the microscopic
pore-wall flux density in the porous electrodes [64].

The current~i is defined as the charge flux density per unit area. It coincides with the electrolytic current
~ie within the separator where the ions are the only mobile charged species, and with the sum ~ie +~is in the
porous electrodes. Charge conservation is ensured being~is the amount of current carried by the electrons in
solid phase within porous electrodes.

By imposing the electroneutrality condition

∑

i

zi ci = 0 , (1.2)

where zi is the charge number of species i, the net charge is always zero and the total current density satisfies
the charge balance equation

div
[
~i
]

= 0 , (1.3)

both in the separator and in the porous electrodes.
Constitutive assumptions relate the mass fluxes ~hi, the current densities ~ie and ~is and the bulk terms Ri

to the molar concentrations ci and the electric potentials φe and φs, which are the thermodynamic variables
and the unknown fields of the model. Faraday’s law relates the electrolytic current density to the ionic
mass fluxes in the electrolyte, whereas Ohm’s law is assumed to govern the movement of electrons in the
matrix phase. Either dilute, moderately-dilute or concentrated solution theories may be adopted, leading to
thermodynamic scenarios characterized by an increasing degree of mathematical complexity. For the sake of
brevity, the reader is addressed to specific literature [63, 97, 98, 99, 64, 100] for the explicit expressions of
the constitutive equations.

The macroscopic physical properties that enter the constitutive equations assume the meaning of averaged
micro-structural features within the porous electrode. For example, the effective ionic diffusivity in random
porous structures intrinsically accounts for the porosity and the for the deviation of paths within pores from
being straight channels (tortuosity) [75].

A Butler-Volmer type kinetic expression was introduced to account for the kinetics of the charge-transfer
processes at the electrode in place of the assumption of infinitely fast insertion [100, 97]

in = i0

[
exp

(
αa F η

RT

)
− exp

(
−αc F η

RT

)]
, (1.4)

i0 is the exchange current density, whose value varies with the concentrations of reactants and products,
temperature, and the nature of the electrode-electrolyte interface; αa and αc, called apparent transfer coef-
ficients, express how an applied potential favors one direction of reaction over the other (their values range
in literature between 0.2 and 2); η = φs − φe − U is the surface overpotential and U is the open-circuit
potential, corresponding to thermodynamic equilibrium conditions (zero net transfer current density). The
mass supply Ri is related to the average transfer current density in.
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The open-circuit potential U is related to the state of charge. The so-called pseudo-2D models [101, 102]
have been introduced to investigate such a dependency. The etymology of this class of models arises from
the two “unrelated” dimensions that are involved, namely the cell and the active-particles. The latter have
been assumed as spherical (with rather few exceptions, e.g. [103, 100]) of constant radius upon intercalation
of external species.

Porous electrode theory has been applied with an increasing degree of complexity over time, since en-
hanced available computational tools became available. In particular, modeling of electrodes attempted to
account for the fine microstructure within the porous electrode theory, with strategies sometimes formulated
on a phenomenological rather than a solid theoretical ground.

The modeling of full-cells composed by Lithium metal/solid polymer separator/insertion positive elec-
trode and simulation of galvanostatic charge/discharge processes pursued by Doyle et al. [97] enhanced
previous approaches [103, 100], accounting for interactions of the battery components. Concentrated solu-
tion theory was used to describe transport process occurring in the electrolyte.

The “constitutive” relation between the open-circuit potential and the state of charge controls the current
distribution inside the porous electrode. Materials characterized by significant changes in open circuit
potential for limited variation of the state of charge (e.g. carbonaceous materials) lead to more uniform
current profiles in the porous electrode compared to materials exhibiting this dependence to a limited extent
(e.g. LMO),[98] and hence to a better utilization [34].

Intercalation materials were regarded as perfectly conductive and interested by Fickian solid diffusion,
as in [103, 100, 97, 96]. Constant physical properties were used for all the components. Film resistances on
both electrodes was introduced by Doyle et al. [104].

All the models described above share some fundamental hypotheses. The electrolyte consists of a binary
salt in a single solvent [100, 97, 96, 98], a picture recently questioned under high C-rates [105, 106]. Side
reactions (e.g. SEI layer formation and electrolyte decomposition) have not been considered, therefore the
amount of Lithium during all processes is conserved, which contrasts experimental observations [34]. Volume
changes due to intercalation have not been accounted for, therefore the models do not account for mechanical
effects that strongly contribute to degradation [107].

Numerical simulations with the porous electrode theory have been carried over a wide range of materials
and configurations [97, 98, 108, 104, 105, 109, 110]. Outcomes, in terms of concentration profiles and pore
wall flux distribution within composite electrodes during charge/discharge processes, provided meaningful
insights on battery design and optimization. As observed by Doyle et al. [97], cell optimization relates
to battery configuration, energy and power density requirements of the system, and cost of components.
Whereas thinner electrodes limit electrolyte depletion and allow for higher specific power, thicker electrodes
increase specific energy by reducing the number of cells in the battery stack and the volume fraction of
inactive components [105].

The robustness of the Pseudo-2D approach is assessed by the number of recent models that stem from
it, as [101, 111, 112]. Pseudo-2D models also present limitations: typically, the large amount of material
parameters requires remarkable experimental efforts. The main drawback though relates to microscopic
approximations. Pseudo-2D models do not allow describing in detail the processes taking place at the finest
scale, which can have a significant impact on the overall battery response [99]. The capacity fade due to active
particles fracturing and decrepitation, the porosity change caused by SEI formation or reaction products
deposition have already been remarked. A thorough discussion on the applicability of macroscopically
homogeneous models to Lithium-ion battery description can be found in [113], where a poor predictive
capacity is highlighted for high C-rates.

Macroscopic battery models that do not make use of Newman’s porous electrode theory have been
published, too. In general, they replace the porous structure with aggregates of solid-phase particles, which
are directly embedded in the electrolytic phase [114, 115, 116]. Mechanical stress generation was in few cases
accounted for in the solid-phases [99, 116].

Despite the formulation was derived in 3D, the numerical implementation was often restricted to 2D
[99, 114, 116]. Three-dimensional simulations were developed in [115], where a half-cell Lithium battery
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was modeled on a LMO spherical particles array. Numerical analyses suggest that small sized particles
and regular arrangement ensure higher capacity, especially when active materials are characterized by low
diffusivity.

Macroscopic models for solid (non porous) electrodes have also been studied. The geometry of the cell
is idealized as blocks stacked in order to reproduce the sequence of the battery components, idealizing the
battery with a one-dimensional structure [30, 86, 83].

1.4 Microscopic phenomena and their modeling

Several models have been proposed to investigate the microscopic response of electrodes during intercala-
tion, in order to provide design criteria for enhancing electrodes performance. In fact, the response of the
electrodes upon Lithium uptake and release during batteries charge and discharge depends on the thermo-
chemo-mechanical properties of the compound of active and conductive particles. The micro-structural
composition and the geometrical configuration are of paramount relevance for the intercalation process and
the performances of the electrodes.

Since the cell is first assembled, charges are localized at the interfaces between electrodes and electrolyte,
causing an intense electric field to develop in an adsorption layer (named after Stern [117]) with atomic-
scale dimensions adjacent to the interface, together with a more diffuse region of charge (known as the
Gouy-Chapman layer [118, 119]) in the electrolyte [120]. These regions together (in the order of 10 to 20nm
according to the literature [64]) define a so-called electric double layer . An exhaustive dissertation about
the electric double layer can be found in classical books [29, 64] as well as in more recent literature, among
which Bazant and co-workers publications deserve special merit [65, 121, 122].

In Li-ion battery modeling literature, the double layer is generally assumed as infinitesimally narrow, with
a few exceptions [123]. Local electroneutrality is generally assumed in the electrolyte and a discontinuity in
the potential across the electrode/electrolyte boundary is allowed for (see among others [60, 61, 63, 116, 112]).
Butler-Volmer equation [124, 125, 126] is used to relate the intercalation flux to the potential discontinuity
between the electrode and the points in the solution immediately beyond the ideally narrow double layer
[127, 128, 129, 99, 116]. Streeter and Compton [130] critically discuss the electroneutrality and the negligibly
small double layer approximations, arguing that they are appropriate only if the active particles of the
electrode are much larger than the electric double layer. Dreyer et al [131] formulated a continuum model of
the layer, including solvation effects of the dissociated ions, as well as the mechanical effects. Landstorfer and
Jacob [9] discuss weak and strong electroneutrality conditions and split the electrochemical intercalation-
deintercalation process in three simple reactions, in order to define appropriate boundary conditions. That
paper also accounts for a large bibliography on the mathematical modeling of intercalation, to which we
further address the interested reader.

An accurate morphology reconstruction is a crucial information for micro-scale analysis. This statement
applies to localized phenomena, like hot spot formation, as well as to ensemble averaged material properties,
which have been shown to be extremely sensitive to the size, shape, and particle distribution within a
Representative Volume Element [132].

Accurate reconstructions of the connectivity and of the internal structure of electrodes is a very hard
task: binder, active, and conductive particles give rise to tangled and intricated geometries. The complexity
of the morphology of electrodes and separator restricted the focus of most publications to the behavior of a
single particle, disregarding the influence of the electrode microstructure [133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144].

The microscopic arrangement of active particles, carbon, binder and pores can be recovered from sta-
tistical analyses of 2D cross sections of the electrode achieved through scanning electron microscope with
focused ion beam. The particle geometry can either be a simplified abstraction of reality - for example using
cluster of spherical [74, 145] or ellipsoidal [146] particles that yet represent challenges for computational dis-
cretization [147, 148] - or be digital reconstruction of realistic morphology [149, 150, 151, 152, 153, 154, 155]
- generally restricted to single-particle analyses.
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In recent years major progresses have been made in the area of X-ray computed tomography [156, 157,
158, 159] and focused ion beam scanning electron microscopy [149, 160, 151, 161, 162, 163], paving the way
to numerical simulations on realistic three dimensional microstructures. They involve high computational
costs [151, 147, 148] and are feasible only in a high performance computing environment.

Modeling temperature evolution in Li-ion battery cells is important in operation conditions [9, 164, 165,
166, 111], to dictate parameters for cooling devices design, but even more under abuse or extreme conditions,
to predict and control thermal runaway [54, 167]. A recent review can be found in [168].

Whereas operating temperature ranges may vary upon different applications and related national stan-
dards, it is generally established that an increase of temperature, either because of external conditions or
during fast charge/discharge [69], boosts degradation mechanisms. In general, temperature affects ion mo-
bilities, SEI formation and dissolution, interface reactions - eventually promoting undesired side effects.
Accounting for the influence of temperature in modeling is extremely complex mostly because: i) temper-
ature affects transport properties of materials, interface kinetics, electrical and mechanical properties in
ways that are difficult to capture experimentally and reproduce numerically [169], even though the gen-
eral thermodynamic framework that lays the ground of every rigorous theory is nowadays well established
[170]; ii) numerical treatment of multi-physics problems in coupled chemo-electro-thermo-mechanics are not
completely understood [171]; ii) temperature in the cell may increase after the formation of very localized
hot-spots, which are related to the speed of charge/discharge [152].

A few attempts only accounted for realistic microstructure of porous electrodes considering the tempera-
ture field and the hot spots formation under extreme conditions in a multi-scale and multi-physics framework
[170, 62, 153].

Notwithstanding the large number of publications focused on Lithium-ion battery, the modeling of the
detrimental effects related to aging mechanisms is a relatively recent topic[172]. Arora et al. [34], browsing
the most relevant capacity fade mechanisms concerned with side reactions in Li-ion batteries, observed that
the only model on the topic available at that time was provided in Darling and Newman [173]. The latter
represents the first attempt of simulating aging process in a physical model, as recently remarked also by
Barré et al. [7].

Aging affects electrolyte, composite electrodes, as well as the electrode/electrolyte interfaces. Many
different factors concur to capacity decrease and power fading of Lithium-ion batteries both during storage
and charge/discharge cycling. Calendar aging is monitored in terms of capacity loss, impedance rise, state of
charge and state of health [37]; it has been proved to be sensible to storage conditions, especially temperature
and state of charge [7]. Cycle aging may be detected through capacity fade, impedance rise and overpotential
that can be measured during cycling [37]. Various studies have experimentally shown that it is enhanced
by larger amount of charge variation during cycles [174, 175], high charging/discharging voltage [176] and
current peaks [7]. Calendar and cycle aging coexist during the whole battery lifetime. An example of
estimation and comparison between their relevance on the performance of a C/LFP cell can be found in
Safari and Delacourt [177].

The processes by which Lithium is either produced or consumed within a battery cell include Lithium
deposition, electrolyte decomposition, active material dissolution, phase changes in the insertion electrode
materials, and passive film formation over the electrode and current collector surfaces. Often they are
collectively termed side reactions [34]. The interaction among any of the processes mentioned above is favored
by the similar timescales over which they occur, making difficult their specific identification. Moreover most
of them are strongly related to the peculiar features of the cell (shape, microstructure, material components).

Detrimental effects may also descend from other processes, such as interaction between binder polymer
with active and conductive particles, current collector corrosion and plating, gas formation within the cell
[7, 3, 37].

The most relevant aging mechanism for carbon anodes is attributed to phenomena occurring at the
electrode/electrolyte interface, where a passivating layer, termed solid electrolyte interface (SEI), prevents
further interfacial reactions yet allowing the Lithium ion migration [31, 178]. Notwithstanding the protective
function attributed to the SEI, its formation entails a capacity loss as a consequence of the irreversible
consumption of Lithium ions. The process is more pronounced during the first few cycles [179]. Among the
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factors affecting the SEI layer’s evolution, a strong dependence on temperature and state of charge has been
proved to exist for its morphology, composition and Lithium ionic conductivity [7, 37]. Continuum theory
for the growth of an SEI layer have been recently proposed by many authors [128, 180, 181, 182, 183, 184,
77, 185, 186, 187, 188, 189, 190, 191].

1.4.1 The modeling of micro-mechanical effects.

Since mechanical effects are among the most important mechanisms of capacity fade and impedance growth
in Lithium-ion batteries [34], the stress generation during Lithium diffusion in active materials has been
widely investigated. The intercalation process is generally modeled as a multicomponent system [192, 193],
which comprises Lithium diffusing in a hosting material lattice. Atomic diffusion in solids is much slower
than deformation [194], therefore mechanical equilibrium is postulated at all instants.

High capacity electrode materials, such as Silicon and Tin, manifest huge expansions when lithiated.
Storage particles develop non-uniform Lithium concentration profiles, which cause differential strains and
originate a stress field within the particle (referred to as chemical stresses [143] or diffusion-induced stresses
[133]). Many efforts have been made in the last decade in order to understand and model the stress evolution
in active particles [195]. Modeling involves multi-physics description of the processes as they entails coupling
among mechanics, transport, and thermo-electro-chemical kinetics. Lithiation influences material parameters
[107] and may lead to phase segregation, too, which causes lattice mismatch within the particle.

It has been observed that both anodic and cathodic materials may fracture during charging/discharging
operations. Some electrode materials, such as Lithium-alloys, undergo decrepitation, i.e. fracturing in many
small parts, caused by large deformations during lithiation [196]. Cracks have been observed even in active
materials that undergo small deformations when lithiated, as for LiCoO2, LiMn2O4, and LiFePO4 [197].

To predict the onset of fracture in electrode particles, many authors [198, 199, 196, 200, 201, 202, 197, 203]
resorted to linear-elastic fracture mechanics [204, 205, 206, 207]. A pre-existing flaws population in the
particles was assumed and Griffith’s criterion used to investigate the effects of charging rate and fracture
toughness on the failure of particles of different sizes. Assumptions have been often taken upon the most
dangerous flaw orientation, which might be incorrect [208]. Alternatively, some authors adopted cohesive
models for crack nucleation inside the electrode [209, 210, 127] or phase-field methods [211, 212, 213, 214,
215, 216, 217, 218, 219].

Other studies lead to design criteria in order to avoid particle fracturing based on the stresses generated
inside the electrode. For example tensile stresses [135, 220] or von Mises equivalent stresses [143] have been
taken as measures of the distance to the onset of fracture.

In what follows, homogeneous material formulations and phase segregation models will be separately
described.

1.4.1.1 Lithiation models in homogeneous particles.

It is common in literature to idealize the geometry: particles are either modeled as spheres [133, 134, 220,
135, 136, 139, 141, 221], cylinders [210, 222], or thin films [209, 30]. Chemo-mechanical features are also
simplified: materials are often taken to be isotropic with properties (Young’s modulus, Poisson’s ratio,
diffusivities) insensitive to Lithium content [133, 134, 137, 139, 141, 142, 143].

Since Lithium transport is severely influenced by the deformation of the hosting material and vice-versa,
diffusion and mechanics are entangled processes. Accordingly, the thermodynamic forces that drive Lithium
diffusion shall be mathematically coupled to mechanical deformation. The coupling is usually described
in analogy with thermo-mechanics, i.e. the variation of solute atoms concentration in the hosting material
causes a pure volumetric deformation: the partial molar volume plays the same role of the thermal expansion
coefficient [223, 224, 225, 226].

Whereas most early models neglected the role of mechanics, a few recent ones couple the mass transport
to the mechanics in a one-directional way. In those models, the driving force for the diffusion is solely
the concentration gradient, therefore the Lithium concentration can be evaluated by solving the transport
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Figure 1.5: Schematic of particle expansion during Lithium insertion (e.g., during
charge) and contraction during Lithium extraction (e.g., during discharge). Arrows
pointing toward each other indicate regions of compression in the particle, while arrows
pointing away from each other indicate regions of tension. [135].

problem, while the chemical stresses can be computed afterwards. For linear-elastic material with parameters
independent upon Lithium concentration, analytical solutions are attainable for simple geometries. This
approach was taken in [133, 134], to investigate the critical factors that influence the overall response of active
materials. Diffusion induced stresses were computed in spherical active particles under either galvanostatic
or potentiostatic control, as well as under more realistic boundary Butler-Volmer kinetics. It was shown that
during lithiation the Lithium concentration decreases from the outer surface to the center, inducing the outer
shell to swell and generating compressive hoop stresses near the particle surface and tensile stress into the
inner core, in view of geometrical compatibility, as described in Figure 1.5. The opposite during delithiation.
The stress magnitude was found to depend on the charge/discharge rate [141] and on the particle size.

The effects of surface mechanics in nano-sized spherical particles were studied in [194, 221], in order
to design particle of longer cyclability. It resulted that the magnitude and distribution of stresses can be
significantly affected by surface mechanics if the particle is in the nanometer range. Such an approach was
applied to nanowire electrodes [137], too.

Two-way coupling was considered in more recent papers. The mass flux is modeled as dependent on both
concentration and hydrostatic pressure gradients, as in the inspiring framework of Larche and Cahn [227, 228].
Some authors assumed that particles remain linear-elastic during the whole process [139, 229, 230, 142, 143].
This assumption is reasonable for electrodes with moderate swelling, as LiC,LMO. Zhang and co-workers
simulated the charging/discharging process of LixMn2O4 for 0 ≤ x ≤ 1 and captured the range in which
phase transitions occur as a function of the state of charge. The stress generation in three-dimensional
ellipsoidal particles with different aspect ratios was evaluated through numerical simulations [143]. The
numerical outcomes suggest that larger aspect ratio and smaller particle size may reduce the intercalation
induced stresses.

The influence of particle morphology has been simulated in [230] after digitalization of real particles. The
maximum von Mises stress induced by the lithiation in a digitalized particle turned out to be one order of
magnitude higher than the one predicted on idealized shapes.

Miehe and Dal [140] proposed a computational theory accounting for electro-chemo-mechanical inter-
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action of Silicon particles. Numerical simulations shown significant discrepancy between small and finite
strains approaches, pointing out the importance of large strains theory in modeling materials with signifi-
cant swelling.

Silicon thin-films and particles show a markedly inelastic behavior during charge/discharge. Plasticity
seem to infer a specific failure mechanism, since for spherical particles the initial compressive hoop stress in
the outer shell during intercalation may even reverse [136]. The Lithium transport problem was coupled to
plasticity models at infinitesimal [203] as well as at finite strains [231, 30, 127, 128, 136, 222, 232, 233, 234,
144].

Bower and co-workers [30] developed a general model that accounts for finite strains and plastic flow
in electrodes materials. A Silicon thin-film was studied and compared with experimental evidences [235].
Cui et al. [136] focused on the chemical potential in the framework of finite strains and plastic flow as well.
They proposed a chemical potential that extends the formulation of Larché-Cahn. Numerical examples on
spherical Silicon particles emphasized the role of plastic flow in the lithiation process.

1.4.1.2 Models accounting for phase-segregation

Multi-phase models aim at investigating the behavior of particles in which phases co-exist because of lithi-
ation. They essentially differ for Lithium content and for the crystal structure, which is transformed after
intercalation [236]. The thickness of the physical region that separates distinct phases, the so-called phase
boundary , varies upon materials. For instance, crystalline Silicon reacts with Lithium forming an amorphous
phase with atomically sharp reaction front - about 1nm thick [33]. Experimental evidences for LiFePO4

show a wider phase boundary, of several nanometers [237, 238].
The widespread class of so-called sharp-interface models splits particles in two distinct regions and ideal-

izes the phase boundary to a zero-thickness interface. The class of phase-field models, usually stemming from
the Cahn-Hilliard theory [239], smears the phase boundary in a narrow region of finite thickness, avoiding
localized discontinuities. Alternative models recover discontinuous concentration profiles without recourse
to any of the methods above. A review of modeling methods for phase boundary can be found in Thornton
et al. [240].

Sharp-interface models [241, 242, 243] shown the ability to reproduce the observed voltage plateau [107]
in the discharge profile of iron-phospate [241] and Lithium cobalt oxide [243] electrodes. To account for the
phase transition, electrodes were modeled with the so called shrinking-core particle approach[242], which
idealizes active particles as spheres with two distinct phases occupying the outer shell and the inner core,
respectively[241]. The interface location is one of the unknowns of the problem and evolves in the radial
direction driven by the Lithium transport in the Li-rich phase and on the concentration gap at the interface.
Mechanical effects are included in the shrinking-core approach [220, 138, 112]. Particles have been modeled
as linear-elastic bodies with different chemo-mechanical properties between the two phases. The onset of
chemical stresses was modeled with the analogy to thermal stresses as in the single-phase models, therefore
the stress field affects the phase-boundary kinetics. These models are capable to predict the rise of tensile
stresses in the core-phase and compressive hoop stress in the outer shell during lithiation. Differently from
single-phase models, the hoop stress can be discontinuous at the phase-boundary. The interfacial stress
discontinuity depends upon the interface location, equilibrium concentration, and the material properties of
the two phases.

In the phase-field models the dynamics of phase-segregation is ruled by the free-energy of the system.
Differently from the Fickian description of diffusion, the Helmholtz free energy includes an interface energy,
related to the gradient of concentration. Phase-segregation is not imposed a priori via sharp interfaces but
arises as a consequence of the thermodynamic evolution of the system[244].

Early works applied the conventional Cahn-Hilliard phase-field model to describe phase separation in
LiFePO4 electrodes [245, 246, 247]. In particular Singh et. al [245] showed the ability of this theory to
model the anisotropic ionic mobility in single crystals. The Cahn-Hilliard theory was extended in order
to assess the conditions for phase-segregation in electrode particles. The total free energy was modeled
accounting for additional terms, such as the strain and surface energies. In this way Tang et al. [248, 249]
and Cogswell and Bazant [250] investigated the effect of particle size, mechanics, and applied overpotential
in the phase transition pathways of storage particles.
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Anand and co-workers [251] developed a general thermodynamically consistent theory that couples
the Cahn-Hilliard theory with large elasto-plastic deformation mechanics. Simulations show the phase-
transformation of a three dimensional LiFePO4 spheroidal particle [252].

Basic computational aspects of phase-segregation modeling in electrodes have been recently dealt with
in [253].

Stress evolution in two-phase electrodes was also modeled alternatively. A sharp-interface was repro-
duced either creating a series of step-like concentration profiles [254], by choosing a concentration dependent
parameters [255], or making recourse to the concept of Lithium traps [256, 257]. Active particles, mostly
idealized as spheres, were assumed to deform visco-plastically, to mimic the mechanics of lithiated Silicon.
Huang et al. [254] showed that the initial compressive hoop stress in the lithiated shell could be reversed
if the material undergoes plastic deformations. Yang et al. [255] adopted a concentration dependent diffu-
sivity and imposed that Li diffusivity in the lithiated region is much larger than in the pristine core. This
induces the concentration profile to assume a typical pattern of a two-phase system, with interface tracking
controlled by diffusion. Drozdov [256, 257] assumes that Lithium within the particle is separated in mobile
and alloyed. The latter is treated as a kinetic process, which ultimately permits to recover a sharp interface.

More recent models of lithiation in Silicon describe the phase-boundary kinetics [32, 258, 259] and the
observed anisotropy in intercalation [260]. Crystalline Silicon becomes amorphous upon lithiation, and
diffusion through the amorphous phase has been observed to be faster than the reaction at interface [259].
Therefore the phase-boundary motion, differently from the shrinking-core models, shall not be controlled by
Lithium diffusion. Zhao et al. [259] formulated the driving force of the reaction between pristine Silicon and
Lithium at the interface including the effects of the stress field. By simple benchmarks they showed that
the interface motion could be inhibited by the stress field generated in the particle. With a more general
approach Cui and co-workers [258] developed a two-phase model for Silicon particles accounting for diffusion
in both phases, stress generation and phase-boundary kinetics. The kinetics of reaction at interface and
diffusion in both phases are concurrent processes. Their numerical results showed the impact of different
ratios between rates of interface kinetics and bulk diffusion in Lithium distribution and stress generation.

1.5 Multiscale models

Intercalation, swelling, and eventually the mechanical failure originate at a scale three order of magnitudes
smaller than the battery cell scale, at which ion mobility is usually modeled. Since modeling a whole battery
cell at the nano-scale is computationally unfeasible, nano-scale effects are incorporated into the micro-
scale problem through homogenization approaches and constitutive models that are derived from multiscale
approaches. They frame on a representative volume element (RVE), in which the relevant features of the
microscopic morphology are accounted for. The proper selection of the RVE is a fundamental ingredient, as
usual in the theory of composite materials. According to [261], an RVE may be defined in two different ways.
It can be considered as the smallest microstructural volume for which the averages of properties represent
with “sufficient accuracy” the mean macroscopic response. Accordingly, RVE’s size is influenced by the
material behavior of the microstructural components. A second definition requires the RVE to be statistically
representative of the microstructure, that is to essentially include a sampling of all possible microstructural
configurations occurring in the composite. This definition leads to significantly larger RVEs than in the
former case, as the microstructural element must incorporate several kinds of material heterogeneities. Based
on this definition, statistical methods have been presented to determine the size of the RVE and the number
of inclusions to consider [262, 263, 264, 265].

Representative models of the battery microstructure were based on experimentally obtained statistical
information. The three dimensional microstructure of a graphite porous electrode was reconstructed recurring
to tomographic techniques[157]. The minimum RVE size was calculated as 43× 60× 60µm after evaluating
several geometrical parameters (e.g. porosity, pore and particle size distribution) and extracting the relative
standards deviations. An estimate of the characteristic dimensions of a cubic RVE for LiCoO2 electrodes
was derived in [149], resulting in an edge of ≈ 30µm. A similar approach [266] was employed for LiFePO4

electrodes, 5× 5× 15µm.
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Ferguson and Bazant [267] made use of Wiener and Hashin-Shtrikman bounds to characterize the elec-
trical conductivity and tortuosity of porous media, while an asymptotic multiscale expansion was pursued
by Schmuck and Bazant [268].

Wieser et al. [155] made use of 3D imaging at different scales and homogenization techniques to estimate
effective transport properties of ionic species within porous electrodes. The authors identified a micrometer
porosity for the composite electrodes - made up by solid active material, additives and open pores filled
by the liquid electrolyte - and a nanometer porosity within the additives - a mixture of carbon conductive
particles and polymeric binder. A lithium metal/separator/graphite-based porous electrode half-cell was
simulated showing that the impact of additives nanometer porosity on transport limitation is negligible.

Awarke et al. [145] attempted to quantify the impact of changes in the arrangement of solid particles
within Li-ion battery electrode on the conductivity and tortuosity of a LiFePO4 based cathode. A Finite
Element Method (FEM) was used to analyze RVEs made up by spherical particles with various arrangements
representing the same porous agglomerate under different mechanical and electrical loading conditions. Vol-
ume averages have been used to compute effective macroscopic properties (elastic tensor, volume expansion
coefficient and electrical conductivity) which have in turn been adopted in numerical analyses on a cathode
sample.

Lee et al. [269] adapted the variational multi-scale principle to a Li-ion battery system, in order to
improve the predictions of battery performance by including multiphysics phenomena among the particle
aggregates in the electrode. The role of the microstructure was highlighted, in terms of particle shape,
tortuosity, and material composition.

A continuum model for Li-ion battery accounting for electrochemical and mechanical effects at multiple
scales was presented by Golmon and coworkers [270] . Transport processes and battery deformation have been
modeled at the cell scale, where the mechanical interactions with surrounding layers was considered through
tractions boundary conditions. A single spherical active particle was analyzed to account for the microscopic
evolution of the system both in terms of intercalated Lithium (state of charge) and chemically induced local
stresses. The macroscopic pore wall flux was related to the microscale following Newman’s porous electrode
theory, while the Mori-Tanaka effective-field theory was used to relate mechanical properties between scales.
Both scales were idealized to one-dimensional problems as in pseudo-2D models. The electrochemical and
mechanical performance of half-cell have been studied by varying the electrochemical properties, the cathode
particle radius, the porosity of the cathode, the discharge current density and the mechanical boundary
conditions. The model has been further applied to design optimization of a Li-foil/separator/porous electrode
battery [271] and to a battery cell in which both electrodes were porous [272].

Volume averaging techniques that are applicable to the entire cell with arbitrary 3D electrode configura-
tion have been recently proposed [273].

Gupta et al. [146] proposed an electrochemical model for porous electrodes that accounts for two different
scales. At the microscopic scale an RVE made up by an electrolyte and a solid matrix domain was identified
for the porous electrode. Governing equations for Lithium and electric charges were written over each domain
moving from conservation equations typical of continuum models. The cell scale governing equations differ
from the ones detailed in [67, 68] because the volume-averaged fluxes have been explicitly provided through
the introduction of effective transport properties, such as the Bruggeman’s equation [72]. This approach
differs from pseudo-2D models because all the macroscopic variables have been derived from microscopic
volume averaging.

In recent contributions, [67, 68] a computational homogenization (CH) technique was tailored to Li-ion
batteries by using a multiscale scheme with a complex multi-particle RVE idealizing active particles in the
composite electrodes as network solids following Larche and Cahn [227], with the lattice material assumed as
insoluble in the electrolyte. The CH technique is based on the solution of nested boundary value problems,
one for each scale. A complete set of equations and boundary conditions governing the stress, electric,
chemical, and electrochemical potentials was derived [67] for the whole battery cell for both scales following
non-equilibrium thermodynamics of porous electrodes [267, 64]. Use of the Butler-Volmer equation was
made to describe the intercalation kinetics accounting for the flux of Lithium between the particles and the
electrolyte, which at the macro scale was modeled as a bulk supply. At such a scale, transport and stress
evolution were modeled via volume averaged conservation equations.

In the rigorous mathematical formulation of multi scale modeling - see [274, 275] - the micro to macro
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scale transition requires conservation of power expenditure between both scales, thus assuring that energy is
neither artificially generated nor artificially dissipated across the scales. If electro-neutrality is used in place
of Maxwell’s equations, recovering the energy description of the electromagnetic interactions is not possible.
Therefore, electroneutrality assumption (1.2) cannot be used in multi scale approaches [68]. In the approach
proposed in [67, 68], rather then imposing the electroneutrality condition as an equation to be fulfilled, the
impact that it has on the fundamental balance laws was investigated. Lorentz forces were thus neglected,
whereas it was shown that electroneutrality has no influence on Maxwell’s law.

A rigorous analysis of general principles of non-equilibrium thermodynamics [24, 276] has been performed
in [55, 56]. The electrochemical potential was defined moving from the rate at which power is expended on
a material region, in terms of mechanical contribution as well as of the power due to mass transport and to
electromagnetic interactions. All processes were taken to be isothermal. The entropy imbalance with the
Coleman-Noll procedure provide thermodynamic restrictions, satisfied by the usual Fickian description of
diffusion and migration in terms of electrochemical potential, defined as in [22, 23]. Infinitely dilute solutions
as well as solutions close to saturation have been numerically simulated.

A mixture theory has been presented in [131] for a liquid solvent containing (completely) dissociated ions.
Electro-mechanical interaction has been explicitly taken into account by introducing the Lorentz contribution
within the balance of forces and a chemical potential dependence on pressure. The effect of solvation was
also considered in the definition of entropy of mixing. A fully coupled model for charge, species and thermal
transport in Li-ion batteries has been developed by Latz and coworkers [170]. The formulation, based on
general principles of non-equilibrium thermodynamics, makes use of charge neutrality assumption for both
electrolyte and active particles. Electrical, chemical and thermal interactions between electrolyte and active
particle were taken into account by proper interface conditions.

1.6 Conclusions

The relevance and timeliness of modeling and simulations in the field of energy storage materials [277] is
made evident by the intense flow of scientific publications. A review of this abundant literature may reveal
thus useful, although keen to become soon obsolete. An effort was provided in this note, moving from the
inherent multi-scale nature of Li-ion batteries.

Continuum thermo-chemo-electro-mechanical models have been discussed at different scales and multi-
scale approaches have been analyzed as well. This study illustrated the progresses made since the pioneering
publications, and made clear that modeling is becoming more and more accurate and predictive and, with
the availability of high performance computing, it can integrate experimental campaigns in discovering new
materials and developing new architectures.

The non-equilibrium thermodynamics, coupled with rigorous scale transitions, is the appropriate theoret-
ical background for multi-scale and multi-physics modeling. The future scientific endeavors will stem from
this fundamental framework. They are expected to finalize the three-dimensional multi-scale approaches
currently in progress into high-performance computing scalable codes, in order to investigate major concerns
in current batteries technology as the behavior at high C-rates and voltages, which may lead to thermal run-
away fueled by side reactions. A clear understanding of these phenomena may provide significant progresses
in batteries safety, particularly under abuse or extreme conditions.

Several aging phenomena in batteries require further scientific investigations. These study may address
some fundamental problems of electrode chemo-mechanical instabilities that have so far limited the power,
energy, and durability of advanced batteries. The modeling of Lithium deposition and dendritic growth, for
instance, is particularly relevant for the safe use of Lithium metal anodes yet lags behind the experimental
evidences, in spite of recent investigations[91]. Co-designed experiments and simulations may pave the way
to a deeper understanding of these limiting phenomena.

The predictive ability of modeling and simulations relies on the realistic reconstruction of three-dimensional
porous electrode. Evident progresses have been made in this recent years, particularly in the field of X-ray to-
mography. The required accuracy of the electrode reconstruction is strictly related to the targeted processes,
so that the classical statistical paradigms of homogenization may not always be applicable successfully.
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This review did not focus on atomistic simulations. A major challenge of the future investigations will
concern the incorporation of quantum mechanics and molecular dynamics into coarser scales formulations.
As pointed out also in [278, 8], it will become more and more important to develop multi-scale models that
account for a realistic chemical environment by means of coupling discrete and continuum approaches. This
seems to be particularly relevant in the modeling the interface phenomena, that take place in atomistic-size
narrow layers.

Modeling unavoidably requires identification of material parameters, most of which can hardly be mea-
sured experimentally[279] especially in operating conditions [280]. Severe procedures of calibration must be
put in place in order to ensure that modeling indeed achieves predictive science capability. In this regard,
computational modeling and simulations may take advantage of the most recent achievements in the fields
of uncertainty quantification and sensitivity analysis.
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Part I

Electrolyte
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Chapter 2

Modeling saturation of species in
battery electrolytes

2.1 Introduction

Consider an electrochemical cell with a binary ionic electrolyte (say LiX, where X can for instance be PF6,
consisting of two ions, a cation (Li+) and an anion (X−)). In the absence of convection, ions are transported
by migration and diffusion across the electrolyte from one electrode to the other, to bring reactants to the
interfaces so that electrochemical charge transfer reactions can take place. Modeling the kinetics of mobile
ionic species in the electrolyte is thus required in order to perform predictive computational simulations of
electrochemical cells.

Ionic species kinetics was recently considered in [55]. That paper presents a formulation based on: i) the
mass continuity equation for the cations Li+ and anions X−, in terms of their concentrations cLi+ and cX− ;
ii) Maxwell’s equations, to model the evolution in time and space of the electric field, since ionic transport
entails movement of mass as well as of charge. Electroneutrality was not used as a fundamental law and
electro-magnetics was explicitly taken into account via the electro-quasi-static formulation [281] of Maxwell’s
equations. A one-dimensional application to ionic transport in Li-ion batteries electrolyte, inspired by [63],
was performed.

While the outcome matches the results published in [63], it turned out that ionic concentrations near
the electrodes can be higher than half of the saturation limit in the electrolyte solution. Therefore the usual
and widespread simplified form of the chemical Helmholtz free energy density due to mixing of the species1

does not seem to be suitable for commercial Li-ion batteries. The significant role played by the saturation
contribution in the Helmholtz free energy density is therefore investigated in detail in this chapter.

Mass and force balance as well as Faraday’s and Maxwell’s equations are recalled briefly in Section 3.2.
Balance laws are considered to be not affected by the saturation2, i.e. there is no supply of species and the
degree of dissociation of the binary salt in the solution is complete. The latter condition may not be satisfied
in reality when concentrations are close to the saturation limit. In those cases it is known from literature that
the degree of dissociation of Li-salts dissolved in an organic solvent is incomplete. Modeling the dissociation
rate would require a bulk term in the mass balance equations and an additional mass balance equation for
the undissociated salt [63]. The numerical analyses in [55] reveal that concentration peaks exceed 50% of
the saturation limit. Concentrations are therefore too high to neglect the role of saturation but they are
nevertheless sufficiently far from saturation to assume complete dissociation of the Li-salt.

A rigorous analysis of general principles of thermodynamics is performed in Section 3.3 following the ap-
proach described in [24, 276] for processes in thermal equilibrium. The entropy imbalance and the Coleman-
Noll procedure provide thermodynamic restrictions which are satisfied by the usual Fickian description of
diffusion and migration in terms of the electrochemical potential, as defined in [22, 23]. Dilute solutions
have been implemented taking into account the saturation limit. The formulation does not consider mixing

1That was used implicitly in [63] and explicitly in [55].
2It mainly affects the constitutive equations.
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with interactions (regular solutions) nor concentrated solutions (modeled by the Maxwell-Stefan equations
of multicomponent diffusion - see appendix 2.B). Extension to those conditions, although out of the scope
of the present contribution, appears to be straightforward.

A weak form of the governing equations, in the framework of small displacements and strains, has been
derived in Section 3.6 in terms of the selected thermodynamic fields, namely concentrations, displacements,
and the electric potential. A one-dimensional application to ionic transport in Li-ion batteries, inspired by
[63], is performed thereafter. Results with and without saturation are compared, and the role of saturation
is clearly identified.

2.2 Balance laws

2.2.1 Mass balance

The mass balance equation may be written as follows

∂cα
∂t

+ div
[
~hα

]
= 0 . (2.1)

In this equation, cα is the molarity (i.e. the number of moles per unit volume) of a generic species α; ~hα is
the mass flux in terms of moles, i.e. the number of moles of species α measured per unit area per unit time.
In the problem at hand, eq. (2.1) applies to ions Li+ and X−, i.e.

∂cLi+

∂t
+ div

[
~hLi+

]
= 0 , (2.2a)

∂cX−

∂t
+ div

[
~hX−

]
= 0 . (2.2b)

Concentrations are defined in space ~x ∈ V and time 0 ≤ t ≤ tf , i.e. cα = cα(~x, t). Functional dependence
however is specified when necessary only, to enhance readability.

2.2.2 Faraday’s law

Charges in the electrolyte solution are transported by dissociated ions. Therefore, the charge density ζ is
related to the concentration of ions, by the following identity

ζ = F
∑

α

zα cα , (2.3a)

F = 96485.3383 C mol−1 is Faraday’s constant and zα is the number of electrons transferred per ion α,
typically +1 for Li+ cations and −1 for X− anions. The flux of mass in balance (2.1) of each species
contributes to a current density ~i in view of Faraday’s law of electrolysis

~i = F
∑

α

zα ~hα = F (~hLi+ − ~hX−) . (2.3b)

2.2.3 Maxwell’s equations for electro-quasi-statics

Gauss’s laws

div
[
~D
]

= ζ , (2.4)

div
[
~B
]

= 0 , (2.5)

relate the electric displacement and magnetic fields ( ~D and ~B respectively) emanating from a distribution of
electric charge ζ. Maxwell-Faraday’s law of induction describes the reciprocal interactions between magnetic
and electric field ~E, in the form

curl
[
~E
]

= −∂
~B

∂t
. (2.6)
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In view of (2.6), the electric field can be written in terms of a so-called “magnetic potential” ~A and of
an electrostatic potential φ as

~E = −∇ [φ ]− ∂ ~A

∂t
,

In the framework of electro-quasi-statics [281], assumed henceforth as an approximation of the full

Maxwell’s equations, the magnetic potential ~A is time-independent. Accordingly, the electric field is ir-
rotational

~E = −∇ [φ ] , (2.7)

Finally, Ampère’s law (with Maxwell’s correction)

∂ ~D

∂ t
+~i = curl

[
~H
]
, (2.8)

relates the electrical current and the time variation of the electric displacement field to the magnetizing field
~H. After application of the divergence operator and of Faraday’s law (2.3b), the following equation results

div

[
∂ ~D

∂t
+ F (~hLi+ − ~hX−)

]
= 0 , (2.9)

Note that the effect of the latter in Ampère’s law cannot be disregarded even in the simplified framework of
electro-quasi-statics, see [68].

2.2.4 Balance of momentum

The usual balance of forces:
div [σ ] +~b = ~0 , (2.10)

and the symmetry of the stress tensor σ emanate from the principle of virtual power [24]. The electrostatic

bulk force ~bζ = ζ ( ~E + ~v × ~B) characterizing the interaction of a moving charge density ζ with velocity ~v

in an electric field ~E and magnetic field ~B enters balance equation (2.10). Those electrostatic forces are
the only interactions between flowing ions and the hosting material. In view of of the electroneutrality
assumption, see [55, 68], there is no coupling between flow and forces, i.e. ~bζ ∼ ~0. The balance of forces is
taken henceforth as homogeneous

div [σ ] = ~0 . (2.11)

2.3 Thermodynamics

2.3.1 First law

The balance between the internal energy ( U ) of a material region P, the mechanical external power ( W )
expended on P, the heat transferred ( Q ) in P, and the power due to mass ( T ) and electromagnetic ( E )
interactions exchanged on P for the problem at hand, for quasi-static interactions, reads

∂U
∂t

(P) =W(P) +Q(P) + T (P) + E(P) , (2.12)

It is assumed that these processes occur with their distinctive contributions in the balance, in particular
the energies due to charges and mass transfer are additively treated as two separate processes. The individual
contributions are: i) a mechanical contribution due to body forces ~b and surface forces ~p that spend power
against velocities ~v ;

W(P) =

∫

P
~b · ~v dΩ +

∫

∂P
~p · ~v dΓ , (2.13a)
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ii) a heat contribution where the scalar sq is the heat supplied by external sources and ~q is the heat flux
vector;

Q(P) =

∫

P
sq dΩ−

∫

∂P
~q · ~n dΓ , (2.13b)

iii) a mass flux contribution with the scalar µ denoting the chemical potential, the scalar sα the supply of

species (α = Li+,X−) and ~hα the mass flux vector;

T (P) =
∑

α

{∫

P
µα sα dΩ−

∫

∂P
µα ~hα · ~ndΓ

}
, (2.13c)

iv) an electromagnetic contribution with the energy flux vector ~E× ~H generated by the electric and magne-
tizing fields3.

E(P) = −
∫

∂P
( ~E × ~H) · ~n dΓ . (2.13d)

A specific (per unit volume in the reference body, see [24]) internal energy u is usually defined as

U(P) =

∫

P
udΩ ,

in order to write the local form of the first principle. Standard application of the divergence theorem and of
mass balances (2.1) leads from (2.13) to

W(P) =

∫

P
σ :

∂ε

∂t
dΩ , (2.14a)

Q(P) =

∫

P
sq − div [ ~q ] dΩ , (2.14b)

T (P) =
∑

α

∫

P
µα

∂cα
∂t
− ~hα · ∇ [µα ] dΩ , (2.14c)

E(P) =

∫

P

(
∂ ~D

∂t
+~i

)
· ~E dΩ . (2.14d)

The electromagnetic contribution (2.14d) comes out under the assumption of electro-quasi-statics and
in view of Ampère’s-Maxwell’s law (2.8). Since the energy balance (2.12) must hold for all regions P, the
global energy balance (2.12) can be written in a so-called “local form” at any point ~x ∈ P

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ] +

(
∂ ~D

∂t
+~i

)
· ~E +

∑

α

µα
∂cα
∂t
− ~hα · ∇ [µα ] . (2.15)

A different form can be given to equation (2.15), in terms of the electrochemical potential

µα = µα + F zα φ . (2.16)

It has been derived in [55] and summarized in Appendix 2.A for the sake of brevity. The internal energy
u is written as a function of the state variables, namely the entropy η, the concentrations cα, the electric
displacement field ~D, and the kinematic variables in terms of the small strain tensor ε, i.e.

∂u

∂t
=
∂u

∂η

∂η

∂t
+
∂u

∂ε
:
∂ε

∂t
+
∂u

∂ ~D
· ∂

~D

∂t
+
∑

α

∂u

∂cα

∂cα
∂t

. (2.17)

3 ~E × ~H is an energy flux vector results from Poynting’s theorem (see also [276, 22]).

E(P) = −
∫
∂P

( ~E × ~H) · ~ndΓ = −
∫
P

div
[
~E × ~H

]
dΩ =

∫
P
~H · curl

[
~E
]
− curl

[
~H
]
· ~E dΩ .

After substitution of the curls from Maxwell’s equations, Poynting’s theorem results.
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2.3.2 Second law

A local form of the entropy imbalance can be derived from the Clausius-Duhem inequality in terms of the
referential entropy η and of the absolute temperature T [24]

∂η

∂t
− sq
T

+ div

[
~q

T

]
≥ 0 , (2.18)

By noting that

div

[
~q

T

]
=

1

T
div [ ~q ]− 1

T 2
~q · ∇ [T ] ,

equation (2.18) can be expressed in terms of internal energy, exploiting equations (2.15) and (2.17). The
entropy imbalance yields

∂η

∂t

(
T − ∂u

∂η

)
+
∂ε

∂t
:

(
σ − ∂u

∂ε

)
+
∂ ~D

∂t
·
(
~E − ∂u

∂ ~D

)
+
∑

α

∂cα
∂t

(
µα −

∂u

∂cα

)
+

+~i · ~E −
∑

α

~hα · ∇ [µα ]− 1

T
~q · ∇ [T ] ≥ 0 , (2.19)

Term ~i · ~E is the Joule effect. In view of Faraday’s law, straightforward algebra allows to write

~i · ~E −
∑

α

~hα · ∇ [µα ] = −
∑

α

~hα · ∇ [µα ] ,

taking into account (2.16).
By applying the Coleman-Noll procedure, inequality (2.19) must hold for all constitutive processes [24, 26],

giving rise to the following thermodynamic restrictions

T − ∂u

∂η
= 0 , σ − ∂u

∂ε
= 0 , µα −

∂u

∂cα
= 0 , ~E − ∂u

∂ ~D
= 0 ,

~hα · ∇ [µα ] ≤ 0 ,
1

T
~q · ∇ [T ] ≤ 0 . (2.20)

Different thermodynamic potentials can be considered rather than the internal energy u. A classical one is
the specific Helmholtz free energy

ψ(T, ε, cα, ~E) = u(η, ε, cα, ~D)− T η − ~E · ~D ,

that will be used henceforth in the assumption of processes in thermal equilibrium. Thermodynamic restric-
tions then read

σ − ∂ψ

∂ε
= 0 , µα −

∂ψ

∂cα
= 0 , ~D +

∂ψ

∂ ~E
= 0 , ~hα · ∇ [µα ] ≤ 0 ,

1

T
~q · ∇ [T ] ≤ 0 . (2.21)

2.4 Constitutive theory

The processes are taken to be thermodynamically uncoupled and the Helmholtz free energy density ψ is
decomposed in three separate parts

ψ(ε, cα, ~E) = ψdiff (cα) + ψel( ~E) + ψmech(ε) . (2.22)

The mass transport process is described by ψdiff , adopting species concentrations cα, as the state vari-

ables. The contribution ψel( ~E) models the electro-quasistatic interactions, in terms of the electric field ~E.
Finally, ψmech is the mechanical energy density, function of the deformation only through the history of the
local value of the small strain tensor. Materials that are modeled by (2.22) are classified as simple materials.
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The electric displacement field is taken to be linearly related to the electric field

ψel( ~E ) = −1

2
ε| ~E · ~E , (2.23)

where
~D = ε| ~E = −ε| ∇ [φ ] . (2.24)

The permittivity ε| of a homogeneous material is usually given relative to that of vacuum ε|0 = 8.85 ×
10−12 CV−1m−1, as a relative permittivity ε|r, i.e. ε| = ε|r ε|0 .

The electrostatic potential φ is the result of idealized electric charges moving from one electrode to the
other, modeled by Fickian-diffusion that linearly correlates the mass flux of species α to the gradient of its
electrochemical potential

~hα = −Mα ∇ [µα ] , (2.25)

by means of a positive definite mobility tensor Mα. Identity (2.25) satisfies thermodynamic restrictions
(2.21).

A classical specialization of mobility tensor Mα for dilute solutions accounting for saturation is the
isotropic non linear case [251]

Mα(cLi+ , cX−) = u| α cα (1− θLi+ − θX−) 1 , α = Li+,X− . (2.26)

The amount u| α > 0 is usually termed the ion mobility and represents the average velocity of species α
in the solution when acted upon by a force of 1 N/mol independent of the origin of the force4; θα is defined
as the ratio θα = cα

cmax , where cmax stands for the cumulative saturation limit for ions Li+ and X− in the
solution, in condition of electroneutrality. Equation (2.26) represents the physical requirement that both the
pure (cα = 0) and the saturated (θLi+ + θX− = 1) phases have vanishing mobilities in the electrolyte. It can
be seen as a special case of the Maxwell-Stefan approach (see Appendix 2.B). Exploiting the electroneutrality
condition

cLi+ − cX− = 0 , (2.27)

discussed in [55], the specialization for the mobility tensor simplifies to

Mα(cα) = u| α cα
(

1− 2
cα
cmax

)
1 . (2.28)

The free energy ψdiff (cα) in a mixture depends on the composition of the mixture itself5. Guided by
the numerical analyses in [55, 63], where it was shown that concentration peaks amount to about 50% of
the saturation limit, the modeling assumption is here taken that concentrations are sufficiently far from
saturation to disregard energetic interactions in the solution yet not small enough to neglect the saturation
contribution. The free energy thus reads:

ψdiff (cLi+ , cX−) = µ0
Li+ cLi+ + µ0

X− cX− +RT cmax (θLi+ ln[θLi+ ] + θX− ln[θX− ])

+RT cmax (1− θLi+ − θX−) ln[(1− θLi+ − θX−)] . (2.29)

In formula above, R is the universal gas constant; µ0
α is a reference value of the chemical potential of diffusing

species α = Li+,X−. By exploiting electroneutrality (2.27), the chemical potential results in the form

µα = µ0
α +RT ln[

cα
cmax − 2cα

] , (2.30)

4As the free energy density ψ has been selected as the thermodynamic potential, no source of confusion between the ion
mobility u|α and the internal energy density u will arise henceforth.

5The case of diluted (in the sense of [22]) solutions will be considered henceforth whereas other theories will be summarized
in Appendices.
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thus leading to the following expression for the mass flux

~hα = −D| α ∇ [ cα ]− zα F u| α cα
(

1− 2
cα
cmax

)
∇ [φ ] . (2.31)

D| α is defined by D| α = u| αRT (this equation is sometimes termed after Nernst-Einstein).

By comparing (2.31) with the mass flux formula for infinitely diluted solutions

~hα = −D| α ∇ [ cα ]− zα F u| α cα ∇ [φ ] , (2.32)

one concludes that saturation has no effect on the diffusivity: in fact, the impact of saturation on the mobility
tensor (2.28) and on the chemical potential (2.30) counteract each other in the evaluation of diffusivity6.
Saturation does affect the electric contribution in the mass flux (2.31) by changing the mobility, thus creating
either a lower mass flux at a given potential gradient or a higher potential gradient at a given flux.

The mechanical behavior of the separator/electrolyte system is taken isotropic, linear elastic

ψmech(ε) =
1

2
ε : C : ε =

1

2

(
K tr [ ε ]

2
+ 2G || dev [ ε ] ||2

)
, , (2.33)

K, G are the bulk and shear modulus respectively. Symbol tr [− ] denotes the trace operator whereas dev [− ]
is the deviator operator.

Thermodynamics restrictions (2.21) imply

σ = K tr [ ε ] 1+ 2Gdev [ ε ] . (2.34)

2.5 Governing equations and weak form

Governing equations can be derived by incorporating constitutive equations (2.24), (2.31), and (2.34) into
balance equations. The unknown fields result from the thermodynamic choices made. They are here the
concentrations cLi+ , cX− , displacements ~u, and the electric potential φ. Governing equations hold at all
points ~x ∈ V in all instants of interval [0, tf ]

∂cLi+

∂t
+ div

[
−D| Li+ ∇ [ cLi+ ]− F u| Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [φ ]

]
= 0 , (2.35a)

∂cX−

∂t
+ div

[
−D|X− ∇ [ cX− ] + F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [φ ]

]
= 0 , (2.35b)

div

[
−ε| ∇

[
∂φ

∂t

]
+ F (D|X− ∇ [ cX− ]−D| Li+ ∇ [ cLi+ ])

]
+

− F 2 div
[ (

u| Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

) )
∇ [φ ]

]
= 0 , (2.35c)

div [C : ε ] = ~0 . (2.35d)

The difference between equations (2.31) and (2.32) makes this set of governing equations different from
the one used in [55]. Boundary conditions

~hLi+ · ~n = −hBV ~x ∈ ∂NV (2.36a)

6The role played by the non linear mobility tensor and by the free energy density at saturation in Fick’s law (2.31) is further
investigated in appendix 2.C.
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~hX− · ~n = 0 ~x ∈ ∂NV (2.36b)

curl
[
~H
]
· ~n = −F hBV ~x ∈ ∂NV , (2.36c)

σ · ~n = ~p ~x ∈ ∂NV , (2.36d)

are imposed along Neumann boundaries7 ∂NV . It is typical in batteries to fully impose Neumann conditions
(2.36a) for concentration, in terms of mass fluxes, during galvanostatic processes. To complete the problem,
Dirichlet boundary conditions have to be enforced along part ∂DV , ( ∂V = ∂DV ∪ ∂NV ). Rigid body
motion inhibition and zero electric potential have to be included through Dirichlet boundary conditions.

Initial conditions are required for the concentration of ions cLi+(~x, t = 0) and cX−(~x, t = 0) in the
electrolyte solution. As at time t = 0 thermodynamic equilibrium holds, concentrations are uniform and
obey the electroneutrality condition (2.27) in volume V. Consistently, a positive constant cbulk will be defined
as

cbulk = cLi+(~x, t = 0) = cX−(~x, t = 0) . (2.37)

This constant will further be used to scale concentrations.

Initial conditions for electric potential and displacements define a boundary value problem at t = 0.
In view of the perfect electroneutrality, Gauss law and balance of momentum provide the necessary and
sufficient equations to be solved for φ and ~u at t = 0:

div [ ε| ∇ [φ ] ] = 0 ~x ∈ V, t = 0 , (2.38a)

div [C : ε ] = ~0 ~x ∈ V, t = 0 , (2.38b)

together with the usual given boundary conditions for displacements and tractions and homogeneous bound-
ary conditions for potential and current, in view of thermodynamic equilibrium at initial time.

The evolution problem can be formulated in a weak form by multiplying the governing equations (2.35)
by a suitable set of test functions and performing an integration over the domain, exploiting Green’s formula
to reduce the order of differentiation. Adopting a Galerkin approach, weak forms are built using variations
(denoted henceforth with symbol ·̂) of the same variables that rule the problem, namely concentrations ĉLi+ ,

ĉX− , displacements ~̂u, and electric potential φ̂. The following identities are derived straightforwardly

RT

cbulk

∫

V

ĉLi+

{
∂cLi+

∂t
+ div

[
~hLi+

]}
dV = (2.39a)

RT

cbulk

∫

V

ĉLi+
∂cLi+

∂t
+ D| Li+ ∇ [ ĉLi+ ] · ∇ [ cLi+ ] + F u| Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [ ĉLi+ ] · ∇ [φ ] dV+

− RT

cbulk

∫

∂NV

ĉLi+ hBV dΓ = 0 ,

RT

cbulk

∫

V

ĉX−

{
∂cX−

∂t
+ div

[
~hX−

]}
dV = (2.39b)

RT

cbulk

∫

V

ĉX−
∂cX−

∂t
+ D|X− ∇ [ ĉX− ] · ∇ [ cX− ]− F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [ ĉX− ] · ∇ [φ ] dV = 0 ,

∫

V

φ̂ div

[
∂ ~D

∂t
+ F

(
~hLi+ − ~hX−

)]
dV = (2.39c)

7Boundary conditions (2.36a), (2.36c) and (2.36d) have been derived in Section 3.3 of [55]. Extension of Neumann boundaries
are defined for each field and differ from field to field. In order to enlighten the notation the field dependence has not been
specified in writing ∂NV and has been omitted. Same arguments apply to Dirichlet boundaries.
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∫

V

∇
[
φ̂
]
·
{
ε| ∇

[
∂φ

∂t

]
+ F 2

(
u| Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

) )
∇ [φ ]

}
dV+

− F
∫

V

∇
[
φ̂
]
· (D|X− ∇ [ cX− ]−D| Li+ ∇ [ cLi+ ] ) dV − F

∫

∂NV

φ̂ hBV dΓ = 0 ,

− 1

τ

∫

V

~̂u · div [σ ] dV =
1

τ

∫

V

ε̂ : C : ε dV − 1

τ

∫

∂NV

~̂u · p dΓ = 0 . (2.39d)

Boundary conditions (2.36a), (2.36c) and (2.36d) have been used. The mass balance equations (2.39a)
has been scaled by coefficient RT

cbulk
, deriving from constitutive equation (2.30), to give to the new weak form

the physical dimension of a power expenditure. For the same reason the balance of momentum (2.39d) has
been divided by a time scale8 coefficient τ .

Fields that govern the problem are scaled to make them dimensionless and of order one:

c∗α =
cα
cbulk

, φ∗ =
F

RT
φ, ~u∗ =

~u

L
, (2.40)

L stands for a given characteristic length. A dimensionless weak form can finally be given in a time interval
[0, tf ] as

Find y∗(~x, t) ∈ V [0,tf ] such that

d

dt
b∗ (ŷ∗(~x), y∗(~x, t)) + a∗(ŷ∗(~x), y∗(~x, t)) = f∗(ŷ(~x)) ∀ŷ(~x) ∈ V , (2.41)

where

b∗ (ŷ∗(~x), y∗(~x, t)) = RT cbulk

∫

V

ĉ∗Li+ c∗Li+ + ĉ∗X− c∗X− dV + ε|
(
RT

F

)2 ∫

V

∇
[
φ̂∗
]
· ∇ [φ∗ ] dV ,

a∗ (ŷ∗(~x), y∗(~x, t)) =

RT cbulk D| Li+

∫

V

∇
[
ĉ∗Li+

]
· ∇
[
c∗Li+

]
+ c∗Li+

(
1− 2

c∗
Li+

c∗max

)
∇
[
ĉ∗Li+

]
· ∇ [φ∗ ] dV+

RT cbulk D|X−

∫

V

∇ [ ĉ∗X− ] · ∇ [ c∗X− ]− c∗X−

(
1− 2

c∗X−

c∗max

)
∇ [ ĉ∗X− ] · ∇ [φ∗ ] dV+

RT cbulk D| Li+

∫

V

∇
[
φ̂∗
]
· ∇ [φ∗ ]

(
1− 2

c∗
Li+

c∗max

)
c∗Li+ +∇

[
φ̂∗
]
· ∇
[
c∗Li+

]
dV+

RT cbulk D|X−

∫

V

∇
[
φ̂∗
]
· ∇ [φ∗ ]

(
1− 2

c∗X−

c∗max

)
c∗X− −∇

[
φ̂∗
]
· ∇ [ c∗X− ] dV+

L2

τ

∫

V

ε̂∗ : C : ε∗ dV ,

f∗ (ŷ∗(~x)) = RT

∫

∂NV

(φ̂∗ + ĉ∗Li+) hBV dΓ +
L

∆t

∫

∂NV

~̂u∗ · p dΓ ,

with y∗(~x, t) = {c∗
Li+

, c∗X− , φ∗, ~u∗ }.

2.6 One-dimensional modeling of ionic transport in a fluid elec-
trolyte

2.6.1 Description

A battery with a storage capacity of 720mAh is dealt with, see [55]. It undergoes a galvanostatic process
of charge at different C-rates (0.25, 0.5, 1, 2, and 4). The electrolyte is supposed to have a saturation limit

8In the simulations the time scale coefficient τ has been taken to be coincident with the finite difference time increment ∆t.
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Figure 2.1: A one-dimensional model of a Li-ion battery, with separator of size l =
2.8× 10−4m. The flux of Li+ ions during charge is indicated.

for LiPF6 of 5000mol m−3 (hence cmax = 104mol m−3). How saturation affects the battery performances is
analyzed next. As in [63], mechanical effects are not taken into account. The charge/discharge process is
assumed to be isothermal at T = 25oC.

The current I(t) (with t in seconds) is tuned in time as

I(t) = (1− e−t) InC , (2.42)

InC stands for the steady current at a C-rate equal to n. The concentration of ions across the electrolyte is
uniform at t = 0 and amounts to cbulk = 1500 mol m−3. The flux of Lithium ions at the electrodes/separator
interfaces (with net area A = 2× 10−2m2) is related to the given current I(t) flowing through the battery.

A uniform ionic flow at the interfaces is considered, enabling a 1D description. Boundary conditions
(2.36) thus read

hBV |(x=0) (t) = hBV |(x=l) (t) = −I(t)

FA
, (2.43a)

~hX− · ~n
∣∣∣
(x=0)

(t) = ~hX− · ~n
∣∣∣
(x=l)

(t) = 0 , (2.43b)

- see also figure 2.1. From identity (2.42), the “steady” mass flux at t� 0 reads

h1C = −I1C
FA

,

Diffusivities are given by D| Li+ = 2× 10−11m2s−1, D| PF−
6

= 3× 10−11m2s−1.

The separator thickness is l = 280µm. All data are taken from [63] except from the relative permittivity,
taken equal to ε|r = 2.25.

2.6.2 Discretization and time advancing by finite differences

Discretization is performed by separating variables, with spatial test ϕi(x) and shape functions ϕj(x) and
nodal unknowns (collectively gathered in column y with component yj(t)) that depend solely on time. The
weak form (2.41) is then transformed in a first order Ordinary Differential Equation (ODE) in time9, which
reads:

Find y(t) s.t. b∗i · ẏ(t) + a∗i · y(t) + sata∗i [ y(t) ] = f∗i (t) for i = 1, 2, ..., N (2.44)

9As in Section 7 of [55] the star superscript is omitted from the definition of dimensionless quantities for the sake of

readability: for example, in this section cLi+

j stands for the j-th nodal unknown for Li-ions dimensionless concentration at time
t. Furthermore, the usual Einstein summation convention is applied henceforth: when an index variable appears twice in a
single term it implies summation of that term over all the values of the index.
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Operators b∗i and a∗i are not influenced by the saturation of the electrolyte and coincide with those used in
[55], given by

1

RT cbulk
b∗i ·

∂y

∂t
(t) =

∫ l

0

ϕLi+

i ϕLi+

j dx
∂cLi+

j

∂t
+

∫ l

0

ϕX−

i ϕX−

j dx
∂cX

−

j

∂t
+

ε|
cbulk

RT

F 2

∫ l

0

∂ϕφi
∂x

∂ϕφj
∂x

dx
∂φj
∂t

,

a∗i [ y(t) ]

RT cbulk
= D| Li+

∫ l

0

∂ϕLi+

i

∂x

∂ϕLi+

j

∂x
dx cLi+

j + D| Li+

∫ l

0

ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

dx cLi+

j φk +

D|X−
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0

∂ϕX−

i

∂x

∂ ϕX−

j
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dx cX

−

j − D|X−

∫ l

0

ϕX−

j

∂ϕX−

i

∂x

∂ϕφk
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dx cX
−

j φk +

D| Li+

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j dx cLi+

j φk + D| Li+

∫ l

0

∂ϕφi
∂x

∂ϕLi+

j

∂x
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D|X−

∫ l

0

∂ϕφi
∂x

∂ϕφk
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ϕX−
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−

j φk − D|X−

∫ l
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−

j ,

f∗i (t)

RT cbulk
=

1

cbulk

∫

∂NV

(ϕφi + ϕLi+

i ) hBV dΓ ,

The non linear form sata∗i [ y(t) ] on the contrary, contains the saturation contributions (not accounted
for in [55]). It reads

sata∗i [ y(t) ]

RT cbulk
= D| Li+

∫ l

0

ϕLi+

j cLi+

j

(
− 2

cmax
ϕLi+

n cLi+

n

)
∂ϕLi+

i

∂x

∂ϕφk
∂x

φk dx +

+ D| Li+

∫ l

0

ϕLi+

j cLi+

j

(
− 2

cmax
ϕLi+

n cLi+

n

)
∂ϕφi
∂x

∂ϕφk
∂x

φk dx +

− D|X−

∫ l

0

ϕX−

j cX
−

j

(
− 2

cmax
ϕX−

n cX
−

n

)
∂ϕX−

i

∂x

∂ϕφk
∂x

φk dx +

+ D|X−

∫ l

0

ϕX−

j cX
−

j

(
− 2

cmax
ϕX−
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−

n

)
∂ϕφi
∂x

∂ϕφk
∂x

φk dx ,

A family of time-advancing methods based on the so-called θ-scheme can be set up for the discrete
problem (2.44). In the numerical simulations that follows, the backward Euler scheme (θ = 1) has been
selected, thus seeking for y(t+ ∆t) such that

b∗i ·
y(t+ ∆t)

∆t
+ a∗i · y(t+ ∆t) + sata∗i [ y(t+ ∆t) ] = f∗i (t+ ∆t) + b∗i ·

y(t)

∆t
, (2.45)

As in [55], a Newton-Raphson scheme has been implemented to solve the non-linear problem (2.45).

2.6.3 Simulations

Charge process simulations have been carried out with different C-rates. An anti-symmetric ionic concen-
tration profile arises in the electrolyte, initiated at the bulk concentration cbulk that reflects thermodynamic
equilibrium at time t = 0. Such a feature, emerged in [55] at a unit C-rate, is clearly envisaged also at
different charging speeds, as emphasized in Figure 2.2. Either when C-rates are high (say 2 or more), or
when the charge duration allows to reach a steady-state configuration at moderate C-rates (say about 1),
the concentration near the electrodes are close to the limit concentration cLi+ = 0 at one side and close to
the symmetric concentration cLi+ = 2cbulk at the other electrode. The latter concentration is higher than
half of the saturation limit of the Li salt in the electrolyte solvent.
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Figure 2.2: Concentration plots. a-c) Lithium ions concentration profiles cLi+(x, t) at
different C-rates. In all cases the concentration at the initial time equals cbulk, thus
satisfying thermodynamic equilibrium. For high C-rates, the steady state configuration
cannot be attained, since the limit condition of vanishing concentration at an electrode
is reached earlier. d) Concentration profiles with saturation for a galvanostatic process
at different C-rates at Cathode (upper, shadowed area) and Anode. For C-rates greater
or equal to 2 the limit condition of vanishing concentration at an electrode is reached
and the steady state conditions cannot be attained. e) Scattering of the absolute value
of the difference in concentration along the electrolyte between the solutions with and
without saturation for a galvanostatic process at unit C-rate. Different colors indicate
different times.
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Several numerical analyses were performed to investigate the influence of spatial and temporal discretiza-
tion. The results for 150 equal finite elements and a constant time step of 1 second are here given. At the
initial time the electric potential follows equations (2.38) and has to be homogeneous for thermodynamic
equilibrium with no current nor mass flow.

φ(~x, 0) = 0 ~x ∈ V , (2.46)

After a “sufficiently long” time, the steady state configuration has been approximated at C-rates less
than 2. Analyses at higher C-rates end prematurely before achieving the steady state configuration, because
the limit concentration cLi+ = 0 was reached at the Anode. In particular, for C-rate=2 the final time was
tf = 210s, whereas for C-rate=4 the analyses have been terminated at tf = 54s. Concentration profiles in
the presence of saturation at different C-rates are represented in figure 2.2-d. The upper part of the figure,
which is shadowed, refers to the Cathode, where concentration of Li+ ions increase during charge processes.
The lowest part refers to the Anode. The concentration profiles are symmetric with respect to the bulk
concentration cbulk = 1500mol m−3. As shown in [55] for a unit C-rate, the steady state asymptotic behavior
is recovered well, but steady state concentrations have not been represented to the sake of readability.

Denote with cnosat
Li+

(x, t) the solution for the Li-ions concentration under the assumption far from satura-
tion - i.e. assuming cmax →∞ in governing equations (2.35) - and with cLi+(x, t) the solution for the Li-ions
concentration of governing equations (2.35) with cmax = 104mol m−3. Figure 2.2-e depicts the absolute
difference in concentration ∆c(x, t) between the solutions with and without saturation

∆c(x, t) = | cLi+(x, t)− cnosatLi+ (x, t) | ,

along the electrolyte 0 ≤ x ≤ 0.28mm for a galvanostatic process at a unit C-rate. Similar profiles result
for other C-rates. The difference ranges between 10−15 < ∆c(x, t) < 10−12 mol m−3 depending on time
0 ≤ t ≤ tf = 1000s. It can be assessed from figure 2.2 that ionic concentrations are in the order of
103mol m−3 along the electrolyte in the whole time frame. Accordingly, the influence of the saturation on
concentrations is negligible. This effect is attributed to electroneutrality.

As the deviation from electroneutrality is small, see discussions in [55], the analysis that follows provides
an acceptable rationale to the observed independence of ionic concentrations upon saturation. Consider mass
balance equations (2.35a) and (2.35b), here rewritten when electroneutrality (2.27) applies10

∂c

∂t
+ div

[
−D| Li+ ∇ [ c ]− F u| Li+ c

(
1− 2

c

cmax

)
∇ [φ ]

]
= 0 , (2.47a)

∂c

∂t
+ div

[
−D|X− ∇ [ c ] + F u|X− c

(
1− 2

c

cmax

)
∇ [φ ]

]
= 0 . (2.47b)

By multiplying the Li+ balance equation with the ion mobility u|X− and the X− balance equation with the
ion mobility u| Li+ the two equations (2.47) can be added, leading to

(u|X− + u| Li+)
∂c

∂t
− 2RT (u|X− ∗ u| Li+) ∆ [ c ] = 0 . (2.48)

Ionic concentrations in the assumption of electroneutrality are therefore independent upon cmax. Indeed,
equation (2.48) can be derived without taking into account the saturation in Fick’s law (2.31).

Denote with φnosat(x, t) the solution for the electric potential when concentrations are far from saturation
- i.e. assuming cmax → ∞ in governing equations (2.35) - and with φ(x, t) the solution for the electric
potential of governing equations (2.35) with cmax = 10000mol m−3. Electric potential profiles at the Cathode
in the presence of saturation or without saturation at different C-rates are represented in figure 2.3.

Figure 2.4 depicts the evolution in time of the difference

∆φ(x, t) = φ(x, t)− φnosat(x, t) ,
10implying cLi+ = cX− = c
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Figure 2.3: Potential profile with and without saturation for a galvanostatic process at
different C-rates at Cathode. The electric potential at the Anode is arbitrarily set to
zero.

in the electric potential φ(x). The picture clearly shows that saturation does influence the electric potential
and that the difference increases with time for all C-rates. Having set the potential to be zero at the anode,
this conclusion was theoretically predicted in Section 2.4, since saturation constitutively affects the electric
contribution in the mass flux (2.31) by changing the mobility, thus creating a higher potential gradient in
galvanostatic processes.

The relative difference
∆φ(x, t)× φ−1

nosat(x, t) ,

is plotted in Figure 2.5. The latter shows that the saturation increases the electric potential by about
40% near the cathode for all C-rates. This effect appears to be more pronounced at small C-rates, when
concentrations may not be as close to the saturation limit at the end of the analysis tf as they are for high
C-rates.

According to the Clausius-Planck inequality, the Internal Entropy Production (shortened in IEP) cannot
be negative. Following the approach of rational thermodynamics of Coleman and Noll, it can be written as:

IEP (x, t) = − 1

T

∑

α

~hα · ∇ [µα ] ≥ 0 . (2.49)

for isothermal processes with no inelastic mechanical effects. Substituting Fick’s law (2.25) and the mobility
(2.28) in (2.49), the total internal entropy production equals

1

T

∑

α

∫ tf

0

∫ L

0

1

u| α cα
(
1− 2 cα

cmax

) ~hα · ~hα dxdt , (2.50)

with ~hα as in equation (2.31). Integration over time can be approximated in every time step by means of
a trapezoidal rule. Furthermore, having used linear shape functions to approximate the concentration and
potential fields, gradients are constant in each finite element. The scalar product ~hα · ~hα turns out to be a
polynomial of degree four in the space variable x, which is trivially integrated. The integral

1

T

∫ t

0

∫ L

0

1

u| α cα
(
1− 2 cα

cmax

) ~hα · ~hα dxdτ , (2.51)

is plotted in Figure 2.6 as a function of time t. It represents the buildup of internally generated entropy
for Li+ (continuous curve) and for PF−6 (dashed curve), respectively, at different C-rates in the presence of
saturation. At low C-rates, the flux of ions PF−6 abates with time (see Figure 5 in [55]) and the slope of the
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Figure 2.4: Evolution in time of the difference ∆φ(x, t) = φ(x, t) − φnosat(x, t) for
several C-rates. The trend of the evolution in time is also depicted.
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Figure 2.5: Evolution in time of the ratio ∆φ(x, t) × φ−1
nosat(x, t) for several C-rates.

The trend of the evolution in time is also depicted.
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IEP gets flatter and flatter with time11. Similarly, the flux of ions Li+ tends to a constant while approaching
the steady state conditions. The two effects combined induce a linear trend with time for the IEP at low
C-rates. A similar behavior would be expected at higher C-rates, but the limit concentration is reached well
before the steady state configuration.

Figure 2.7 compares the total IEP (2.50) with and without saturation. The increment of internally
generated entropy due to the saturation is in the order of 40% of the unsaturated electrolyte IEP . The
higher the C-rate the higher the rate of internally generated entropy. Nevertheless, as the limit concentration
is reached at high charge rates, one cannot conclude that the total accumulation of IEP is larger at high
C-rates.

11The flux near the electrode interfaces is dictated by the boundary conditions. The closer the regions to the electrodes the
faster they reach the steady state - see Figure 5 in [55]). As discussed in [63] the Li+ ionic current is mainly carried by migration
at the beginning of the charging process, while under steady-state conditions diffusion and migrations contribute equally. The
anionic mass flux reaches its peak rapidly, and once the steady state is approached, the flux of PF−6 tends to vanish, and no
contribution is provided further to the overall ionic conductivity.
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Figure 2.6: Buildup of internally generated entropy for Li+ (continuous curve) and for
PF−6 (dashed curve) at different C-rates in the presence of saturation.
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Figure 2.7: Total internal entropy production (2.50) with (continuous curve) and with-
out (dashed curve) saturation.
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2.7 Conclusions

In [55], ionic conductivity was modeled with the final aim of using computational simulations as a predic-
tive tool in energy storage electrochemistry. A novel formulation was proposed, stemming from Maxwell’s
equations in their electro-quasi-static form instead of the classical condition of electroneutrality. From the
thermodynamic standpoint, ideal solutions far from saturation were used underlying the constitutive theory
for diffusion and migration processes. As shown in Section 2.6.3, ionic concentrations in real batteries can be
higher than half of the saturation limit of the Li salt in the electrolyte solvent. Accordingly, the assumption
of ideal solutions far from saturation can be questioned.

The present study investigated this assumption, for the case where concentrations are too high to neglect
the role of saturation but still sufficiently low to exclude incomplete dissociation of the Li-salt. This conjecture
is confirmed by the data and the numerical simulations on real batteries.

The adopted constitutive specifications (2.31) account for the saturation contribution. By comparing it
with the mass flux constitutive equation adopted in [55], here reprinted in formula (2.32), one notices that
saturation has no effect on the diffusivity. Under the assumption of electroneutrality, it can be assessed that
saturation does not impact the concentration profiles either. In fact, the electroneutrality condition (2.27)
is well approximated during the simulations and the influence of saturation on the concentration profiles is
actually negligible - see Figure 2.2-e.

Saturation does however affect the electric potential in view of the mass flux equation (2.31) because it
modifies the ionic mobility, inducing a higher potential gradient as shown in the simulations. Figures 2.4,
2.5 confirm that the saturation may increase the electric potential by about 40% near the cathode for all
C-rates. Saturation influences the internal entropy production to a similar extent, as conveyed in Figures
2.6, 2.7.

In conclusion, saturation appears to be an essential ingredient in a multi scale and multi physics approach
for battery modeling [68, 67]. Furthermore, the fully three-dimensional formulation that was proposed in [55]
and the numerical algorithms that emanate from the weak form established therein have shown to be robust
and capable of incorporating the new constitutive specifications, as required to account for the saturation.
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Appendix

2.A Electrochemical potential

The electromagnetic contribution (2.14) to the energy balance can be given a different expression in the
framework of electro-quasi-statics, keeping in mind that charges are conveyed together with mass and thus
the processes of migration and diffusion are coupled. The link between the two processes is Faraday’s laws
of electrolysis (2.3). Exploiting them and Gauss’s law (2.4), (2.14) becomes

E(P) = −
∫

P

∂ ~D

∂t
· ∇ [φ ] +~i · ∇ [φ ] dΩ

= −
∫

P
div

[
φ
∂ ~D

∂t

]
− φ div

[
∂ ~D

∂t

]
+ F

∑

α

zα ~hα · ∇ [φ ] dΩ

=

∫

P
φ
∂ζ

∂t
−
∑

α

(F zα∇ [φ ]) · ~hα dΩ−
∫

∂P
φ
∂ ~D

∂t
· ~ndΓ

=
∑

α

∫

P
(F zα φ)

∂cα
∂t
− (F zα∇ [φ ]) · ~hα dΩ−

∫

∂P
φ
∂ ~D

∂t
· ~ndΓ . (2.52)

From (2.14, 2.52), the power expenditure due to mass transfer and electromagnetic interactions specialize
in the electrolyte as

T (P) + E(P) =
∑

α

∫

P
(µα + F zα φ)

∂cα
∂t
− ~hα · ∇ [µα + F zα φ ] dΩ−

∫

∂P
φ
∂ ~D

∂t
· ~ndΓ . (2.53)

In the absence of charged species, only diffusion takes place; the relevant constitutive theory can be found in
[24], section 66. In its dual way, in the absence of gradients of chemical potential, diffusion cannot proceed
and current is thus driven by migration only. When diffusion is present, a current density appears due
to Faraday’s law and both processes contribute to the charge flux. It is therefore clear that concentration
gradients and electric field act contemporarily to generate ion mobility. This is the intimate nature of the
energy contribution (2.53) and of the electrochemical potential µα that in light of (2.53) will be defined by
the decomposition

µα = µα + F zα φ , (2.54)

- see also [22], chapter XIII, section 3.4, formula (42). Accordingly, the local form of the first principle in
terms of rates of the referential internal energy u reads also

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ]− div

[
φ
∂ ~D

∂t

]
+
∑

α

µα
∂cα
∂t
− ~hα · ∇ [µ .α ] . (2.55)

2.B Concentrated solutions

According to Ficks law (2.25) there is no influence of other phases on the flux of species α, i.e. cross-
effects are ignored although they may appear in reality. To account for interactions between phases, the
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standard approach [193] within the theory of Irreversible Thermodynamics replaces Fickian fluxes by linear
combinations of the gradients of all involved electrochemical potentials. In the case of binary electrodes

~hα = −
2∑

β=1

Mαβ(c1, c2) ∇
[
µβ
]

α = 1, 2 . (2.56)

Mobility tensors Mαβ(c1, c2) on turn depend on the concentration of all phases. A classical specialization
of such mobility tensors is an isotropic choice

Mαβ(c1, c2) = Mαβ(c1, c2) cα 1 ,

whereas linearity is not usually assumed for Mαβ(c1, c2). The full matrix of mobility coefficients Mαβ has to
be positive semi-definite in order to be consistent with thermodynamic restriction (2.21) and symmetric due
to the Onsager reciprocal relations. The approach that provides specifications for Mαβ is usually known as
the Maxwell-Stefan approach [192].

2.C Steady state solutions

The porous electrode theory developed by Newman and coworkers [64] stems from the mass balance equation
(2.2) and from electroneutrality condition

cLi+ = cX− = c .

It is straightforward to derive equation (2.48) which is independent of the electric potential, even in the
case of saturation as modeled via Fick’s law (2.31). At steady state, the laplacian vanishes thus leading to
a linear form c∞(x) = ax + b for the concentration in 1D problems. The two parameters a and b can be
determined by imposing the galvanostatic flux h1C at x = 0 and by imposing the mass conservation through
time, namely ∫ l

0

c(x, t)dx =

∫ l

0

c(x, 0)dx , ,

which at steady state leads to

a
l2

2
+ b l = cbulk l ,

and finally to the steady state concentration

c∞(x) = cbulk −
h1C

2D| LI+
(x− l

2
) . (2.57)

The steady state solution is useful to envisage the role played by the non linear mobility tensor and by
the free energy density at saturation in Fick’s law (2.31). If one, for instance, takes the linear isotropic
mobility tensor

Mα(cα) = u| α cα 1 , (2.58)

together with the ideal solution model (2.29), the mass balance equation (2.48) restated in 1D reads

(u|X− + u| Li+)
∂c

∂t
− 2RT u|X− u| Li+

{
f(c) ∆ [ c ] + f ′(c) (c′(x))2

}
= 0 , (2.59)

having defined

f(c) = 1 +
c

cmax
2

1− 2 c
cmax

.

At steady state, one is left with a non linear ordinary differential equation

f(c) ∆ [ c ] + f ′(c) (c′(x))2 = 0 ,
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Figure 2.C.1: The effect of the saturation within the free energy density favors the dif-
fusion into the electrolyte and reduces the concentration and the concentration gradient
at the electrodes.

which admits the following solution

c∞(x) =
e2a(b+x) + a cmax

2a
,

with parameters a and b to be evaluated again by imposing the galvanostatic flux h1C at x = 0 and by
imposing the mass conservation through time. The effect of the saturation within the free energy density
is clearly envisaged in figure 2.C.1. It corresponds to a higher diffusivity, in turn dependent upon the
concentration, which favors the diffusion into the electrolyte and decreases both the concentration at the
electrodes and the concentration gradient within the electrolyte. On the contrary, the non linear isotropic
mobility tensor itself causes a decrease of the diffusivity, with opposite effects. Indeed, they cancel out in
the final Fick’s law (2.31).
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Part II

Active Particles
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Chapter 3

Modeling chemo-thermo-mechanical
processes with trapping

3.1 Introduction

Several multi-disciplinary applications involve mass transport - driven by diffusion, migration or both - cou-
pled with chemo-thermo-mechanics. In many cases, only a fraction of the total available mass of mobile
species is effectively transported, whereas a significant counterpart remains immobilized by specific phenom-
ena occuring concurrently with transport, i.e. trapping. Some examples clarify this concept.

One example is when metals are exposed to hydrogen gas, typically in storage tanks, and H atoms diffuse
within the crystalline structure of the metal [282, 283, 284, 285, 286, 287, 288, 289]. H is found then not only
in interstitial lattice sites, but also in defects such as vacancies, dislocations, grain boundaries, second-phase
particle boundaries, and voids. Since such trapping of H in defects is energetically favorable, the mean
residence time of diffusing hydrogen atoms is significantly longer in defects than in interstitial lattice sites.
Furthermore, hydrogen free defects are filled very rapidly.

In electrochemical energy storage the fundamental mechanism of charge-discharge is the motion of ions
between two electrodes. Particularly in Li-ion batteries, insertion of ions in active particles often alters the
crystal structure of the particle itself, leading to a core-shell configuration with one segment, e.g. the shell
in the case of insertion, rich in lithium with a sharp interface that separates it from a pristine inner core
[243, 290, 259, 291, 292, 233]. Formation of chemical bonds between guest and host atoms allows alloying
of lithium ions with the host matrix, transforming its initial crystal structure. Either fully reversible or
not upon delithiation, those chemical reactions immobilize lithium ions, i.e. trap them, and make them
unavailable for further diffusion in the storage particle.

We note that in addition to the examples described above, vacancies in metals, dendritic growth, solid
propellant, bio-electrochemistry, solute solidification, and moisture diffusion in polymer nanocomposites
provide additional examples of diffusion with trapping.

We do not model interface trap phenomena explicitly as was done by Torquato [264], as we use the
network model of Larche and Cahn [227] instead. Thus it is assumed that the lattice sites of the hosting
material form a network within which guest atoms can diffuse. In contrast, trap sites are taken to be isolated
from one another and, hence, trapped atoms are immobilized within their specific trap.

Trapping of guest atoms is a kinetic process involving chemical and physical reactions described by the
mass action law, set in a well-established thermodynamic framework [22, 23]. Deviation from stoichiometry
in a solid composition can occur due to diffusion, and alloying reactions may cause large degrees of swelling
that, when constrained, lead to mechanical stress. Such mechanical effects influence all other processes, since
all chemo-transport-thermo-mechanical processes are coupled. These interactions are accounted for in this
chapter, within a rigorous thermodynamic setting [24, 26] in the simple framework of small strains.

The chapter is organized as follows. Balance equations for conservation of mass, linear and angular
momentum, energy, and entropy are introduced in Sections 3.2 and 3.3. Thermodynamic restrictions arise as
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usual from the Curie symmetry principle and from the Coleman-Noll procedure. Subsequently in section 3.4
constitutive theory provides consistent phenomenological specifications for heat and mass fluxes, mechanical
stress, as well as for the evolution of inelastic processes. Coupling of chemical kinetics to all other processes
is analyzed in Section 3.5, pinpointing when phenomena can be categorized as not rate limiting and therefore
modeled as infinitely fast. Governing Equations are finally summarized in Section 3.6.

3.2 Balance laws

Most species transport models consider the effect of hydrostatic stress and trapping on the species distribution
in an inelastically deforming hosting material, assuming that species diffuse through lattice sites and that trap
sites are filled via species diffusion. Only saturable and reversible traps are considered, such as dislocation
cores. They are assumed to be isolated, in the sense that they do not form an extended network, and so do
not present a continuous path for lattice diffusion. For this reason, some of the species flowing across the
boundary ∂P of any subpart P of the body under investigation enters traps in the bulk and thus cease to
contribute to species transport. The flux of species ~h is assumed to be purely interstitial lattice diffusion
(and termed ~hL from now on1), following Larchè and Cahn [227, 228].

3.2.1 Mass balance

The trapping process of a generic species, denoted henceforth with H, is described as a chemical reaction,

HL

kT
�
kL

HT , (3.1)

which portrays the conversion of mobile to trapped species and vice-versa by the rate of the reaction (3.1),
denoted with w(3.1). Reaction (3.1) is unbalanced during species diffusion and interstitial species HL is either
made available or trapped. The mass balance equations yield

∂cL
∂t

+ div
[
~hL

]
+ w(3.1) = sL , (3.2a)

∂cT
∂t
− w(3.1) = sT . (3.2b)

Symbols in equations (3.2) have the following meaning: cβ (with β = L, T ) is the molarity (i.e. the number

of moles per unit volume) of a generic species Hβ ; t is time; ~hβ is the mass flux in terms of moles, i.e.
the number of moles of species Hβ measured per unit area per unit time; sL is the rate in moles per unit
volume per unit time at which lattice species is generated by sources, and sT is that for trapped species.
Concentrations cβ are defined in space and time, i.e. cβ = cβ(~x, t). The same holds for ~hL, w(3.1), sβ .
Functional dependence however is specified when necessary only, to favor readability. It is assumed that
trapped species are immobile since traps are isolated. Therefore, a mass flux term is absent in Eq. (3.2b).

3.2.2 Balance of momentum

The usual balance of forces
div [σ ] +~b = ~0 (3.3)

holds, where σ is the stress tensor, ~b is the body force per unit volume, and we have assumed inertia forces
to be negligible. The symmetry of the stress tensor follows from the balance of angular momentum [24].

3.2.3 Weak form and boundary conditions

The weak formulation of balance equations (3.2-3.3) results from multiplication by a suitable set of test
functions - here denoted with a superposed carat - and from an integration upon the domain, exploiting

1Henceforth the subscript L refers to lattice (interstitial) sites and the subscript T to trap sites.
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Green’s formula to reduce the order of differentiation. Consider the mass balance Eq.(3.2-a)
∫

V

µ̂L

{
∂cL
∂t

+ div
[
~hL

]
+ w(3.1) − sL

}
dV = (3.4)

=

∫

V

µ̂L
∂cL
∂t

dV +

∫

V

div
[
µ̂L ~hL

]
−∇ [ µ̂L ] · ~hL dV +

∫

V

µ̂L (w(3.1) − sL) dV

=

∫

V

µ̂L
∂cL
∂t

dV −
∫

V

∇ [ µ̂L ] · ~hL dV +

∫

V

µ̂L (w(3.1) − sL) dV +

∫

∂V

µ̂L ~hL · ~n dΓ = 0 .

Within (3.4) a contribution is defined on the boundary ∂V , which has outward unit normal ~n. It is unusual
to know a priori the mass flux through the boundary. It is rather more natural to impose thermodynamic
equilibrium between external and internal species at the domain boundary2. Nevertheless, for the sake of
completeness, boundary conditions will be written as

~hL · ~n = h ~x ∈ ∂NV . (3.5a)

The weak form of Eq. (3.2b) can be derived simply as
∫

V

µ̂T

{
∂cT
∂t
− w(3.1) − sT

}
dV = 0 . (3.6)

Finally, for the equilibrium equations (3.3) one writes the principle of virtual work as
∫

V

−ε̂ : σ + ~̂u · ~b dV +

∫

∂V

~̂u · σ · ~n dΓ = 0 . (3.7)

The given tractions along the Neumann part of the boundary ∂NV will be denoted with ~p

σ · ~n = ~p ~x ∈ ∂NV . (3.8)

A Dirichlet boundary condition (usually homogeneous) for the displacements is added along the Dirichlet
part ∂DV .

In conclusion, the weak form of the balance equations can be written in the time interval [0, tf ] as

Find y ∈ V [0,tf ] such that
∂

∂t
b (ŷ, z(t)) + a(ŷ, y(t)) = f(ŷ) ∀ŷ ∈ V (3.9)

where

b (ŷ, z) =

∫

V

µ̂L cL + µ̂T cT dV ,

a (ŷ, y) = −
∫

V

∇ [ µ̂L ] · ~hL dV +

∫

V

ε̂ : σ dV +

∫

V

(µ̂L − µ̂T ) w(3.1) dV ,

f (ŷ) = −
∫

∂NV

µ̂L h dΓ +

∫

∂NV

~̂u · ~p dΓ +

∫

V

~̂u · ~b dV +

∫

V

µ̂L sL + µ̂T sT dV ,

with z = { cL, cT }, y = {µL, µT , ~u}. Columns z and y collect the time-dependent unknown fields. Column
ŷ collects the steady-state test functions that correspond to the unknown fields in y.

To computationally solve the (either weak or strong) problem, constitutive equations must be specified,
which is the subject of section 3.3. Ellipticity of the operators, functional and numerical properties of the
solution and of its approximation depend on the constitutive assumptions and on the choice of the correct
functional spaces V [0,tf ],V. However the identification of these spaces falls beyond the scope of the present
work.

The weak form (3.9) acquires the usual physical meaning of power expenditure: for this reason the
selection of the shape functions has been made in terms of chemical potentials µ̂ rather than concentrations.

2See also section 3.C to this aim. Note that the extent of Neumann boundaries are defined for each field and differ from
field to field. In order to enlighten the notation however the field dependence has not been specified in writing ∂NV and has
been left implicit. The same arguments apply to Dirichlet boundaries.
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3.3 Thermodynamics

3.3.1 Energy balance

Denote with B ∈ R3 the spatial domain of problem (3.2, 3.3). Consider an arbitrary material region P ⊂ B,
which is taken as non-convecting. The first law of thermodynamics represents the balance of the interplay
among the internal energy of P, the power expended on P, the heat transferred in P, and the power due to
mass exchanged on P. The energy balance for the problem at hand, for quasi-static interactions, reads

dU
dt

(P) =Wu(P) +Qu(P) + Tu(P) , (3.10)

with U the net internal energy of P, Wu the mechanical external power, Qu the power due to heat transfer,
Tu the power due to mass transfer3. It is assumed that each of these processes is energetically separable in
the balance. The individual contributions read

Wu(P) =

∫

P
~b · ~v dΩ +

∫

∂P
~t · ~v dΓ , (3.11a)

Qu(P) =

∫

P
sq dΩ−

∫

∂P
~q · ~n dΓ , (3.11b)

Tu(P) =

∫

P
uµL sL + uµT sT dΩ−

∫

∂P
uµL

~hL · ~ndΓ , (3.11c)

where ~t is the surface traction, ~v is the velocity, sq is the rate in energy per unit volume at which heat is
generated by sources, and ~q is the flux of heat. Since they are defined over a finite sub-part P, the four
quantities U , Wu, Qu, and Tu are scalar functions of time.

The time variation of net internal energy U corresponds to the power expenditure of external agencies:
a mechanical contribution Wu due to body forces ~b and surface tractions ~t that do work on velocities ~v; a
heat contribution Qu where sq is the heat supplied by external agencies and ~q is the heat flux vector; a mass
contribution Tu in which the scalar uµβ denotes the change in specific energy provided by a unit supply of
moles of species β.

As usual in the thermodynamics of continua, see e.g. [24], one can make use of the specific internal energy
u per unit volume

U(P) =

∫

P
udΩ .

In small displacements one can define specific internal energy per unit mass or per unit volume, since both
mass and volume do not change during the process. We choose to define it per unit volume. Standard
application of the divergence theorem and of mass balances (3.2) leads from (3.11) to

Wu(P) =

∫

P
σ :

∂ε

∂t
dΩ , (3.12a)

Qu(P) =

∫

P
sq − div [ ~q ] dΩ , (3.12b)

Tu(P) =

∫

P
uµL

∂cL
∂t

+ uµL w
(3.1) − ~hL · ∇ [ uµL ] dΩ +

∫

P
uµT

∂cT
∂t
− uµT w

(3.1) dΩ . (3.12c)

where ε is the strain tensor, i.e. ∂ε
∂t = sym [∇ [~v ] ], The first law of thermodynamics is thus stated as follows

∫

P

du

dt
dΩ =

∫

P
σ :

∂ε

∂t
+ sq − div [ ~q ] + uµL

∂cL
∂t

+ uµT
∂cT
∂t
− ~hL · ∇ [ uµL ] + (uµL − uµT ) w(3.1) dΩ .

It must hold for any region P, since the latter is arbitrary. The local form of the first principle thus reads

du

dt
= σ :

∂ε

∂t
+ sq − div [ ~q ] + uµL

∂cL
∂t

+ uµT
∂cT
∂t
− ~hL · ∇ [ uµL ] + (uµL − uµT ) w(3.1) . (3.13)

3Augmenting the energy balance with energy flows due to species transport is not always accomplished. Such a term is not
included for instance in [22, 26] whereas it appears in [24].
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3.3.2 Entropy imbalance

The second law of thermodynamics represents the balance of the interplay among the internal entropy of P
and the entropy transferred in P due to mass exchange and heat transferred on P. The entropy balance for
the problem at hand, for quasi-static interactions, reads

dS
dt

(P)− dSi
dt

(P) = Qη(P) + Tη(P) , (3.14)

where S is the net internal entropy of P, Si is the entropy produced inside P, Qη the entropy per unit time
due to heat transfer, Tη the entropy per unit time due to mass transfer. The individual contributions read

Qη(P) =

∫

P

sq
T

dΩ−
∫

∂P

~q

T
· ~n dΓ , (3.15a)

Tη(P) =

∫

P
ηµL sL + ηµT sT dΩ−

∫

∂P
ηµL

~hL · ~ndΓ . (3.15b)

Equation (3.14) stems from the non-trivial assumption that mechanics does not contribute directly to the
total entropy flow in the entropy balance equation. This assumption is profoundly elaborated in [22, 293].
The scalar ηµβ denotes the change in specific entropy provided by a unit supply of moles4 of species β = L, T .

The second law of thermodynamics states that

dSi
dt

(P) ≥ 0 .

One can make use of the specific internal entropy η per unit volume

S(P) =

∫

P
η dΩ .

In small displacements one can define specific internal entropy per unit mass or per unit volume, since both
mass and volume do not change during the process. We choose to define it per unit volume. Standard
application of the divergence theorem and of mass balances (3.2) leads from (3.15) to

d

dt

∫

P
η dΩ +

∫

P
−sq
T

+ div

[
~q

T

]
− ηµL sL + div

[
ηµL

~hL

]
− ηµT sT dΩ ≥ 0 . (3.16)

By noting that

div

[
~q

T

]
=

1

T
div [ ~q ]− 1

T 2
~q · ∇ [T ] ,

taking advantage of identity (3.13) and of the sign definiteness of temperature, we can rephrase the entropy
imbalance in terms of internal energy

∫

P
T

dη

dt
− 1

T
~q · ∇ [T ]− T ηµL sL + T div

[
ηµL

~hL

]
− T ηµT sT dΩ +

−
{∫

P

du

dt
− σ :

∂ε

∂t
− uµL

∂cL
∂t
− uµT

∂cT
∂t

+ ~hL · ∇ [ uµL ]− (uµL − uµT ) w(3.1) dΩ

}
≥ 0 .

By exploiting the mass balance equations (3.2) the entropy imbalance becomes

∫

P
T

dη

dt
− du

dt
dΩ +

+

∫

P
− 1

T
~q · ∇ [T ]− T ηµL

∂cL
∂t
− T ηµT

∂cT
∂t

+ T ~hL · ∇ [ ηµL ]− T (ηµL − ηµT ) w(3.1) dΩ +

4It is worth pointing out that [24] does not consider the contribution of mass to the flux of entropy in (3.14).
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−
∫

P
−σ :

∂ε

∂t
− uµL

∂cL
∂t
− uµT

∂cT
∂t

+ ~hL · ∇ [ uµL ]− (uµL − uµT ) w(3.1) dΩ ≥ 0 .

Denote with the symbol µβ the quantity

µβ = uµβ − T ηµβ , (3.17)

and with the symbol A(3.1) the following

A(3.1) = µT − µL , (3.18)

in order to write the entropy imbalance as
∫

P
T

dη

dt
− du

dt
− 1

T
~q · ∇ [T ] + µL

∂cL
∂t

+ µT
∂cT
∂t

+

−~hL · ∇ [µL ]− ηµL
~hL · ∇ [T ]− w(3.1)A(3.1) + σ :

∂ε

∂t
dΩ ≥ 0 .

Following [22] a new heat flux
~q− = ~q + T ηµL

~hL , (3.19)

can be defined, whereby T ηµL
~hL represents the heat transfer due to diffusion of interstitial species in the

lattice. ~q− is the thermodynamic response conjugate to the gradient of temperature, i.e.
∫

P
T

dη

dt
− du

dt
+ µL

∂cL
∂t

+ µT
∂cT
∂t

+ σ :
∂ε

∂t
dΩ + (3.20)

+

∫

P
− 1

T
~q− · ∇ [T ]− ~hL · ∇ [µL ]− w(3.1)A(3.1) dΩ ≥ 0 .

3.3.3 Additive decompositions

It is customary in non-equilibrium thermodynamics [26, 294] to additively decompose the stress into the sum
of two symmetric tensors, an elastic part σe and a viscous, dissipative part σd

σ = σe + σd . (3.21)

The elastic part is assumed to be derivable from a potential.

The strain tensor ε can be also additively decomposed into a chemo-thermo-elastic tensor εcte and into
an inelastic contribution εin, following a rather classical decomposition of strains in standard dissipative
systems [295]

ε = εcte + εin . (3.22)

The contribution σ : ∂ε
in

∂t has a dissipative nature, that will be discussed further in the paper. Tensor εcte

will be subject to further additive decompositions, that will be introduced at a convenient time.

3.3.4 Helmholtz free energy

Different thermodynamic potentials can be considered rather than the internal energy u. The specific
Helmholtz free energy is defined as

ψ = u− T η , (3.23)

and will be used henceforth. It is taken as a function of temperature, concentrations, and the chemo-
thermo-mechanical strain5 and of some kinematic internal variables ξ that compare with the usual meaning
in inelastic constitutive laws. It follows that

T
dη

dt
− du

dt
= − dψ

dt
− η ∂T

∂t
, (3.24)

5
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which can be inserted in (3.20) to derive the entropy imbalance in final form
∫

P
− dψ

dt
− η ∂T

∂t
+ µL

∂cL
∂t

+ µT
∂cT
∂t

+ σe :
∂εcte

∂t
− 1

T
~q− · ∇ [T ] + (3.25)

−~hL · ∇ [µL ]− w(3.1)A(3.1) + σd :
∂εcte

∂t
+ σ :

∂εin

∂t
dΩ ≥ 0 .

In view of the stated functional dependency of the free energy, its total derivative with respect to time
reads

dψ

dt
=
∂ψ

∂T

∂T

∂t
+

∂ψ

∂εcte
:
∂εcte

∂t
+
∂ψ

∂cL

∂cL
∂t

+
∂ψ

∂cT

∂cT
∂t

+
∂ψ

∂ξ
:
∂ξ

∂t
. (3.26)

The internal force, conjugate to ξ, will be denoted with the symbol χ, i.e.

χ = −∂ψ
∂ξ

. (3.27)

3.3.5 Thermodynamic restrictions

Inequality (3.25) becomes
∫

P
− ∂ψ

∂T

∂T

∂t
− ∂ψ

∂εcte
:
∂εcte

∂t
− ∂ψ

∂cL

∂cL
∂t
− ∂ψ

∂cT

∂cT
∂t
− ∂ψ

∂ξ
:
∂ξ

∂t
+

− η ∂T
∂t

+ µL
∂cL
∂t

+ µT
∂cT
∂t

+ σe :
∂εcte

∂t
− 1

T
~q− · ∇ [T ] +

−~hL · ∇ [µL ]− w(3.1)A(3.1) + σd :
∂εcte

∂t
+ σ :

∂εin

∂t
dΩ ≥ 0 ,

and must hold for any region P, since the latter was arbitrarily taken. Therefore, the following local entropy
imbalance, usually termed the Clausius-Duhem inequality, yields

∂T

∂t

(
−η − ∂ψ

∂T

)
+
∂εcte

∂t
:

(
σe − ∂ψ

∂εcte

)
+
∂cL
∂t

(
µL −

∂ψ

∂cL

)
+
∂cT
∂t

(
µT −

∂ψ

∂cT

)
+

+χ :
∂ξ

∂t
− ~hL · ∇ [µL ]− w(3.1)A(3.1) − 1

T
~q− · ∇ [T ] + σd :

∂εcte

∂t
+ σ :

∂εin

∂t
≥ 0 . (3.28)

This inequality must hold for any value of the time derivative of the temperature T , the concentrations
cL and cT , and the strain tensor εcte. Since they appear linearly in the inequality, the factors multiplying
them must be zero, as otherwise it would be possible to find a value for the time derivatives that violate the
inequality. Therefore, the following restrictions apply

σe =
∂ψ

∂εcte
, η = −∂ψ

∂T
, µL =

∂ψ

∂cL
, µT =

∂ψ

∂cT
, (3.29)

thus yielding to the inequality

σd :
∂εcte

∂t
+ σ :

∂εin

∂t
+ χ :

∂ξ

∂t︸ ︷︷ ︸
inelastic

− ~hL · ∇ [µL ]︸ ︷︷ ︸
diffusive

− 1

T
~q− · ∇ [T ]

︸ ︷︷ ︸
thermal

− w(3.1)A(3.1)
︸ ︷︷ ︸

chemical

≥ 0 , (3.30)

This is not the only possible choice. Focusing on the functional dependence on the strain only, the Helmholtz free energy
could be written as a function of the whole strain tensor and of its inelastic counterpart

ψ = ψ(ε, εin, ...) .

In the Coleman-Noll procedure, the stress is finally related to the derivative of the Helmholtz free energy wrt to the total strain

σ =
∂ψ

∂ε
.

In the realm of large strains, this approach has been taken for instance in [296, 297]. This approach models the dissipation as
arising from the free energy.
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which is the internal entropy production (multiplied with the temperature). Mechanical, diffusive, chemi-
cal, and thermal contributions are devised as shown. Inequality (3.30) has the usual dissipative structure
[298]. Under the assumptions of Curie symmetry principle [22], fluxes and thermodynamic forces of different
tensorial character do not couple. Inequality (3.30) thus can be written as

σd :
∂εcte

∂t
+ σ :

∂εin

∂t
+ χ :

∂ξ

∂t
≥ 0 , (3.31a)

−~hL · ∇ [µL ]− 1

T
~q− · ∇ [T ] ≥ 0 , (3.31b)

−w(3.1)A(3.1) ≥ 0 . (3.31c)

Remark - In view of formula (3.29), the amount µβ defined in eq. (3.17) acquires the meaning of
chemical potential and therefore the term A(3.1) turns out to be the affinity of the reaction (3.1).

Remark - The Helmholtz free energy density has been derived with respect to time in Eq.(3.26).
Exploiting the thermodynamic restriction (3.29) for entropy and for stress, the result in Eq. (3.24) leads to

−T d

dt

∂ψ

∂T
=

du

dt
− σe :

∂εcte

∂t
− µL

∂cL
∂t
− µT

∂cT
∂t

+ χ :
∂ξ

∂t
. (3.32)

This identity will be used in Appendix 3.B as the starting point to derive the generalized heat equation.

3.3.6 Specifications for uµβ and ηµβ

Identity (3.29b) allows expression of the entropy as a function of temperature, concentrations, chemo-thermo-
mechanical strain, and internal variables. Since the specific energy u is a function of entropy, it also becomes
a function of the same thermodynamic variables set. From the definition (3.23) of the Helmholtz free energy,
it descends that

dψ

dcβ
=

du

dcβ
+ T

∂

∂cβ

∂ψ

∂T
, (3.33)

with β = L, T . In view of (3.29) the term on the left hand side is the chemical potential6 of species β. We
compute the entropy per mole, i.e. the partial molar entropy ηµβ , as

ηµβ =
∂η

∂cβ
= − ∂

∂cβ

∂ψ

∂T
= − ∂

∂T

∂ψ

∂cβ
= − ∂µβ

∂T
. (3.34)

It thus descends from definition (3.17) that uµβ amounts to

uµL =
du

dcL

∣∣∣∣
T,cT ,εcte,ξ

, uµT =
du

dcT

∣∣∣∣
T,cL,εcte,ξ

. (3.35)

This outcome is consistent with the local form of the first principle (3.13). It holds in fact:

dψ

dcβ
=

du

dcβ
+ T

∂

∂cβ

∂ψ

∂T
=

∂u

∂cβ
+
∂u

∂η

∂η

∂cβ
+ T

∂

∂cβ

∂ψ

∂T
=

∂u

∂cβ
= µβ (3.36)

and
uµβ =

du

dcβ
=

∂u

∂cβ
+
∂u

∂η

∂η

∂cβ
= µβ + T ηµβ , (3.37)

in agreement with definition (3.17). In summary therefore,

ηµβ = − ∂2ψ

∂cβ∂T
(3.38a)

6Note that dψ
dcβ

= ∂ψ
∂cβ

in view of the notation on total and partial derivatives.
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uµβ =
∂ψ

∂cβ
− T ∂2ψ

∂cβ∂T
. (3.38b)

Remark - The identification (3.38) of the energetic and entropic contributions to the chemical potential
provides a neat formulation for the entropy production inequality (3.31b). One writes in view of definition
(3.19)

−~hL · ∇ [µL ]− 1

T
~q− · ∇ [T ] = −~hL · (∇ [µL ] + ηµL∇ [T ])− 1

T
~q · ∇ [T ] .

By means of Eq. (3.38), the vector ∇ [µL ] + ηµL∇ [T ] is independent upon the gradient of temperature,
since it holds

∇ [µL ] + ηµL∇ [T ] =
∂2ψ

∂c2L
∇ [ cL ] +

∂2ψ

∂cL∂cT
∇ [ cT ] +

∂2ψ

∂cL∂εcte
: ∇

[
εcte

]
+

∂2ψ

∂cL∂ξ
: ∇ [ ξ ] . (3.39)

3.4 Constitutive theory

There are several ways to satisfy the thermodynamic restriction (3.31b). A strategy that immediately
descends from (3.31b) models the flux of interstitial species by Fickian-diffusion, and the “heat flux” ~q− via
Fourier’s law, i.e.

~hL = −ML(cL) ∇ [µL ] , ~q− = −K| ∇ [T ] , (3.40)

by means of positive definite mobility and heat conductivity tensors ML and K| , respectively. A cleaner and
intuitive approach, which will be pursued from now on, relates the ordinary heat flux ~q to the gradient of
temperature via Fourier’s law, and relates the mass flux to the remaining gradients in view of Eq. (3.39) in
a consistent way with the thermodynamic restriction (3.31b)

~hL = −ML(cL) (∇ [µL ] + ηµL∇ [T ]) , (3.41a)

~q = −K| ∇ [T ] . (3.41b)

More general approaches, which include the Soret effect of thermal diffusion and the Dufour effect of heat
flow generated by concentration gradients, are obviously possible but will not be accounted for here.

The following isotropic non linear [251] specialization for the mobility tensor ML

ML(cL) = u| L cmaxL θL (1− θL) 1 , (3.42)

accounts for saturation. In formula (3.42): θL = cL/c
max
L ; cmaxL is the saturation limit for interstitial species.

The mobility u| L > 0 represents the average velocity of interstitial species when acted upon by a force of
1 N/mol independent of the origin of the force. Definition (3.42) represents the physical requirement that
both the pure (cL = 0) and the saturated (cL = cmaxL ) phases have vanishing mobilities. Assuming that the
trapped species have vanishing mobility is an alternative view of modeling the absence of trapped species
flux. Neither the mobility u| L nor the saturation concentration cmaxL are assumed to change in time. Such a
limitation can be removed without altering the conceptual picture if experimental data indicate an influence
of temperature, stresses, or concentrations.

The Helmholtz free energy density ψ is modeled by decomposing it into separate parts: a diffusive
contribution ψdiff , a thermal contribution ψth, an elastic contribution ψel, and an inelastic (or defect energy
[24]) counterpart ψin

ψ(cL, cT , T, ε
cte, ξ) = ψ0 +ψdiff (cL, cT , T, ξ)+ψth(cL, cT , T )+ψel(ε

cte, cL, cT , T )+ψin(cL, cT , T, ξ) . (3.43)

This split is here taken for granted without motivation. A detailed analysis for the microstructure term ψin
can be found in [299]. ψ0 is a datum value.
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The thermal contribution ψth(cL, cT , T ) is taken as

ψth = −cHηµ0
H(T−T0) − 1

2

c0vH cH
T0

(T−T0)2−(cL
ηµ0
L+cT

ηµ0
T )(T−T0) − 1

2

c0vLcL + c0vT cT
T0

(T−T0)2 . (3.44)

The subscript H designates the host material, which has concentration cH in moles per unit volume. The
specific heats c0vH , c0vL, and c0vT are, by convention, energy per mole per degree Kelvin, and therefore we
multiply it by concentration to convert the energy to energy per unit volume. Each species has its own
specific heat, taken to be constant. We have included ηµ0

H , ηµ0
L, and ηµ0

T to allow for entropy driven by
thermal fluctuations7.

Statistical mechanics provides a description of the entropy for isolated systems in terms of the density
of states Ω| , which in the case of two-state systems is the number of possible molecular configurations
[25]. Making recourse to Stirling’s approximation, one finds that the formula for combinations provides the
following number of possible configurations of interstitial species atoms in an ideal crystalline lattice

Ω|L =
[
θθLL (1− θL)(1−θL)

]−NA cmaxL

, (3.45)

having denoted Avogadro’s number with NA. Inserting (3.45) into Boltzmann’s equation

ηdiffL = kB ln Ω|L , (3.46)

one finds that the following well-known expression of the entropy arises, since the universal gas constant R
is the product of Boltzmann constant kB and Avogadro’s number

ηdiffL = −RcmaxL (θL ln[θL] + (1− θL) ln[1− θL]) . (3.47)

The ηT counterpart can be derived from the entropy Ω|T of the trapped species in terms of θT = cT /c
max
T

where the saturation limit for trapped species cmaxT (ξ) may change in time due to inelastic deformations,
accounted for by means of ξ

ηdiffT = −RcmaxT (ξ) (θT (ξ) ln[θT (ξ)] + (1− θT (ξ)) ln[1− θT (ξ)]) . (3.48)

The free energy density (per unit volume) of mobile guest atoms interacting with a host medium is
described by a regular solution model [251, 23], which provides the following free energy density for the
continuum approximation of mixing:

ψdiff (cL, cT , T, ξ) = µ0
L cL − T ηdiffL + µ0

T cT − T ηdiffT + RT cmaxL χ| θL (1− θL) . (3.49)

The model of the Helmholtz free energy density in Eq. (3.49) represents the entropy of mixing plus energetic
interactions. The terms µ0

L and µ0
T are reference values of chemical potentials that specify the free energy

in the absence of interaction and entropic contributions, and specify the trap binding energy ∆Eτ (i.e. the
negative of the Gibbs free energy change), and in turn are related to the equilibrium constant Keq of reaction
(3.1)

∆Eτ = µ0
L − µ0

T = RT ln[Keq] . (3.50)

The real valued constant χ| in Eq. (3.49) - termed the exchange parameter [25] - characterizes the energy
of interaction between mobile guest species and insertion sites. If all of the interactions between mobile
species and sites are the same, then χ| = 0 and there is no energy of mixing: mixing is the ideal and purely
entropic. The contribution RT cmaxL χ| θL (1− θL), known as the excess Gibbs energy, endows the free energy
density with a non convex behavior with respect to cL for χ| > 2, which in turn may lead to phase segregation
[252, 257, 300].

7Note that perfect gas theory suggests that there should also be a term containing the logarithm of density to fully characterize
the entropy due to thermal fluctuations, but we omit this term as having negligible increments, and therefore its effect is lumped
into ψ0
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The chemo-thermo-elastic strain εcte is considered to be made up of three separate contibutions: an
elastic recoverable part after unloading εel, a swelling contribution due to the insertion of species in the host
material εs, and a thermal distortion εth:

εcte = εel + εs + εth . (3.51)

The swelling contribution
εs = ωL

(
cL − c0L

)
1+ ωT

(
cT − c0T

)
1 , (3.52)

is assumed to be volumetric and proportional to the deviation cβ − c0β from the reference concentration c0β
by means of the chemical expansion coefficients ωβ of species β. They equal one third of the partial molar
volumes at a given temperature. Symbol 1 denotes the identity matrix. The thermal strain tensor, purely
volumetric as for the swelling contribution, is assumed to be proportional to the difference with respect to
a reference temperature T0, by means of the factor α termed the thermal expansion coefficient

εth = α (T − T0) 1 , . (3.53)

A possible choice for the elastic part of the free energy density ψel(ε
cte, cL, cT , T ) in the small strain range

is the usual quadratic form

ψel(ε
cte, cL, cT , T ) =

1

2
K(cL, cT , T ) tr

[
εcte − εs − εth

]2
+ G(cL, cT , T ) || dev

[
εcte − εs − εth

]
||2 , (3.54)

where K, G are the bulk and shear modulus respectively and they are made dependent on temperature and
species concentrations. The stress tensor σe(εcte, cL, cT , T ) descends from the thermodynamic restriction
(3.29a)

σe = 2Gdev
[
εcte

]
+ K

{
tr
[
εcte

]
− 3

[
ωL
(
cL − c0L

)
+ ωT

(
cT − c0T

)
+ α (T − T0)

]}
1 .(3.55)

Note that the derivative ∂ψel/∂cβ , with β = L, T , is the sum of two contributions

∂ψel
∂cβ

= −ωβ tr [σe ] +
1

2

∂K

∂cβ
tr
[
εcte − εs − εth

]2
+

∂G

∂cβ
||dev

[
εcte − εs − εth

]
||2 . (3.56)

The first emanates from the swelling part of the strain, and is present even if the material properties are
independent on concentration of species. Analogously,

∂ψel
∂T

= −α tr [σe ] +
1

2

∂K

∂T
tr
[
εcte − εs − εth

]2
+

∂G

∂T
||dev

[
εcte − εs − εth

]
||2 . (3.57)

Inelastic internal entropy production (3.30) was described by the internal flux variables εin, ξ and by their
energy-conjugate forces σ,χ. The existence of a convex dissipation potential is often assumed as a function
of the flux variables, being non-negative and zero at the origin. Internal forces that drive the irreversible
processes are linked to the flux variables via normality rules after enforcement of the principle of maximum
dissipation [301, 302]. Complementarity laws are more often expressed after a Legendre transformation, in
the form of evolution laws of flux variables as a function of the internal forces

∂εin

∂t
=
∂ϕin

∂σ
,

∂ξ

∂t
=
∂ϕin

∂χ
. (3.58)

Standard J2 flow theory with isotropic hardening and visco-plasticity of Perzyna type are considered in the
numerical examples in section 3.C.

From Eq. (3.29) we derive the chemical potential of species β = L, T as

µβ = µ0
β − ηµ0

β (T − T0) − 1

2

c0vβ
T0

(T − T0)2 +RT ln

[
θβ

1− θβ

]
+RT χ| (1− 2θβ) +

∂ψel
∂cβ

+
∂ψin
∂cβ

. (3.59)
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From Eq. (3.38a), the entropic contribution of the chemical potential reads

ηµβ = −ηµ0
β −

c0vβ
T0

(T − T0) +R ln

[
θβ

1− θβ

]
+Rχ| (1− 2θβ) +

∂2ψel
∂T∂cβ

+
∂2ψin
∂T∂cβ

. (3.60)

By defining as usual the interstitial diffusivity by D| L = u| LRT , Fick’s law (3.41a) becomes

~hL(cL, cT , T, ε
cte, ξ ) =−D| L [1− 2χ| θL (1− θL)]∇ [ cL ] +

−M(cL)

[
∂2ψel
∂c2L

∇ [ cL ] +
∂2ψel
∂cL∂cT

∇ [ cT ] +
∂2ψel

∂cL∂εcte
: ∇

[
εcte

]]
+

−M(cL)

[
∂2ψin
∂c2L

∇ [ cL ] +
∂2ψin
∂cL∂cT

∇ [ cT ] +
∂2ψin

∂cL∂εcte
: ∇

[
εcte

]
+
∂2ψin
∂cL∂ξ

: ∇ [ ξ ]

]
.

(3.61)

By comparing (3.61) with the mass flux formula for infinitely diluted solutions, that can be easily derived
by taking cmaxL →∞, one concludes that saturation has no effect on the diffusivity D| L: in fact, the impact
of saturation on the mobility tensor and on the chemical potential act one against the other and the effects
cancel out in the evaluation of diffusivity. Saturation does affect mass transport by mechanical and thermal
effects, even under the simple assumption that material parameters are not influenced by the interstitial
concentration of species. In the simple case of ψin = 0 with constant K and G, the mass flux becomes

~hL =−D| L [1− 2χ| θL (1− θL)]∇ [ cL ]− 3M(cL) KωL
[
3ωL∇ [ cL ] + 3ωT ∇ [ cT ]−∇

[
tr
[
εcte

] ]]
.

3.5 Chemical kinetics

For ideal systems, in which the solvent (if any) does not take part in reactions and the chemical potentials
have entropy and energy contributions only, the chemical kinetics of reaction (3.1) is often modeled via the
law of mass action [22]

w(3.1) = kT
θL

1− θL
− kL

θT
1− θT

, (3.62a)

where kT is the positive rate constant for the forward reaction (yielding trapped products T ) and kL the rate
constant for the reverse reaction. Elastic and swelling contributions suggest some modifications to this form
of the law of mass action. It is proposed here that factors kL and kT are no longer constant, but depend on
the stress and on the concentrations (via elastic parameters) in the following way

kL = k̃L exp
∂ψel/∂cT
RT

exp
∂ψin/∂cT
RT

exp
−ηµ0

T (T − T0)

RT
exp
−c0vT (T − T0)2

2RT T0
, (3.62b)

kT = k̃T exp
∂ψel/∂cL
RT

exp
∂ψin/∂cL
RT

exp
−ηµ0

L(T − T0)

RT
exp
−c0vL(T − T0)2

2RT T0
exp [χ| (1− 2θL)] . (3.62c)

with k̃T and k̃L constants and derivatives as in Eq. (3.56). This new formulation is consistent with the
usual mass action law, which is recovered when elastic, swelling, and interaction contributions vanish.

The condition of null affinity A(3.1) = 0 can be resolved for the Gibbs free energy change µ0
L − µ0

T . From
definition (3.18), formulae (3.50) and (3.59) the equilibrium constant of reaction (3.1) can be derived with
simple algebra at equilibrium conditions

Keq =
θeqT

1− θeqT
1− θeqL
θeqL

exp

[
∂ψel
∂cT
− ∂ψel

∂cL

]eq

RT
exp

[
∂ψin
∂cT
− ∂ψin

∂cL

]eq

RT
exp [−χ| (1− 2θeqL )]× (3.63)
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× exp
(ηµ0

L − ηµ0
T )(T − T0)

RT
exp

(c0vL − c0vT )(T − T0)2

2RT T0
.

Equilibrium concentrations of trapped and mobile species depend on temperature T and on the state of
stress. The rates of the forward and backward reactions are equal at equilibrium, and the equilibrium
constant, in the alternative form Keq = k̃T /k̃L, can be derived from the mass action law (3.62a) by imposing
w(3.1) = 0. Identity (3.63) is recovered, consistently. Such an identity agrees well and extends van’t Hoff
relation that is often [25] used to model the temperature and pressure dependence of Keq.

The thermodynamic restriction
w(3.1)A(3.1) ≤ 0 ,

is satisfied using Eq.(3.62). To prove this statement, define with

ℵ = exp

∂ψel
∂cL
− ∂ψel

∂cT

RT
exp

∂ψin
∂cL
− ∂ψin

∂cT

RT
exp

(ηµ0
T − ηµ0

L)(T − T0)

RT
×

× exp
(c0vT − c0vL)(T − T0)2

2RT T0
exp [χ| (1− 2θL)] .

The affinity and the reaction rate can be written as

A(3.1) = RT ln

[
θT

1− θT
1− θL
θL

1

ℵ
1

Keq

]
,

w(3.1) = k̃L

{
− θT

1− θT
+

θL
1− θL

ℵKeq

}
.

If w(3.1) > 0 then

ℵ > θT
1− θT

1− θL
θL

1

Keq
,

and in turn A(3.1) < 0. Viceversa if w(3.1) < 0 then A(3.1) > 0.

A classical way to enforce thermodynamic restrictions for the reaction (3.1) is to linearly relate the affinity
and the reaction rate, by means of a phenomenological coefficient L(3.1) > 0

w(3.1) = −L(3.1) A(3.1) , (3.64)

It was remarked in [22] that the linear phenomenological Eq.(3.64) is not a priory satisfactory for chemical
reactions, although there is always a region close to equilibrium where it holds. From the equations (3.59)
for the chemical potentials, the law of mass action in fact leads to

w(3.1) = k̃T exp

[
µL − µ0

L

RT

]
− k̃L exp

[
µT − µ0

T

RT

]
.

With simple mathematical manipulations one derives

w(3.1) = k̃L exp

[
µT − µ0

T

RT

] (
exp

[
−A

(3.1)

RT

]
− 1

)
, (3.65)

where µT − µ0
T can be expressed from Eq. (3.59) as a function of cL, cT , ε, T . Eq. (3.65) can be linearized

for A(3.1) around the equilibrium configuration, in which the latter vanishes

w(3.1) = −k̃L exp

[
µT − µ0

T

RT

∣∣∣∣
eq]

A(3.1)

RT
+ o(A(3.1)) . (3.66)

By direct comparison of (3.64) and (3.66), coefficient L(3.1) reads

L(3.1) = k̃L exp

[
µT − µ0

T

RT

∣∣∣∣
eq]

= k̃T exp

[
µL − µ0

L

RT

∣∣∣∣
eq]

,
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and is always positive.

Species trapping was also pursued by Thomas and Chopin [303], who evaluated the rate of species
exchange following the approach of McNabb and Foster [282]. The latter was used in place of the law of
mass action. Such an approach falls beyond the scope of the present contribution.

3.5.1 Infinitely fast kinetics

In many circumstances, the rate limiting process in a multi-physics problem is, by far, often something other
than the chemical reaction. For instance: i) the trapping and untrapping of hydrogen in dislocation cores
is much faster than its diffusion in the host metal lattice [283, 288]; ii) the kinetics of transformation of
high-affinity to low affinity integrins and vice versa in focal adhesions is much faster than the diffusion of the
low-affinity integrin itself across the lipid bilayer membrane [304]. In such events it can be assumed that the
reaction kinetics is infinitely fast, in the sense that the time required to reach chemical equilibrium is orders
of magnitudes smaller than the time-scale of other processes. The concentrations of trapped and interstitial
species is then governed by thermodynamic equilibrium at all times, and the trapped concentration cT can
be related to the interstitial one by the equation A(3.1) = 0, i.e.

µT = µL ∀ cL, ε, T , (3.67)

with chemical potentials from Eq. (3.59).

3.6 Governing equations

Governing equations can be derived by incorporating the constitutive equations (3.41b), (3.55), (3.61), and
the mass action law (3.62) into the balance equations (3.2), (3.3), and (3.32). Specifically, by using Eqs.
(3.13), (3.38), (3.43), (3.44), (3.49), (3.54), and (3.62) the energy balance (3.32) can be written as in the
Eq.(3.68d) below. The lengthy algebra that leads to the generalized heat equation is collected in Appendix
3.B. Governing equations are written in term of concentrations cL and cT , displacements ~u, and temperature
T as

∂cL
∂t

+ div
[
~hL(cL, cT , T, ε

cte, ξ )
]

+ w(3.1)(cL, cT , T, ε
cte, ξ ) = sL , (3.68a)

∂cT
∂t
− w(3.1)(cL, cT , T, ε

cte, ξ ) = sT , (3.68b)

div
[
σ(εcte, cL, cT , T )

]
+~b = ~0 , (3.68c)

− T ∂2ψ

∂T 2

∂T

∂t
− div [K| ∇ [T ] ] = sq + T

∂2ψ

∂T∂εcte
:
∂εcte

∂t
+ T

∂2ψ

∂T∂ξ
:
∂ξ

∂t
+ σd :

∂εcte

∂t
+

+ σ :
∂εin

∂t
− ~hL · ∇ [ uµL ] + (uµL − uµT ) w(3.1) . (3.68d)

Equations (3.68) are accompanied by non linear evolution equations for the viscous stress σd, the inelastic
strain tensor εin, and for ξ. Boundary conditions

~hL · ~n = h ~x ∈ ∂NV , (3.69a)

~q · ~n = q ~x ∈ ∂NV , (3.69b)

σ · ~n = ~p ~x ∈ ∂NV , (3.69c)
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are imposed along Neumann boundaries ∂NV . To ensure solvability of the problem, Dirichlet boundary
conditions have to be enforced along ∂DV , where ∂V = ∂DV ∪ ∂NV and ∂DV ∩ ∂NV = ∅.

T = T ~x ∈ ∂DV , (3.70)

u = u ~x ∈ ∂DV . (3.71)

As assessed in [305], Dirichlet boundary conditions for concentration should not be imposed. The correct
boundary condition that enforces equilibrium will be written as an equivalence of chemical potentials. An
example will be discussed in section 3.C. Initial conditions are usually imposed for the concentration of inter-
stitial species cL(~x, t = 0) as well as of trapped species cT (~x, t = 0) and temperature T (~x, t = 0). To comply
with equilibrium thermodynamics these conditions are uniform in volume V and equal to concentrations
that are in equilibrium with external species. Balance of momentum, together with boundary conditions,
provide the necessary and sufficient equations to solve for ~u at t = 0.

It is usual in plasticity to make use of the so-called three-fields formulation, in which the pressure is treated
as an independent variable not characterized constitutively, whereas Eq.(3.29a) only applies in its deviatioric
projection. Such a formulation develops from the Hu-Washizu functional, and the weak formulation of the
problem derives from its stationarity with respect to its three fields [306]. It is advantageous to build a
three-field like weak form for the governing equations (3.68), beause the higher order derivatives involving
the trace of the stress tensor can be dealt with numerically in a more effective way.

3.7 Conclusions

A continuum coupled model of transport-reaction-thermo-mechanics with trapping has been dealt with in
this chapter. It describes interstitial motion of guest species in a hosting material, with point-wise traps
of generic type, their kinetics of filling and emptying, influenced by the mechanical stress state and by the
temperature evolution.

The model is framed in a standard thermodynamic [22]. The energy and entropy contributions of the
mass flux in the balance equations are accounted for. The selection of the Helmholtz free energy and of the
dissipation potential leads to different constitutive characterizations, which apply well to several multi-physics
problems. In this regard, this manuscript can be compared to other papers devoted to specific problems. For
the important case of hydrogen flow in metal, for example, the present model extends the ones of Krom et
al. [287] - which emanates from the previous work of Sofronis and McMeeking [286] - by removing Oriani’s
assumption of infinitely fast kinetics, Anand and co-workers [307, 305] as well as Toribio and Kharin [289]
by extending van’t Hoff equation for mass action and introducing mechanical effects. Depending upon the
choice of constitutive specifications, the number of material parameters may be significant. In some cases
their experimental estimation may be found to be basically impossible. The role of sensitivity analysis and
uncertainty quantification, as well as the extension of the present effort to large strains, will be thus very
important and carefully considered in further applications of this model to bio- and chemo-mechanics. Two
case-studies are reported in order of complexity in Appendix 3.C showing the capability of the present model
to reproduce intricated phenomena in different scientific areas. The insertion, diffusion, and trapping of ionic
lithium in active particles within battery cells will be studied in Chapter 4.
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Appendix

3.A J2 flow theory with isotropic hardening

We assume that: i) the viscous stress is neglected and σe identifies with Cauchy’s stress σ; ii) only one
scalar internal variable ξ is used and

ψin(ξ) =
1

2
Kinξ2 , Kin ≥ 0 , (3.72a)

together with a von Mises yield criterion

ϕin(σ, χ) = || dev [σ ] || −
√

2

3
σY + χ = 0 , (3.72b)

and associated flow rule (3.58). The term σY in Eq.(3.72b) denotes the yield stress while χ is a hardening
parameter defined by Eq.(3.27). Kuhn-Tucker conditions

∂λ

∂t
≥ 0 , ϕin ≤ 0 ,

∂λ

∂t
ϕin = 0 . (3.72c)

complete the incremental form of the mechanical constitutive equations.

Owing to definitions (3.27), (3.48), and (3.49) the thermodynamic restriction (3.31a) is rephrased as
follows

σ :
∂εin

∂t
+ χ

∂ξ

∂t
−RT ln(1− θT )

∂cmaxT

∂ξ

∂ξ

∂t
≥ 0 . (3.73)

In view of normal flow rules (3.58), the first two terms of (3.73) can be written as

σ :
∂εin

∂t
+ χ

∂ξ

∂t

ϕin=0
= (||dev [σ ] ||+ χ)

∂λ

∂t

ϕin=0
=

√
2

3
σY

∂λ

∂t
≥ 0 . (3.74)

Restriction (3.73) is left with

− log(1− θT )
∂cmaxT

∂ξ

∂λ

∂t
≥ 0 . (3.75)

The term log (1− θT ) is always negative since the trap concentration cT cannot exceed the upper bound
set by the saturation limit cmaxT and thus 0 ≤ θT ≤ 1. In view of experimental observations [285] showing

that the number of trap sites increases with plastic deformation the positiveness of
∂cmaxT

∂ξ is guaranteed and

therefore thermodynamic consistency (3.73) prevails.

3.B Energy balance

Making use of the time derivative of the internal energy ( Eq. (3.13)) and of the thermodynamic prescriptions
(3.29), the energy balance (3.32) can be written as

−T d

dt

∂ψ

∂T
= σd :

∂εcte

∂t
+ σ :

∂εin

∂t
+ sq − div [ ~q ] + (uµL − µL)

∂cL
∂t

+
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(uµT − µT )
∂cT
∂t
− ~hL · ∇ [ uµL ] + (uµL − uµT ) w(3.1) . (3.76)

The time derivative of the Helmholtz free energy has been derived in Eq.(3.26). It holds accordingly:

−T d

dt

∂ψ

∂T
= −T ∂2ψ

∂T 2

∂T

∂t
− T ∂2ψ

∂T∂εcte
:
∂εcte

∂t
− T ∂2ψ

∂T∂cL

∂cL
∂t
− T ∂2ψ

∂T∂cT

∂cT
∂t
− T ∂2ψ

∂T∂ξ
:
∂ξ

∂t
. (3.77)

If the latter is inserted in (3.76), the coefficient of ∂cL
∂t turns out to be

(
T

∂2ψ

∂T∂cL
+ uµL − µL

)
,

and vanishes in view of identity (3.38a) and of the definition (3.17) of µL. The same comes out for the
coefficient of ∂cT

∂t . In summary, the generalized heat equation holds

−T ∂2ψ

∂T 2

∂T

∂t
− div [K| ∇ [T ] ] =sq + T

∂2ψ

∂T∂εcte
:
∂εcte

∂t
+ T

∂2ψ

∂T∂ξ
:
∂ξ

∂t
+ σd :

∂εcte

∂t
+

+ σ :
∂εin

∂t
− ~hL · ∇ [ uµL ] + (uµL − uµT ) w(3.1) , (3.78)

with uµL and uµT from Eq. (3.38b) and w(3.1) from Eq. (3.62).

3.C Case-studies

Two case studies here dealt with. The first concerns the diffusion of vacancies in an aluminum lattice, induced
by a stress field. The diffusion of vacancies is an isothermal process, which occurs without trapping and
is thus a simple benchmark for the model described in the previous sections, which has been implemented
within a user element (UEL) subroutine of Abaqus/Standard 2013. The outcomes have been compared with
Villani et al. [308].

The general framework of thermo-chemo-mechanics with trapping applies well to the phenomena of hy-
drogen embrittlement in metals, which is considered as a second case-study. The transport model developed
by Krom and co-workers [287, 288], which emanates from the work of Sofronis and McMeeking [286], fits per-
fectly the thermodynamic setting discussed in this paper. Both models investigate the effect of hydrostatic
stress and trapping on the hydrogen distribution in a plastically deforming specimen steel, assuming that
hydrogen atoms diffuse through the lattice, that trap sites are filled by lattice diffusion, and that additional
traps are generated by plastic deformation.

3.C.1 Redistribution of vacancies in metals

The redistribution of vacancies in a crystal lattice induced by the stress due to a far-field load is studied on
an ideally infinite aluminum plate with a central circular hole of radius R = 1 µm, see Fig. 3.C.1.

The number of vacancies in moles per unit volume is denoted with cL. Since the diffusion of vacancies
occurs without trapping, neither cT nor w(3.1) are defined. Furthermore, since the process takes place under
thermal equilibrium conditions, there is no evolution of temperature. Finally, to compare with Villani et
al. [308], energetic interactions have been discarded (i.e. χ| = 0). Material properties, K and G, have been
taken as independent of vacancy concentration8. Following the assumption of elastic perfectly plastic (EPP)
material response adopted by [308], no hardening is accounted for. Neither internally generated vacancies,

sL = 0, nor body forces have been considered, ~b = ~0.
The weak form can be transformed in a first order ordinary differential equation in time if discretization

is performed via space-time separated variables, with spatial dependent test and shape functions, whereas
nodal unknowns depend solely on time. A family of time-advancing methods based on the so-called θ-scheme
can be set up assuming that solution y(t) is given at time t, and that the algorithm is triggered by the initial

8To be compared against equations (12) and (33) in [308]. The chemical expansion coefficient ωL replaces coefficient ∆v
3

used in the reference, where ∆v was defined as the relaxed lattice volume after one mole of atoms is removed from the lattice.
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Figure 3.C.1: Geometry and mechanical boundary conditions: R is the radius of the
hole and 10R the length of the edges. A tessellation of 2400 elements is displayed, too.

conditions at time t = 0. The backward Euler scheme (θ = 1) has been selected. A Newton-Raphson
iterative algorithm has been implemented in an Abaqus User Element script to solve the non-linear problem.
The fields that govern the problem as well as the time are scaled to dimension of unity with scaling factors
emanating from constitutive equations.

At the initial time t = 0, the concentration of vacancies is taken to be uniform throughout the stress-free
body

cL(~x, 0) = c0L , (3.79)

with c0L = 10−2 mol m−3.

The vertical and horizontal displacements along the bottom and left edges have been constrained in
view of symmetry, while the top edge and the boundary of the hole have been regarded as traction-free, as
depicted in Fig. 3.C.1. A linearly increasing displacement has been enforced along the Dirichlet right edge
∂DV = ∂rV

ux(~x, t)|∂DV = 0.02R
t

tend
, ∀t ∈ [0, tend] . (3.80)

The concentration of vacancies has been prescribed along the top (∂tV ) and right (∂rV ) edges

cL(~x, t)|∂tV = cL(~x, t)|∂rV = c0L , ∀t ∈ [0, tend] . (3.81)

The flux of vacancies across the boundary of the hole (∂hV ) has been set to zero. The same applies to the
bottom (∂bV ) and left (∂lV ) edges because of symmetry

~hL(~x, t) · ~n = 0 ~x ∈ ∂hV ∪ ∂bV ∪ ∂lV , ∀t ∈ [0, tend] . (3.82)

Several discretizations have been used in the numerical analyses. A mesh of 2400 elements is depicted in
Fig. 3.C.1.

The hosting material, aluminum, is characterized by Young’s modulus E = 70 GPa, Poisson’s ratio
ν = 0.34 and yield stress σY = 200 MPa. A negative value ωL = −5× 10−7m3 mol−1 has been taken for the
chemical expansion coefficient, following [308]. From the same reference, it has been assumed a very high
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Figure 3.C.2: Vacancies concentration at time t = tend. a) Contour plot of the con-
centration distribution in an elastic material; b) steady state concentration distribution
for elastic perfectly plastic material behavior.

saturation limit for the vacancies cmaxL = 105 mol m−3 and that the process occurs at constant temperature
T = 700 K. The diffusivity is assumed D| L = 10−8 m2 s−1.

Fig. 3.C.2 plots the concentration of vacancies at t = tend, normalized by c0L. Fig. 3.C.2a depicts the
profile of concentration of vacancies in linear elastic materials. Red regions show an increase of concentration
whereas the blue ones an opposite tendency. This distribution is consistent with Fig. 6 of [308]. The
hydrostatic stress drives vacancy redistribution.

The role of the hydrostatic stress on vacancy distribution is analogous in EPP materials, yet differences
arise in Fig. 3.C.2b. The decrease of concentration along the left edge is less pronounced and the location
where the minimum is attained is shifted along the edge. The different concentration configurations follow
from different stress distribution, see also Fig. 3.C.4a.

Figure 3.C.3: Vacancies concentration. Contour plot of the steady state concentration
distribution for elastic perfectly plastic material behavior after unloading.

The effect of a loading-unloading cycle on the distribution of vacancies has been studied and plotted in
Fig. 3.C.3. The loading process has been taken from Eq. (3.80) and then reversed until condition ux|∂DV = 0
was restored. Plastic deformations persisted after unloading, see Fig. 3.C.3. A non-uniform distribution of
vacancies was induced by the corresponding stress field, in agreement with Fig. 9 of [308].
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Analytical expressions for the stress and concentration fields at steady state in coupled diffusion-elasticity
problems are available in [308]. They are depicted in Fig. 3.C.4, in terms of hydrostatic stress and concen-
tration distribution along the perimeter of the hole (where angles δ = 0◦ and δ = 90◦ correspond to the
bottom and left edges, respectively).
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Figure 3.C.4: Distribution of the hydrostatic and of the concentration of vacancies along
the hole of the plate. The latter has been normalized by the initial concentration c0L. The
analytical solution for the coupled elastic-transport problem is plot with a continuous
line and compared to the outcomes of the numerical analyses in Villani et al. (dots)
and of this contribution (triangles) at time t = tend. EPP identifies the elastic perfectly
plastic material behavior.

The finite element approximation for the trace of the hydrostatic stress in elastic materials is excellent:
it perfectly overlaps the analytical solution, see Fig. 3.C.4-a. For an elastic perfectly plastic (EPP) material
a reduction of the stress gradient is visible for δ > 40◦, due to the Mises stress being limited by the yield
stress σY . The numerical approximation obtained with the present formulation is in perfect agreement with
the numerical outcomes reported by Villani et al. [308], as depicted in Fig. 3.C.4-a.

Note that stresses do not seem to be influenced by vacancy concentrations, since the swelling contribution
is very small compared to the mechanical deformations.

Figure 3.C.4-b shows the concentration profiles, predicted either analytically (Elastic) and numerically
(Elastic and EPP), expressed in terms of the vacancy concentration normalized by c0L along the surface
of the hole. A good agreement has been found against the solution provided by [308]. Numerical results
show deviations of the vacancy concentration from the initial value within a 5% range. As a consequence,
cL � cmaxL , which could be consistent with an infinitely dilute solution formulation.

3.C.2 H-embrittlement in metals

The model of Krom and coworkers assumes thermal equilibrium and infinitely fast chemical kinetics for trap
filling. The latter hypothesis is usually attributed to Oriani [283], who postulated that within a continuum-
level material point the microstructure affects the local distribution of hydrogen, keeping the hydrogen in
trapping sites in thermodynamic equilibrium with lattice sites.

On the unsatisfactory basis that there is insufficient information either from experiments or detailed micro
mechanical models, it is accepted that chemical expansion coefficients ωL and ωT are equal. Furthermore,
since during hydrogen diffusion no significant phase changes seem to arise in steel, concentrations have little
influence on its elastic properties.

The concentration of trapped hydrogen cT is therefore related to the interstitial amount cL by formula
(3.67), that under the usually accepted assumption that θL � 1 reads

θT =

(
1 +

1

Keq θL

)−1

. (3.83)
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Equation (3.83) replaces the governing Eq.(3.68b).

Kumnick and Johnson [285] carried out permeation tests on pure iron with hydrogen gas charging and
found that the trap density in iron increases sharply with deformations at low deformation levels and increases
more gradually with further deformation. They also envisioned one single type of trap and estimated a trap
binding energy ∆Eτ = −60 kJ mol−1 independent of the deformation level within the range of 0− 80% cold
work and independent on temperature within the range of 288− 343K. A fit of the number of trap sites vs
equivalent plastic strain εp which is close to their experimental observations is

log[cmaxT NA] = 23.26− 2.33e−5.5εp , (3.84)

with NA denoting Avogadro’s number. After some manipulations, Eq.(3.68a) transforms into the following

[
1 +

cmaxT (εp)

cmaxL

Keq

(1 +KeqθL)2

]
∂cL
∂t

+ θT
∂cmaxT

∂εp
∂εp

∂t
− div [ D| L ∇ [ cL ]− 3ωL M(cL) ∇ [ p ] ] = 0 . (3.85)

A fit of data from [285] was adopted by Sofronis and McMeeking [286] to account for the dependence of

the number of traps on plastic deformation cmaxT (εp). The term θT
∂cmaxT

∂εp
∂εp

∂t was introduced later by Krom
et al. [287], who adopted (3.84) to follow the history variation of traps.

The diffusivity D| L = 1.27× 10−8 m2 s−1, the chemical expansion coefficient ωL = 6, 67× 10−7m3 mol−1,
the saturation limit for lattice population cmaxL = 8, 43 × 105mol m−3, as well as the standard Gibbs free
energy change for the reaction ∆Eτ = −60 kJ mol−1 have been chosen according to [286]. The equilibrium
constant was determined to be Keq = 2, 8× 1010 by making use of Eq.(3.50).

The Young’s modulus E = 207 GPa, Poisson’s ratio ν = 0, 3 and initial Yield stress σY 0 = 250 MPa
were taken. The power-law hardening relationship adopted in [286] for the host material has been piecewise
linearized, see Fig. 3.C.5.
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Figure 3.C.5: Plot of the yield stress dependence on equivalent plastic strain. Compar-
ison between the power law adopted in the literature [287, 286, 305] and the piecewise
linear approximation adopted in the present contribution.

3.C.2.1 Infinite plate with a circular hole

Consider the infinite plate with a circular hole analyzed in section 3.C.1 with a uniform concentration
c0L = 3.46 × 10−3mol m−3 of hydrogen in the lattice which is in equilibrium with a trap population c0T
according to (3.83). The initially undeformed body is subject to a far field displacement, able to induce
plastic deformations in the region nearby the hole, which generate new trap sites. The process leads to a
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redistribution of hydrogen both in the lattice and in the newly generated traps. The hole is insulated and
boundary condition (3.82) holds, i.e. the surface insertion/extraction of hydrogen between the body and the
environment is very slow compared to the speed of the redistribution of internal hydrogen due to diffusion
coupled to mechanical stresses. Thermal equilibrium is enforced at T = 300 K.

The imposed displacements along the right edge have been tuned according to (3.80), adopting

ux(~x, t)|∂DV = 0.02
t

tend
, ∀t ∈ [0, tend] , (3.86)

and values of tend ranging from 1 s to 100 s in order to investigate the effect of the strain rate. The surrounding
part of the body is set to be a reservoir of hydrogen: the concentration is thus prescribed9 according to (3.81).
Boundary conditions (3.82) have been applied on the remaining edges.

Figure 3.C.6-a shows the behavior of the hydrostatic stress and the concentration divided by the initial
value along the boundary of the hole (δ = 0◦ and δ = 90◦ respectively indicate bottom and left edges). It is
worth noticing that the distribution of lattice concentration is reversed with respect to section 3.C.1 which
is expected in view of the positiveness of ωL. The non-symmetric profile of concentration agrees with the
distribution of vacancies in aluminum when the elastic perfectly plastic material behavior was considered.

Figure 3.C.6-b shows the distribution of the equivalent plastic strain εp, trap concentration cT and
saturation limit cmaxT along the boundary of the hole. Concentrations have been normalized by c0L. The
number of traps increases by 50% on the upper part of the hole, where plastic deformations occur, in
agreement with Eq.(3.84). Traps sites are close to the saturation limit (θT ∼ 0, 99), in agreement with
constraint (3.83).

Numerical analyses have been carried out at different strain rates. No major differences in either cL or
cT distributions have been observed (Fig. 3.C.6b refers to the outcomes obtained for tend = 100 s), since the
deformation induced by the boundary conditions is not sufficiently large to induce a depletion of the lattice
sites in favor of traps.

3.C.2.2 Diffusion at a blunted crack tip

A specimen containing a small blunted crack tip is considered, as in Fig. 3.C.7. It is embedded in a
gaseous hydrogen environment at pressure pH2

= 1 atm and temperature T = 300K. The latter does
not change during the whole process. The specimen has an initial uniform interstitial hydrogen content
c0L = 3.46× 10−3 mol m−3. A plane strain, local yielding configuration is enforced - as in [286] - by choosing
a small crack tip radius, negligible if compared to the specimen characteristic length. In this way, the small
scale yielding conditions are satisfied, i.e. the plastic zone is confined in an annular area about the crack
tip whose size is negligible compared with any dimensions of the specimen. The boundary of the annulus is
subjected to a given displacement field

ux
(
R, δ

)
=

KI

2µ

√
R

2π
cos

(
δ

2

)[
2− 4ν + 2 sin2

(
δ

2

)]
, (3.90)

9Although concentrations are widely imposed as Dirichlet boundary conditions, the latter should rather enforce the equilib-
rium between H2 in the the environment and the lattice hydrogen [305] as an equivalence of chemical potentials

µL =
1

2
µH2

. (3.87)

According to [305], the chemical potential µH2
can be expressed in terms of the fugacity fH2

of the gaseous species and a
reference pressure p0

µH2
= µ0

H2
+RT ln

fH2

p0
. (3.88)

The standard chemical potential µ0
H2

conventionally vanishes at a pressure of 0.101MPa and at a temperature of 298K. Equation

(3.87) thus leads to a non linear boundary condition of type

RT ln
cL

cmaxL − cL
− 3ωL p =

µ0
H2

2
− µ0

L +RT ln

√
fH2

p0
~x ∈ ∂DV , (3.89)

.
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Figure 3.C.6: Two dimensional plots of a) hydrostatic stress and lattice concentration
and b) equivalent plastic strain together with trap concentration and trap saturation
limit along the hole of the plate. All the concentration distributions have been normal-
ized by the initial lattice concentration c0L. The plots refer to the last step of increment
of load, tend = 100 s

uy
(
R, δ

)
=

KI

2µ

√
R

2π
sin

(
δ

2

)[
4− 4ν − 2 cos2

(
δ

2

)]
,

which induces a tensile Mode-I loading [286]. In Eq.(3.90) KI is the stress intensity factor obtained from
the linear elastic crack problem at the specimen length-scale. KI is linearly increasing in time

KI(t) = K̃I
t

tend
t ∈ [0, tend] , (3.91)

where K̃I = 89, 2 MPa m−1/2 and tend = 130 s. Displacements along the y direction have been constrained
along the symmetry axis while the crack surface has been modeled as traction-free, see Fig. 3.C.7.

In order to compare our results with [287], the contributions of the pressure and of the saturation of cL
are neglected in boundary condition (3.89), while the fugacity equals the external pressure, exploiting the
ideal gas model. In this way the lattice concentration at the external boundary coincides with the initial
value inside the specimen. Its numerical value is computed from Sievert’s law:

cL = Ks
√
pH2 exp

(−∆H

RT

)
, (3.92)

where the experimentally measured constants Ks, ∆H hold [286]:

Ks = 1040
mol√

MPa m3
∆H = µ0

L = 28.6
KJ

mol
. (3.93)

The initially uniform concentration c0L = 3.46 × 10−3 mol m−3 is computed from (3.92) at T = 300 K and
pH2

= 1 atm. A uniform initial concentration c0T is established in view of equilibrium condition (3.83).
Lattice concentration cL = c0L has been prescribed along the outer radius and the crack surface to simulate
a process in which the reaction kinetics with the environment is fast compared to the diffusion rate of the
hydrogen Along the symmetry axis the hydrogen flux has been set to zero.

The mesh consists of approximately 1200 elements (about 60 and 20 along the radial and tangential
direction respectively) biased from the notch across the annulus.
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Figure 3.C.7: Schematic of the blunted crack geometry and boundary conditions. The
initial crack tip opening displacement is b0 and the external radius of the domain used
in numerical analyses is R. Following [287, 286, 305], the diameter of the notch is
b0 = 10µm and the outer radius is R = 15000 b0.
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Figure 3.C.8: (a) Pressure divided by the initial yield stress σY 0; (b) Equivalent plastic
strain in proximity of the crack tip along the symmetry axis (two different scales have
been used for the x-axis). The plots show a comparison between numerical analyses
carried out in this work and the results of Krom et al. [287] referring to the final step
of load application, t = 130 s.

Figure 3.C.8 plots the pressure distribution as well as the equivalent plastic strain εp in proximity of
the blunted crack tip along symmetry axis x. Coordinate x has been normalized to the nominal crack-tip
opening displacement b = 4.7 b0 following [287]. Plots refer to time t = 130 s.

A comparison with the results of Krom et al. [287] is made. An overestimation of the pressure and a shift
of the peak is shown. The maximum predicted equivalent plastic strain roughly doubles the one predicted by
Krom et al.. These differences are due to the hypothesis of small deformations, that severely influences the
outcomes around the crack tip. The value of the equivalent plastic strain in Fig. 3.C.6-b and Fig. 3.C.8-b
differ by two orders of magnitude, which shows the different impact on trap generation in the two examples.

Figure 3.C.9 shows the distribution of concentrations cL and cT along the symmetry axis at different
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Figure 3.C.9: Plot of lattice (a) and traps (b) concentration normalized to the initial
lattice concentration c0L in proximity of the crack tip for different instants of time during
the loading process (two different scale have been used for the x-axis).

times. An increase of trap concentration is limited to a narrow zone across the crack tip, in agreement with
the development of plasticity predicted by the small strain theory, Fig. 3.C.8-b. A depletion of concentration
in the lattice follows.

It can thus be concluded that the assumption of small strains should be questioned for the evaluation of
strains and stresses in the vicinity of the crack tip (although blunted), since it may induce significant errors.
This interesting conclusion strengthens the motivation for the extension of the present formulation to finite
strains, which is in progress and will be the subject of further publications.
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Chapter 4

On the response of active particles
accounting for Li trapping

4.1 Introduction

The topic of insertion reaction electrodes is a major feature of battery systems. Intercalation and de-
intercalation denote reactions involving insertion and extraction of guest species in host materials that have
layer-type crystal structures [277]. When the hosting material has such a crystal structure there is space
available for the presence of small ionic species as cations Li+. Lithium Cobalt Oxide (LiCoO2) is one of
these materials. It has been studying for almost 40 years [309], showing excellent properties which make it
widely used as cathode material for commercial applications.

Depending upon the lithium content, the mobile species in LiCoO2 can randomly occupy sites between the
layers (the so-called galleries) or may cause a modification of the host structure. In the former case, transient
concentration gradients take place in the gallery space, whereas during phase-transitions the insertion process
involves the motion of an interface that separates the Li-poor from the Li-rich regions. Thermodynamically,
the voltage remains constant during the phase transition.

In this chapter the chemo-mechanical framework developed in Chapter 3 will be applied in order to
investigate the response of a spherical particle accounting for trapping of Li ions. The material parameters
that govern the chemical response will be tailored to simulate the experimental evidence of LiCoO2 electrodes.
To this end the electro-chemo-mechanical behavior of LiCoO2 upon charge and discharge is reviewed in
Section 4.2. Subsequently, in Section 4.3, the impact of Li trapping is investigated at thermodynamic level
focusing on lithium free energy density. Governing equations are recalled from Chapter 3, in Section 4.4, for
isothermal conditions, and then specialized in Section 4.5 for a spherical particle. The transient response of
the particle upon both lithiation and delithiation is investigated through numerical examples in Section 4.6.

4.2 A review of experimental evidence and their modeling

LiCoO2 provides good capacity, high energy density, good power rates, and excellent cycle life [309]. Such
a favorable electrochemical behavior is associated with a sequence of phase transitions, which progressively
change the crystal structure. Pristine lithium cobalt oxide possesses a layered structure, as reported in Figure
4.1a. The hexagonal unit cell consists of oxygen planes staked in an ABCABC sequence, with cobalt and
lithium ions occupying alternative layers of octahedral sites. During battery charging, an external voltage
forces the extraction of Li ions, perturbing the original crystal structure.

Reimers and Dahn [310] proposed a phase diagram for LiCoO2 based on their experimental observation
(Fig. 4.1b). It depicts the possibility of phase transitions as a function of temperature and lithium content
(x in LixCoO2). The phase change regions have been identified from the measured cell voltage profile for the
first charge and discharge (Fig. 4.1c). The lattice parameters of the unit cell were also measured, pointing
out the deformable behavior associated with Li insertion/removal.
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(a) (b) (c)

Figure 4.1: (a) Schematic diagram of the LiCoO2 unit cell; (b) phase diagram and
lattice parameters evolution as a function of lithium concentration x; (c) voltage profile
for first charge and discharge as a function of lithium content x. Figures have been
reprinted from [310].

A characteristic feature of LiCoO2 electrodes is the voltage plateau observed between x = 0.75 and
x = 0.93. Plateaus are distinctive of first-order phase transitions [277], where two different phases (as for I
and II in Fig. 4.1b) coexist in the host. Those phases in LiCoO2 consist of hexagonal unit cells, differing
for lithium content and lattice parameters. The unit cell volume of Li rich phase I seems to be insensitive
to the lithium content, while poor Li phase II contracts when Li increases.

Further lithium removal from Li0.75CoO2 leads to an order/disorder phase transition at x ∼ 0.5, which
also affects the geometry of the unit cell. When enough lithium is removed, the unit cell may undergo an
ordering transition toward a monoclinic crystal structure. Such a transition is temperature dependent, as
pointed out in the phase diagram in Fig. 4.1b, and involves considerable lattice deformations.

The extraction process may continue until the end member CoO2, by application of greater voltages,
as done in Amatucci et al. [311]. However, for x < 0.5 the hosting material highly degrades, affecting the
reversibility of the intercalation process. The available Lithium for commercial application is thus considered
to be about 50% of the pristine LiCoO2, i.e. 0.5 ≤ x ≤ 1.0.

The phase transformations taking place in lithium cobalt oxide have been investigated theoretically from
first principles calculations [312]. This approach, in addition to predict the phase diagram, allow identifying
the physical origin of the phase evolution. As discussed in [313], three mechanisms may lead to phase
transition in metal oxides: configurational, structural, and electronic transitions.

Configurational transitions are driven by vacancies creation or annihilation. They involve ordering and
disordering transitions, which modify the lithium-vacancies configuration. When the lithiation process in-
volves also rearrangements of the host atoms (i.e. Co and O) we refer to structural transitions. Electronic
transitions take place when change in the host are caused by changes in electronic properties driven by
lithium content or temperature variations.

First principles calculations [312] confirmed the presence of order/disorder transition for x ∼ 0.5, as
measured experimentally. They assessed that the voltage plateau from x = 0.75 to x = 0.93 is a first-order
electronic transition, since the host undergoes metal-insulator transition in addition to the structural change
measured by Reimers and Dahn. It turns out that LiCoO2 is metallic for x < 0.75 and semiconductor for
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x > 0.93. The difference in lithium content also induces lattice mismatches. The phase-segregating behavior
of LiCoO2 has thus great impact on its electrochemical, thermal, and mechanical properties.

Due to the layered structure of the unit cell, Lithium diffuses through 2D pathways, which are dependent
on crystal orientation. For this reason, accurate measurements have been carried out on thin films (rather
than polycrystalline) LiCoO2 electrodes [314, 315], in terms of diffusion coefficient D| Li. During phase change,
the overall lithium diffusion in influenced by the phase boundary motion, which in turn is affected by the
diffusion in each coexisting phase. Therefore application of Fick’s law for the total lithium is inadequate in
the phase change regime.

Mechanical properties of LiCoO2 have been measured and predicted with molecular dynamics simulations
as well [316, 317]. Elastic parameters, e.g. bulk (K) and shear (G) moduli, reflect the anisotropic behavior
of lithium cobalt oxide crystals as well as their dependence on lithium content. In situ measurement of
mechanical integrity of the electrode particle showed a degradation mechanism that is compatible with
plastic deformations of LiCoO2 [318].

As reviewed in [319], several intercalation models for phase-segregating electrodes have been recently
proposed at the continuum scale. They aim at capturing the evolution of phase-interface that separates
zones at different lithium content. Widespread approaches in this regard are the so called sharp-interface
and phase-fields models.

The former approach splits the electrode particles in two distinct regions, with prescribed Lithium con-
centration jump at the interface, resembling two coexisting phases separated by a zero-thickness interface.
The phase-boundary motion is controlled by the Lithium transport on each phase, as well as by the concen-
tration gap at the interface. This model has been applied to spherical electrode particles, and also referred
as core-shell models, often in conjunction with the porous electrode theory of Newman [241]. Mechanical
effects can be incorporated in sharp-interface models, thus capturing the localization of severe stress states
near the phase-boundary [32, 320].

The intercalation process in LiCoO2 in spherical particles has been simulated with sharp-interface models
accounting for the first-order phase transition from x = 0.75 and x = 0.93 [321, 243]. The insertion/removal
process has been divided in three stages, to mimic the observed phase-diagram: two with a homogeneous
host phase, I or II, and a third characterized by coexisting Li rich and poor phases.

Phase-fields models, usually stemming from Cahn-Hilliard theory, smears the phase boundary in a narrow
region of finite thickness, thus avoiding localized discontinuities. The dynamics of phase-segregation is ruled
by the free energy of the system. Differently from the Fickian description of diffusion, the Helmholtz free
energy includes an interface energy, related to Li concentration gradients. Phase-segregation arises as a
consequence of the thermodynamic evolution of the system. Such an approach has been used to simulate
the spinodal decomposition in LiFePO4 [250, 252] but are potentially applicable for intercalation in LiCoO2

electrodes.
Alternative methods to recover lithium concentration profiles distinctive of phase-segregation have been

proposed. In [300] the sequence of phase-segregations in graphite is modeled starting from a non-convex free
energy profile, reflecting multiple equilibrium configurations, without resorting to interface energies. The
driving force for lithium transport results to be proportional to hydrostatic stress gradients during phase
transition, while in the single phases the lithium mass flux depends on concentration gradients as well. Li
transport differs between single to multi-phases regimes, simulating the onset of sharper concentration fronts
during phase-change.

A sharp-interface was even reproduced either creating a series of step-like concentration profiles [254] or
by choosing concentration dependent parameters [255]. In [256, 257] the lithium within active particles is
separated in mobile and alloyed by a kinetic process, which ultimately permits to recover a sharp interface.
The present work follows this path of reasoning.

4.3 Free energy at chemical equilibrium

Following the theoretical framework developed in Chapter 3, lithium ions may reside in two distinct sites of
the hosting material, namely interstitial and trapping sites. The interstitial sites are represented by specific
sites among the host atoms where intercalated Li ions can easily move through. In addition, Li ions may
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immobilize in specific trapping sites of the hosting structure, so that part of the intercalated lithium ceases to
diffuse through the solid. The lithium diffusing interstitially will be denoted hereafter with LiL and its molar
concentration with cL. On the other hand, trapped lithium will be denoted with LiT and its concentration
with cT . The trapping process of lithium is then described by the following chemical reaction

LiL
kT
�
kL

LiT , (4.1)

which portrays the conversion of mobile to trapped species and vice versa by the rate of the reaction (4.1),
denoted with w(1).

The energetic difference between Li ions occupying the interstitial and trapping sites, i.e. µ0
L − µ0

T , is
proportional to the constant of chemical equilibrium Keq through the formula

µ0
L − µ0

T = RT ln [Keq] . (4.2)

As derived in Chapter 3, the affinity A(4.1) = µT − µL (µ denotes the chemical potential) is the driving
force for the chemical reaction (4.1). Positive values of A(4.1) promote trapping, whereas negative values
induce lithium to escape traps. The condition A(4.1) = 0 expresses chemical equilibrium, attained when
the interstitial and trapped lithium are in such a proportion to infer a null reaction rate in the mass action
equation. The latter condition is here adopted in order to assess the impact of the reaction (4.1) on lithium
free energy.

Imposing a vanishing affinity, the trapped concentration can be related to the interstitial one by the
following identity

θT =

{
1 +

1− θL
Keq θL

α

}−1

, (4.3)

which arises from Eq. (3.63) under the assumptions of no energetic interactions, i.e. χ| = 0, uniform
temperature T = T0, and

α = exp

[
∂ψel
∂cT
− ∂ψel

∂cL

]eq

RT
exp

[
∂ψin
∂cT
− ∂ψin

∂cL

]eq

RT
. (4.4)

This simplification allows investigating the evolution of the free energy, specifically its convexity, as a function
of the molar fraction of total Lithium ions

θLi =
cL + cT
cmaxLi

=
θL + γ θT

1 + γ
, (4.5)

as the phase diagram in Fig. 4.1b advocates. In Eq. (4.5), γ = cmaxT /cmaxL and cmaxLi = cmaxL + cmaxT is the
maximum storage capacity for the total lithium, at a point ~x ∈ B and time t.

Under chemical equilibrium at all times, the diffusive part of the free energy, Eq. (3.49), can be rewritten
in a dimensionless form as a function of θLi, making use of identities (4.3) and (4.5)

ψ̂diff = µ̂0
L ĉ

max
L (θLi) θL(θLi) + µ̂0

T ĉ
max
T (θLi) θT (θLi) + ψ̂η(θLi) , (4.6a)

ψ̂η(θLi) = ĉmaxL (θLi)

{
θL(θLi) ln

[
θL(θLi)

]
+ (1− θL(θLi)) ln

[
1− θL(θLi)

]}
+

+ ĉmaxT (θLi)

{
θT (θLi) ln

[
θT (θLi)

]
+ (1− θT (θLi)) ln

[
1− θT (θLi)

]}
, (4.6b)

being ψ̂η the entropic part of the diffusive free energy [322] and

µ̂0
β =

µ0
β

RT
, ĉmaxβ =

cmaxβ

cmaxLi

. (4.6c)
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Eq. (4.6) is parametrized by the equilibrium constant Keq, the parameter α, and constants γ and µ̂0
T . Note

that in view of the formula (4.2) µ̂0
L and µ̂0

T are not independent.

A study of the influence of α and Keq on ψ̂η(θLi) is shown in Fig. 4.1, where coefficient γ is taken as

unit. Under this assumption, convexity of ψ̂η(θLi) is lost when the ratio Keq/α > 21.9071.

(a) (b)

Figure 4.1: Plot of the non-dimensional entropic free energy for γ = 1. a) for different
values of α, assuming Keq = 1: the free energy loses convexity at α = 21.9071; b) for
different values of Keq, assuming α = 0.1: the free energy loses convexity at Keq =
2.19071.

To further investigate the behavior of ψ̂η, the interstitial and trapping contributions have been split as

ψ̂η = ψ̂Lη + ψ̂Tη ,

with obvious meaning of ψ̂Lη , ψ̂Tη from Eq. (4.6b). Each contribution ψ̂βη , β = L, T , is convex and exhibits

a single minimum. Moreover ψ̂βη tends to zero either for θβ → 0 and θβ → 1. The role played by Keq is
evident in Fig. 4.2 where the individual contributions are plotted separately. It turns out that, for Keq = 103

and γ = 1, ψ̂Lη is nearly zero until θLi = 0.5 while it evolves with a characteristic convex shape afterwards.

On the other hand ψ̂Tη evolves symmetrically to ψ̂Lη with respect to θLi = 0.5. This means that Li ions fill
trap sites at first while interstitial sites start to fill when traps are almost saturated. The opposite happens
for Keq = 10−3 because the interstitial sites are in turn energetically favored. For γ 6= 1 the individual
contributions ψ̂βη are no longer symmetric as showed in Fig. 4.3. In particular γ determines the value of θLi

where ψ̂Lη and ψ̂Tη intersect each others.

To summarize, for |Keq| � 1 the individual contributions of the entropic free energy ψ̂βη evolve separately
when plotted against θLi. Therefore the intercalation of Li ions can ideally divided in two stages: one
dominated by Li insertion in interstitial sites and the other dominated by Li insertion in trapped sites. The
coordinate θLi of the transition point between these two stages is tuned by γ independently from Keq.

The interesting non-convex feature of the entropic free energy (see Fig. 4.1) may be wiped out in ψ̂diff
by the contribution

µ̂0
L ĉ

max
L (θLi) θL(θLi) + µ̂0

T ĉ
max
T (θLi) θT (θLi) (4.7)

since the transformation (4.3) is non-linear. This does not happen, as shown in Fig. 4.4a. The influence
of Keq and of the linear terms (4.7) is quite evident, though: the first critical point moves toward zero
concentration of total lithium, and the higher Keq the less pronounced the change in the convexity for θLi

becomes.
For some values of the parameters, the existence of two minimum energy states disappears, at least in

the range 0 ≤ θLi ≤ 1. As clearly seen in Fig. 4.4b, this happens for α = 1. Such a value of α arises when
the chemical expansion coefficients of trapped and free species are equal and ψin = 0 (see Eq. (4.4)). These
assumptions are generally taken, motivated but not justified by the lack of experimental quantifications
[305, 252].
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(a) (b)

Figure 4.2: Influence of Keq on the separation between ψ̂Lη and ψ̂Tη for α = 1 and
γ = 1.

(a) (b)

Figure 4.3: Plot of ψ̂Lη and ψ̂Tη for Keq = 10−3 and γ 6= 1. For γ = 1/3 the two curves
intersect at θLi = 0.75 while for γ = 3 the intersection point is located at θLi = 0.25.

(a) (b)

Figure 4.4: Plot of the non-dimensional diffusive free energy ψ̂diff for different values
of Keq for γ = 1 and µ̂0

T = 0. In (a) parameter α = 103 while α = 1 in (b).
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4.4 Governing equations for isothermal processes

The general set of governing equations developed in Chapter 3 is here taken in a simplified version in order to
evaluate the chemo-mechanical response of a single electrode particle. Exploiting the conditions of thermal
equilibrium, i.e. T = T0 for all ~x ∈ B, governing equations (3.68) reduce to

∂cL
∂t

+ div
[
~hL

]
+ w(1) = 0 , (4.8a)

∂cL
∂t
− w(1) = 0 , (4.8b)

div [σ ] = ~0 , (4.8c)

for ~x ∈ B and time t ∈ ]0 , tf ] .

The inelastic behavior of the hosting material is modeled without recurring to the internal variables ξ
and by prescribing ψin = 0. Moreover we assume that the stress tensor does not include a viscous part
so that σ = σe holds hereafter. The evolution of the inelastic deformations is then modeled through the
following visco-plastic law of Perzyna type

∂εin

∂t
=

dev [σ ]

|| dev [σ ] || λ , λ =
ϕ H(ϕ)

g(θT )
. (4.9a)

In equation (4.9a) ϕ = ||dev [σ ] || −
√

2/3σY is the Mises yield function without hardening1; H is the
Heaviside step function; g(θT ) is the viscosity, assumed as a given function of the concentration of trapped
species. A simple choice for g(θT ) is the affine function

g(θT ) = g0 + g1 θT , (4.9b)

with g0, g1 given positive parameters. Flow-rule (4.9a) is clearly associated, and satisfies Clausius-Planck
inequality (3.28) in view of plastic incompressibility.

Eq. (4.9a) establishes that the rate of inelastic deformation is proportional to the ratio ϕ/g(θT ) when
the stress state is such that ϕ ≥ 1. Accordingly either for g(θT ) → 0 and ∂ε/∂t → 0 the rate-independent
plasticity is recovered. Moreover in the limit g(θT )→∞ the material behaves like an elastic media regardless
the value assumed by the yield function.

From definition (4.9a) εin is trace-less and the stress-strain relationship rewrites from (3.55) as

σ = 2Gdev
[
ε− εin

]
+K tr [ ε− εs ] 1 , (4.10)

with

ε =
1

2

(
∇ [ ~u ] +∇ [ ~u ]

T
)
, (4.11)

and

εs = ωL
(
cL − c0L

)
1+ ωT

(
cT − c0T

)
1 . (4.12)

In the assumption of constant material parameters G and K, along with χ| = 0, chemical potentials
derived in Chapter 3 Eq. (3.59) reduce to

1It is questionable that the concentration of trapped lithium does not influence the yield strength of the hosting material.
To the best of our knowledge, there are no experimental data in this regard.
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µβ = µ0
β +RT ln

[
θβ

1− θβ

]
− ωβ tr [σ ] , β = L, T . (4.13)

Finally the constitutive relations for lithium flux and rate of chemical reaction yield

~hL = −D| L∇ [ cL ] +
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
∇ [ tr [σ ] ] , (4.14)

w(1) = k̃T
cL

cmaxL − cL
− k̃L

cT
cmaxT − cT

, (4.15)

with

k̃T = kT exp
[
− ωL
RT

tr [σ ]
]
, k̃L = kL exp

[
− ωT
RT

tr [σ ]
]
. (4.16)

4.5 Lithiation and delithiation of a LiCoO2 spherical particle

In this section we particularize the set of governing equations (4.8) in order to simulate the lithium insertion
and extraction processes of a spherical particle of domain Ω.

Boundary conditions for Eq. (4.8a) are modeled following [141], without recurring to the Butler-Volmer
equations. For Li removal simulations, the particle is initially filled with lithium at uniform concentration

cLi(~x, t = 0) = c
0(del)
Li . Then lithium is extracted with an uniform and constant flux ~hL · ~n = hL at particle

boundary ∂Ω until the concentration cLi on the external surface equals the limit c
F (del)
Li . Then the extraction

process proceeds holding fixed cLi at ∂Ω. The lithiation process is modeled in a similar way: an inward and
constant flux hL is imposed at the sphere boundary. The concentration of lithium increased from an initial

uniform distribution cLi(~x, t = 0) = c
0(lit)
Li . Once the lithium concentration reaches the limit c

F (lit)
Li , this value

is held fixed on the external boundary.
For the mechanical boundary conditions, the particle allows free expansion and contraction at its bound-

ary. Rigid motions are restrained by imposing a null displacement at the center of the particle.

The selected particle geometry and boundary conditions allow taking advantage of conditions of spherical
symmetry. Therefore governing equations (4.8) are restated in a spherical coordinate system {r, θ, φ} with
unit vectors {~er, ~eθ, ~eφ} centered at the centroid of the sphere. In this way the functional dependence of
interstitial and trapped concentrations reduces to

cL = cL (r, t) , cT = cT (r, t) ,

and the displacement vector reads

~u = u (r, t)~er ⊗ ~er . (4.17)

From formula (4.17) the total strain tensor writes

ε = εr ~er ⊗ ~er + εθ (~eθ ⊗ ~eθ + ~eφ ⊗ ~eφ) ,

with components εr and εθ defined as

εr =
∂u

∂r
, εθ =

u

r
.

The inelastic strain tensor assumes the form

εin = εin

[
~er ⊗ ~er −

1

2
(~eθ ⊗ ~eθ + ~eφ ⊗ ~eφ)

]
,

hence the flow rule (4.9a) can be represented only in terms of the scalar εin. Easy algebra calculations lead
to rephrase formula (4.9a) with
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∂εin
∂t

=

√
2

3
λ sign [στ ] , λ =

ϕ H(ϕ)

g(θT )
, ϕ =

√
2

3
(|στ | − σY ) , (4.18)

having defined the stress tensor and its deviatoric part as follow

σ = σr ~er ⊗ ~er + σθ (~eθ ⊗ ~eθ + ~eφ ⊗ ~eφ) ,

dev [σ ] =
2

3
στ

[
~er ⊗ ~er −

1

2
(~eθ ⊗ ~eθ + ~eφ ⊗ ~eφ)

]
,

στ = σr − σθ .

The constitutive equation (4.10) is then given in terms of scalar equations

σm = 3K (εm − 3 εsw) , (4.20a)

στ = 2G

(
ετ −

3

2
εin

)
, (4.20b)

where

σm = σr + 2σθ ,

εm = εr + 2 εθ , ετ = εr − εθ ,
εsw = ωL

(
cL − c0L

)
+ ωT

(
cT − c0T

)
. (4.21a)

The flux vector is now oriented only in radial direction

~hL = hr ~er ,

and it is constitutively defined as

hr = −D| L
∂cL
∂r

+
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
∂σm
∂r

. (4.22)

The rate of chemical reaction w(1) is still expressed by means of formulae (4.15) - (4.16).

Finally, governing equations (4.8) can be rewritten as follow

∂cL
∂t

+
∂hr
∂r

+ 2
hr
r

+ w(1) = 0 , (4.23a)

∂cT
∂t
− w(1) = 0 , (4.23b)

∂σr
∂r

+ 2
σr − σθ

r
= 0 , (4.23c)

constituting a system of three scalar equations with unknowns cL, cT , u for (r, t) ∈ [0, r0]× ]0, tf ].

For the problem at hand Dirichlet boundary conditions are imposed in terms of radial displacement u at
the particle center as follow

u(r = 0, t) = 0 ,

to prevent rigid body motions.
Neumann boundary conditions are prescribed both on particle surface and at particle center

77



hr(r, t) = h̄L r = r0 , (4.24a)

σr(r, t) = 0 r = r0 , (4.24b)

hr(r, t) = 0 r = 0 . (4.24c)

Note that the constraint (4.24c) arises in view of the condition of spherical symmetry.

Initial conditions are imposed for concentration of interstitial species cL(r, t = 0) as well as of trapped
species cT (r, t = 0). To comply with equilibrium thermodynamics these conditions are uniform in space.
Balance of momentum, together with boundary conditions, provide the necessary and sufficient equations to
define u at t = 0.

4.5.1 Material parameters and assumptions

Measurable material parameters of commercial LiCoO2 cathode particles are taken from the literature and
listed in Table 5.1. The pristine particle is here assumed of radius r0 = 10µm.

Denoting with x the amount of Lithium ions of a LixCoO2 electrode, in battery operations x ranges
approximately between x = 0.5 and x = 1.0, as discussed in Section 4.2. Accordingly, the initial (0) and
limit (F) concentrations for both lithiation (lit) and delithiation (del) processes are defined as

c
0 (lit)
Li = c

F (del)
Li = cmaxLi /2 , (4.25a)

c
F (lit)
Li = c

0 (del)
Li = cmaxLi , (4.25b)

in order to simulate the particle response upon fully battery charge/discharge2.
In absence of further experiments, ωL and ωT have been taken identical and computed through Eq.

(4.12), assuming the fully lithiated state as a reference state, i.e. by choosing c0L + c0T = cmaxLi . As reported
in [107] the particle exhibits a volumetric expansion of 1.9% upon Li removal from x = 1.0 to x = 0.5.
Accordingly the coefficients of chemical expansions are negative and result

ωL = ωT =
1.9%

3 (cmaxLi /2− cmaxLi )
. (4.26)

Chemical equilibrium is assumed at the beginning of both insertion and extraction. Thus the initial

concentrations of interstitial and trapped species cL(r, t = 0) and cT (r, t = 0) can be computed from c
0 (lit)
Li

or c
0 (del)
Li using Eqs. (4.3)-(4.5).
The imposed Li flux hL corresponds to a charge/discharge current density iext = 0.534 A/m2, equivalent

to a C rate of 0.5 according to formula [300]

C =
3600 iextA

V F (cmaxLi − cmaxLi /2)
, (4.27)

where A and V are respectively volume and surface area of the particle, F is Faraday’s constant in Coulombs
per moles. Charge and discharge operations have been simulated for a total time of 3 hours at constant
temperature T = 300 K.

As discussed in section 4.3, the thermodynamics of the trapping process is influenced by Keq and γ.
Numerical simulations for insertion and extraction will highlight the role of Keq on the evolution of lithium
concentration profiles. The ratio between maximum trapped and interstitial sites is assumed to be constant
and equal to γ = 1/3. With this choice ψ̂Lη and ψ̂Tη intersects at θLi = 0.75, as showed in Fig. 4.3a.

Trapping is modeled by the finite speed chemical kinetics equation (4.15). A parametric study of the
evolution of the system at different values of the kinetic constants kL and kT is performed in the numerical
examples that follow, in order to investigate the role played by the rate of chemical reaction.

2For numerical convenience the equation (4.25b) has been implemented as c
F (lit)
Li = c

0 (del)
Li = 0.99 cmaxLi
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Material Parameters Ref.

Maximum Lithium concentration cmaxLi 2.390× 104 mol/m3 [152]

Lithium diffusivity D| L 5.387× 10−15 m2/s [152]

Coefficients of chemical expansion ωL = ωT −5.300× 10−7 m3/mol [107]

Young modulus E 370 GPa [152]

Poisson ratio ν 0.2 - [152]

Yield stress σY 1.0 GPa [318]

Table 4.1: Material parameters taken from the literature.

The inelastic, rate-sensitive mechanical response - see Eq. (4.9) - allows studying the mechanical response
as a function of the immobilized specie concentration. For the Perzyna-like model (4.9a) we define a lithium
dependent relaxation time τ as follows

τ =
g0 + g1 θT

E
, (4.28)

with E denoting the Young’s modulus as customary. Parameter g1 modulates the lithium concentration
dependence of τ which attains two extreme values, τ0 and τ1, respectively from θT = 0 and θT = 1.
Mechanical degradation, compatible with plastic flow, has been experimentally observed [318]. A different
mechanical response between phase I and II is expected, too, but evidence are not provided for the plastic
regime. Nonetheless, to show the capability of the model we arbitrarily assume that trapped Li increases
the viscosity of the host by choosing g0 and g1 such that τ0 = 1 s and τ1 = 60 s.

4.6 Numerical simulations

The system of equations (4.23) has been solved numerically through the Finite Element Method. To this end
the governing equations have been written in integral form and then discretized in space with 400 elements
along the radius r, while the time evolution is resolved with a time increment ∆t = 3.6 s. The resulting
nonlinear algebraic problem has been solved with a Newton-Raphson scheme. This numerical procedure has
been implemented in a MATLAB package script purposely written. The detailed procedure of the numerical
approximation and resolution is postponed in Appendix 4.A.

4.6.1 Lithium extraction

The role of Keq - Figures 4.1a and 4.2a compare the evolution of lithium profile for different values of Keq at
given kT . The smaller the constant of chemical equilibrium, the higher the concentration gradients, clearly
visible at high content of Lithium ions. In fact for Keq � 1 and γ = 1/3 the un-trapping reaction dominates
the initial phase of the extraction process as seen in Sec. 4.3. As the process moves forward and traps empty,
the influence of un-trapping reaction on lithium transport becomes secondary.

For Keq = 0.01 the un-trapping reaction dominates for lithium concentration grater than cLi/c
max
Li ∼ 0.75.

For lower values of cLi, traps are empty and lithium transport is not affect by the un-trapping process. This
behavior resembles a phase transition of the hosting material. In fact Li distribution highlights two regions:
the particle core where cLi/c

max
Li ∼ 1 and the particle shell where cLi/c

max
Li ≤ 0.75 separated by a sort of

diffuse-interface of finite thickness.
The amplitude of concentration range in which the chemical kinetics timescale dominates is governed by

parameter γ. In fact the availability of trap sites determines the amount of immobilized lithium at t = 0.
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(a) (b)

Figure 4.1: Li extraction - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 0.01 and
kT = 1 mol/(m2 s).

The spatial profile of w(1) for Keq = 0.01 (Fig. 4.1b) shows that the reaction is constrained is a narrow
zone (the smaller Keq, the smaller the size of the reaction front, as shown comparing Fig. 4.2b with Fig.
4.1b). The latter travels from the external surface to the particle center, essentially with a constant velocity.
Such a reaction front may identify a diffusive phase boundary, tracking the growth/consumption of two phases
in the particle. The case Keq � 1 is not considered here since the chemical reaction cause a negligible impact
on the concentration profiles in the range 0.5 ≤ θLi ≤ 1 for γ = 1/3.

(a) (b)

Figure 4.2: Li extraction - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 1 and
kT = 1 mol/(m2 s).

The role of the reaction velocity - The influence of the rate of chemical reaction is investigated for
different values of kT at given Keq (see Figs. 4.1 and 4.3). Higher values of the chemical constants imply
faster chemical reaction, i.e. trapped and interstitial species attain their chemical equilibrium configuration
quicker. Since the concentration profiles do not show significant changes for kT > 1 mol/(m2 s), such a value
resembles the infinitely fast kinetics condition, when the trapping reaction has its maximum impact on the
concentration profiles.

Small values of kT promote slow chemical kinetics, which reflect in small concentration gradients (Fig.
4.3a). In the limit case of infinitely slow kinetics (kT → 0) the trapped species cannot be extracted in the
timescale of the process so that the chemical reaction has not effect at all.

The rate of chemical reaction (Figs. 4.1b and 4.3b) is influenced both in its magnitude and distribution:
faster kinetics induce higher values of w(1) and concentrate the chemical reaction in narrower regions.

In conclusion, the numerical results for Keq � 1 along with fast chemical kinetics, reproduce Li con-
centration profiles expected for phase-segregating electrodes. Indeed, the concentration profiles show steep
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(a) (b)

Figure 4.3: Li extraction - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 0.01 and
kT = 0.01 mol/(m2 s).

gradients which separate regions with high (inner core) and low (particle shell) lithium content. This two
regions may identify two coexisting phases separated by a diffusive interface where the trapping chemical
reaction is localized.

4.6.2 Lithium insertion

The role of Keq - Lithium concentration profiles show that Keq influences the particle state of charge during
the insertion process (see Figs. 4.4a and 4.5a ). As the constant of chemical equilibrium becomes smaller the
particle is capable to host less amount of lithium ions, especially in the particle core. The trapping reaction
is not energetically favorite for Keq � 1, therefore lithium ions accumulate at high concentrations in the
interstitial sites before getting trapped. The process of trapping advances slowly toward the particle center,
because the trapping reaction is the limiting process. The insertion is slower than the extraction process,
whereby the un-trapping reaction was favorite by small values of Keq.

(a) (b)

Figure 4.4: Li insertion - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 0.01 and
kT = 1 mol/(m2 s).

As in the case of extraction, smaller values of chemical equilibrium give rise to more pronounced con-
centration gradients in space. Nevertheless, during the trapping process, the distribution of lithium ions
does not resemble the core/shell distribution typical of a phase transition. In fact the steep concentration
gradients which develop close to the external surface do not translate toward the particle center, rather they
progressively relax as the lithium insertion advances.
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Similar remarks apply to the chemical reaction. The trapping at low Keq is in general quicker near the
particle surface then at the interior (Fig. 4.4b). Differently from extraction, even for small values of Keq

the chemical reaction is not restricted into a narrow zone, except when lithium is initially trapped on the
surface.

(a) (b)

Figure 4.5: Li insertion - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 1 and
kT = 1 mol/(m2 s).

The role of the reaction velocity - Numerical analyses that have not been reported here for the sake of
brevity show that the case kT = 1 mol/(m2 s) resembles the infinitely fast kinetics, as for the extraction
process. Figures 4.4 and 4.6 compare different chemical kinetics for the same constant of chemical equilib-
rium. It shows, by comparison with Figure 4.1a, that the particle fills with lithium slower than it empties,
for Keq � 1, even though the chemical kinetics is not a limiting factor for the process. For slow chemical
kinetics (kT = 0.01) the trapping reaction is further delayed and the concentration distributions shows higher
gradients in space then for fast kinetics on the external surface.

(a) (b)

Figure 4.6: Li insertion - Lithium concentration (a) and rate of chemical reaction
(b) profiles as function of radial coordinate at intervals of 600 s for Keq = 0.01 and
kT = 0.01 mol/(m2 s).

4.7 Conclusions

In this chapter the general framework developed in Chapter 3 has been applied in order to evaluate the
response of a spherical LiCoO2 particle upon lithiation and delithiation. This electrode material shows a
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strong first-order phase transition characterized by the coexistence of Li-rich and Li-poor phases separated
by a moving interface.

The present model assumes an electrode structure made of two distinct host sites for lithium intercalation,
i.e. interstitial and trap sites, in which Li ions are mobile and immobile respectively. Lithium immobilization,
also called trapping, is modeled as a chemical reaction.

At thermodynamic level, a chemical reaction may induce a non-convex free energy with multiple equilib-
rium configurations, as expected in phase segregating materials. However this feature is lost if the conditions
of chemical equilibrium does not depends on thermo-mechanical effects, e.g. for ωL = ωT , ψin = 0, and
uniform constant temperature. In these conditions the equilibrium between interstitial and trapped lithium
depends only on parameters Keq and γ that can be tuned in order to separate the intercalation process in
two stages: one dominated by the insertion in the interstitial sites, and the other dominated by the insertion
in the trap sites.

The transient response has been evaluated numerically by solving the resulting fully coupled problem
of transport, mechanics and finite speed chemical kinetics. The evolution of Li concentration profiles and
chemical kinetics have been analyzed for different values of Keq and kinetics constant kT at fixed γ < 1 .

The numerical results have shown that the typical features of a phase segregation can be simulated for
the extraction process in the case of Keq � 1 along with a condition of infinitely-fast chemical kinetics. On
the contrary such features cannot be recovered for the lithiation case by tuning parameters Keq and kT .

In conclusion controlling the lithium transient evolution by means of Keq, γ, and kT only is inappropriate,
since it leads to severe differences in the overall behavior during insertion and extraction that are not observed
experimentally. To meet the experimental evidence a slightly modification of the present model will be
introduced in Chapter 5 by controlling the evolution of traps density cmaxT .

The mechanical response, which is basically induced by the distribution of the Li ions in the particle, will
be analyzed in the next chapter for more realistic lithium profiles.
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Appendix

4.A Finite element implementation

4.A.1 Non-dimensional governing equations and weak form

As customary the system of governing equations has been scaled with suitable coefficients in order to deal
with a system of non-dimensional equations. In this way Eqs. (4.23) have been rephrased in term of
adimensional variables

r∗ =
r

l̄
, t∗ =

t

t̄
, c∗L =

cL
c̄
, c∗T =

cT
c̄
, u∗ =

u

l̄
, σ∗i =

σi
σ̄
, (4.29)

by introducing l̄, t̄, c̄, σ̄ as reference length, time, concentration, and stress respectively.

Taking advantage of definitions (4.29), governing equations (4.23) are equivalent to the following non-
dimensional ones

∂c∗L
∂t∗

+
∂h∗r
∂r∗

+ 2
h∗r
r∗

+ w∗ (1) = 0 (4.30a)

∂c∗T
∂t∗

− w∗ (1) = 0 (4.30b)

∂σ∗r
∂r∗

+ 2
σ∗r − σ∗θ
r∗

= 0 (4.30c)

for (r∗, t∗) ∈ [0, r0/r̄]× ]0, tf/t̄ ].

Note that equations (4.30) have the same expression of (4.23) but are formulated in terms of non-
dimensional variables. In the same way the non-dimensional constitutive laws mantain the same expression
of (4.15) - (4.16) - (4.18) - (4.20) - (4.21a) - (4.22) as long as the original variables and parameters are
replaced with (4.29) and the following non-dimensional constants

D| ∗L =
D| L t̄
l̄2

, ω∗L = ωL c̄ , ω∗T = ωT c̄ , (RT )∗ = RT
c̄

σ̄
,

(cmaxL )
∗

=
cmaxL

c̄
, (cmaxT )

∗
=
cmaxT

c̄
, k∗L =

kL t̄

c̄
, k∗T =

kT t̄

c̄
,

K∗ =
K

σ̄
, G∗ =

G

σ̄
, g∗0 =

g0

t̄ σ̄
, g∗1 =

g1

t̄ σ̄
, σ∗Y =

σY
σ̄
.

The weak formulation results from multiplying the strong form of governing equations (4.30) by a suitable
set of tests functions and performing an integration upon the domain, exploiting the integration by parts
formula with the aim of reducing the order of differentiation in space.
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Even though the first order derivative of hr can be reduced applying the integration by parts, its consti-
tutive definition contains a second order derivative. In fact the Li flux is proportional to the stress gradient
∂σm/∂r (see Eq.(4.22)) which is in turn function of ∂2u/∂r2. The latter is undetermined in standard finite
element since u is approximated with global C0 polynomials. To include the effect of stress gradient we follow
the approach adopted in [127] by introducing a new variable Σ(r, t) defined as

Σ− σm (cL, cT , u) = 0 , (4.32)

which will be approximate as an explicit degree of freedom. Eq. (4.32) is then added to the set of
governing equations (4.30) for the numerical solution of the problem.

The overall weak form of the problem is derived starting from each governing equation separately. In
what follow the asterisk is omitted for the sake of readability.

From the mass balance Eq. (4.30a) we obtain

4π

∫ r0

0

ĉL

{
∂cL
∂t

+
∂hr
∂r

+ 2
hr
r

+ w(1)

}
r2 dr =

= 4π

∫ r0

0

ĉL

{
∂cL
∂t

+ w(1) (cL, cT ,Σ)

}
r2 dr + 4π

∫ r0

0

∂ĉL
∂r

{
D| L

∂cL
∂r
−D|Σ (cL)

∂Σ

∂r

}
r2 dr+

+ 4π
[
ĉL h̄L r

2
]∣∣
r=r0

= 0 ,

where D|Σ stands for

D|Σ =
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
.

The weak form of Eq. (4.30b) can be derived simply as

4π

∫ r0

0

ĉT

{
∂cT
∂t
− w(1)

}
r2 dr =

= 4π

∫ r0

0

ĉT

{
∂cT
∂t
− w(1) (cL, cT ,Σ)

}
r2 dr = 0 .

For the equilibrium equation (4.30c)

4π

∫ r0

0

û

{
∂σr
∂r

+ 2
σr − σθ

r

}
r2 dr =

=− 4

3
π

∫ r0

0

∂û

∂r
{2στ (cT , u) + σm (cL, cT , u)} r2 dr − 8

3
π

∫ r0

0

û {σm (cL, cT , u)− στ (cT , u)} r dr = 0 .

Finally Eq. (4.32) returns

4π

∫ r0

0

Σ̂ {Σ− σm (cL, cT , u)} r2 dr = 0 .

Notice that boundary conditions (4.24) have been applied and the test functions ĉL, ĉT , û, Σ̂ are null on
the Dirichlet boundary. The latter condition arises since test functions represents admissible variations of
the related degrees of freedom cL, cT , u, Σ.

In conclusion, the weak form of the balance equations can be written in the time interval [0, tf ] as

Find y(r, t) ∈ V [0, tf ] such that
∂

∂t
b (ŷ(r), z(r, t)) + a (ŷ(r), y(r, t)) = f (ŷ(r)) ∀ ŷ(r) ∈ V (4.33)
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where

b (ŷ(r), z(r, t)) =

∫ r0

0

{ĉL cL + ĉT cT } r2 dr ,

a (ŷ(r), y(r, t)) =

∫ r0

0

∂ĉL
∂r

{
D| L

∂cL
∂r
−D|Σ (cL)

∂Σ

∂r

}
r2 dr +

∫ r0

0

(ĉL − ĉT )w(1) (cL, cT ,Σ) r2 dr+

+

∫ r0

0

∂û

∂r
{2στ (cT , u) + σm (cL, cT , u)} r2 dr +

∫ r0

0

2 û {σm (cL, cT , u)− στ (cT , u)} r dr+

+

∫ r0

0

Σ̂ {Σ− σm (cL, cT , u)} r2 dr ,

f (ŷ(r)) = −
[
ĉL h̄L r

2
]∣∣
r=r0

.

with z = {cL, cT }, y = {cL, cT , u, Σ} collecting the time-dependent unknown fields. Column ŷ collects
the steady state test functions that correspond to the unknown fields in y, i.e. ŷ = {ĉL, ĉT , û, Σ̂}. The
identification of the functional space V falls beyond the scope of this work.

4.A.2 Numerical discretization

Following the standard finite element method, the spatial domain Ω = [0, r0] is divided into Nh subdomains
Ωe, each one with nn nodes, such that

Ω =

Nh⋃

e=1

Ωe

Inside any subdomain any degree of freedom and its variation is approximated through the following
interpolation

h(•) (r, t) =

nn∑

i=1

N i(r) (•)i(t) = [N(r)] [(•)(t)] (4.34)

where the table [N(r)] collects the time-independent local shape functions N i(r) as

[N(r)] =
{
N1(r) , N2(r) , ... , Nnn(r)

}

and [(•)(t)] collects the nodal values of variable (•) at time t as follow

[(•)(t)] =
{

(•)1
(t) , (•)2

(t) , ... , (•)nn(t)
}T

From Eq. (4.34) the differentiation in space result

∂ h(•)
∂r

= [B(r)] [(•)(t)]

with

[B(r)] =

{
dN1

dr
,

dN2

dr
, ... ,

dNnn

dr

}

The discretization in time is performed applying the implicit backward Euler method. Accordingly we
divide time interval [0, tf ] into Nt temporal steps ∆t = tf/Nt. We define for convenience

y(r)|n = y(r, n∆t) , ∆y(r)|n+1 = y(r)|n+1 − y(r)|n n = 1, 2, ... , Nt
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The discretized weak form is finally obtained from (4.33) by applying the finite element interpola-
tion (4.34) and the backward Euler scheme. It results in terms of approximate degrees of freedom hy ={
hcL,

hcT ,
hu, hΣ

}
and variations hŷ = {hĉL, hĉT , hû, hΣ̂} as follow

Find hy(r)
∣∣
n+1
∈ hV such that

1

∆t
hb
(
hŷ(r), ∆hz(r)

∣∣
n+1

)
+ ha

(
hŷ(r), hy(r)

∣∣
n+1

)
= f

(
hŷ(r)

)
∀ hŷ(r) ∈ hV , n = 1, 2, ... , Nt

(4.35)

where

hb
(
hŷ(r), ∆hz(r)

∣∣
n+1

)
=

Nh

A
e=1

{
[ĉL]

T
∫

Ωe
[NL]

T
[NL]

(
[cL]n+1 − [cL]n

)
r2 dr+

+ [ĉT ]
T
∫

Ωe
[NT ]

T
[NT ]

(
[cT ]n+1 − [cT ]n

)
r2 dr

}
,

ha
(
hŷ(r), hy(r)

∣∣
n+1

)
=

Nh

A
e=1

{
[ĉL]

T
∫

Ωe
[BL]

T
[BL] [cL]n+1 D| L r2 dr+

− [ĉL]
T
∫

Ωe
[BL]

T
[BΣ] [Σ]n+1 D|Σ(cL)|

n+1
r2 dr+

+ [ĉL]
L
∫

Ωe
[NL]

T
w(1) (cL, cT ,Σ)

∣∣∣
n+1

r2 dr+

− [ĉT ]
T
∫

Ωe
[NT ]

T
w(1) (cL, cT ,Σ)

∣∣∣
n+1

r2 dr+

+ [û]
T
∫

Ωe
[Bu]

T (
2 στ (cT , u)|n+1 + σm (cL, cT , u))

∣∣
n+1

r2 dr+

+ [û]
T
∫

Ωe
2 [Nu]

T (
σm (cL, cT , u)|n+1 − στ (cT , u))

∣∣
n+1

r dr+

+ [Σ̂]T
∫

Ωe
[NΣ]

T (
[NΣ] [Σ]n+1 − σm (cL, cT , u)|n+1

)
r2 dr

}
,

f
(
hŷ(r)

)
= −

(
[ĉL]

T
[NL]

T
h̄L r

2
)∣∣∣
r=r0

.

Note that the integrals in (4.33) are now computed summating the contribution of any subdomain Ωe

by means of the assembly operator A. Eq. (4.35) is equivalent to a system of non-linear equations for the
unknowns hy which is solved here with a standard Newton-Raphson algorithm. Accordingly the solution is

computed iteratively in terms of solution increments δy(k+1) = {δc(k+1)
L , δc

(k+1)
T , δu(k+1), δΣ(k)} at iteration

k+ 1 for any time step (the superscript h have been removed for clarity). Without going through all details
for convenience (see [323] for instance), the overall problem reduces to the following linear system




[KLL] [KLT ] [ 0 ] [KLΣ]

[KT L] [KT T ] [ 0 ] [KT Σ]

[KuL] [KuT ] [Kuu] [ 0 ]

[KΣL] [KΣT ] [KΣu] [KΣ Σ]




︸ ︷︷ ︸
[K

(k)
n+1]




[δcL]

[δcT ]

[δu]

[δΣ]




︸ ︷︷ ︸
[δ y

(k+1)
n+1 ]

=




[RL]

[RT ]

[Ru]

[RΣ]




︸ ︷︷ ︸
[R

(k)
n+1]
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where the consistent tangent matrix [Kαβ ] and the residual vector components [Rα] are

[KLL] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NL] r2 dr +

∫
Ωe

[BL]T [BL] D| L r
2 dr+

−
∫

Ωe
[BL]T

(
[BΣ] [Σ](k)

n+1

)
[NL]

d D|Σ
d cL

∣∣∣∣(k)

n+1

r2 dr +

∫
Ωe

[NL]T [NL]
∂ w(1)

∂ cL

∣∣∣∣(k)

n+1

r2 dr

}
,

[KLT ] =

Nh

A
e=1

{∫
Ωe

[NL]T [NT ]
∂ w(1)

∂ cT

∣∣∣∣(k)

n+1

r2 dr

}
,

[KLΣ] =

Nh

A
e=1

{
−
∫

Ωe
[BL]T [BΣ] D|Σ

∣∣(k)

n+1
r2 dr +

∫
Ωe

[NL]T [NΣ]
∂ w(1)

∂ Σ

∣∣∣∣(k)

n+1

r2 dr

}
,

[KT L] =

Nh

A
e=1

{
−
∫

Ωe
[NT ]T [NL]

∂ w(1)

∂ cL

∣∣∣∣(k)

n+1

r2 dr

}
,

[KT T ] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NT ]T [NT ] r2 dr −
∫

Ωe
[NT ]T [NT ]

∂ w(1)

∂ cT

∣∣∣∣(k)

n+1

r2 dr

}
,

[KT Σ] =

Nh

A
e=1

{
−
∫

Ωe
[NT ]T [NΣ]

dw(1)

d Σ

∣∣∣∣(k)

n+1

r2 dr

}
,

[KuL] =

Nh

A
e=1

{∫
Ωe

[Bu]T [NL]
∂σm
∂cL

∣∣∣∣(k)

n+1

r2 dr + 2

∫
Ωe

[Nu]T [NL]
∂σm
∂cL

∣∣∣∣(k)

n+1

r dr

}
,

[KuT ] =

Nh

A
e=1

{∫
Ωe

[Bu]T [NT ]

(
2
∂στ
∂cT

∣∣∣∣(k)

n+1

+
∂σm
∂cT

∣∣∣∣(k)

n+1

)
r2 dr+

+ 2

∫
Ωe

[Nu]T [NT ]

(
∂σm
∂cT

∣∣∣∣(k)

n+1

− ∂στ
∂cT

∣∣∣∣(k)

n+1

)
r dr

}
,

[Kuu] =

Nh

A
e=1

{∫
Ωe

[Bu]T [Bu]

(
2
∂στ
∂εr

∣∣∣∣(k)

n+1

+
∂σm
∂εr

∣∣∣∣(k)

n+1

)
r2 dr +

∫
Ωe

[Bu]T [Nu]

(
2
∂στ
∂εθ

∣∣∣∣(k)

n+1

+
∂σm
∂εθ

∣∣∣∣(k)

n+1

)
r dr+

+ 2

∫
Ωe

[Nu]T [Bu]

(
∂σm
∂εr

∣∣∣∣(k)

n+1

− ∂στ
∂εr

∣∣∣∣(k)

n+1

)
r dr + 2

∫
Ωe

[Nu]T [Nu]

(
∂σm
∂εθ

∣∣∣∣(k)

n+1

− ∂στ
∂εθ

∣∣∣∣(k)

n+1

)
dr

}
,

[KΣL] =

Nh

A
e=1

{
−
∫

Ωe
[NΣ]T [NL]

∂σm
∂cL

∣∣∣∣(k)

n+1

r2 dr

}
,

[KΣT ] =

Nh

A
e=1

{
−
∫

Ωe
[NΣ]T [NT ]

∂σm
∂cT

∣∣∣∣(k)

n+1

r2 dr

}
,

[KΣu] =

Nh

A
e=1

{
−
∫

Ωe
[NΣ]T [Bu]

∂σm
∂εr

∣∣∣∣(k)

n+1

r2 dr −
∫

Ωe
[NΣ]T [Nu]

∂σm
∂εθ

∣∣∣∣(k)

n+1

r dr

}
,
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[KΣ Σ] =

Nh

A
e=1

{∫
Ωe

[NΣ]T [NΣ] r2 dr

}
,

[RL] = −
Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NL]
(

[cL](k)
n+1 − [cL]n

)
r2 dr +

∫
Ωe

[BL]T [BL] [cL](k)
n+1 D| L r

2 dr+

−
∫

Ωe
[BL]T [BΣ] [Σ](k)

n+1 D|Σ
∣∣(k)

n+1
r2 dr +

∫
Ωe

[NL]T w(1)
∣∣∣(k)

n+1
r2 dr

}
+
(

[NL]T h̄L r
2
)∣∣∣
r=r0

,

[RT ] = −
Nh

A
e=1

{
1

∆t

∫
Ωe

[NT ]T [NT ]
(

[cT ](k)
n+1 − [cT ]n

)
r2 dr −

∫
Ωe

[NT ]T w(1)
∣∣∣(k)

n+1
r2 dr

}
,

[Ru] = −
Nh

A
e=1

{∫
Ωe

[Bu]T
(

2 στ |(k)
n+1 + σm|(k)

n+1

)
r2 dr +

∫
Ωe

2 [Nu]T
(
σm|(k)

n+1 − στ |(k)
n+1

)
r dr

}
,

[RΣ] = −
Nh

A
e=1

{∫
Ωe

[NΣ]T
(

[NΣ] [Σ](k)
n+1 − σm|(k)

n+1

)
r2 dr

}
.

The value assumed by the scalar functions and their derivatives appearing in [Kαβ ] and [Rα] can be
easily computed from the respective definitions as long as they do not depend on the inelastic deformations.
This applies to the rate of chemical reaction w(1), the stress component σm, as well as to D|Σ.

Conversely the constitutive definition of στ depends on εin and vice versa. In this case the flow rule (4.18)
has to be integrated properly. This has been conducted here with a standard viscoplastic Return-mapping
Algorithm [323]. The method is based on the definition of a trial elastic state as the state in which the
evolution of εin is arbitrarily frozen from the previous time step. Accordingly the trial deviatoric stress is
defined as

σtrialτ = 2G

(
ετ |(k)

n+1 −
3

2
εin|n

)
. (4.36)

If the trial state does not cause the inelastic flow to occur, i.e. ϕ (σtrialτ ) < 0, the step is elastic which
implies that

στ |(k)
n+1 = σtrialτ ,

and the derivatives of στ can be calculated merely from (4.36).

On the other hand, when ϕ (σtrialτ ) ≥ 0 the solid undergoes viscoplastic flow. The increment of the
inelastic deformation is computed by numerical integration of formula (4.18)

εin|(k)
n+1 − εin|n =

√
2

3
∆λ sign[σtrialτ ] ,

which corrects the trial stress state as follow

στ |(k)
n+1 = σtrialτ − 3

√
2

3
G ∆λ sign[σtrialτ ] . (4.37)

The symbol ∆λ = λ∆t defines the increment of the plastic multiplier for the current iteration. The
latter results by inserting Eq. (4.37) into Eq. (4.18) in the closed form expression

∆λ =
|σtrialτ | − σY√

3
2

g(θT )|(k)
n+1

∆t + 3
√

2
3 G

. (4.38)

89



The stress component is then computed by substituting (4.38) into (4.37) while the the corresponding
derivatives are

∂στ
∂εr

∣∣∣∣
(k)

n+1

= 2G

(
1− 3

√
2

3
G

∂∆λ

∂σtrialτ

sign[σtrialτ ]

)
,

∂στ
∂εθ

∣∣∣∣
(k)

n+1

= −2G

(
1− 3

√
2

3
G

∂∆λ

∂σtrialτ

sign[σtrialτ ]

)
,

∂στ
∂cT

∣∣∣∣
(k)

n+1

= 3

√
2

3

∂∆λ

∂cT
sign[σtrialτ ] .

consistently with the Return-Mapping Algorithm.

90



Chapter 5

A model for LiCoO2 electrode
particles

5.1 Introduction

Insertion and extraction of Li ions in LiCoO2 particles involve a wide range of electro-chemo-mechanical
phenomena as reviewed in Chapter 4. Among those, changes in lithium content involves a series of phase-
transitions and mechanical deformation of the electrode.

The phase-segregating behavior of LiCoO2 is depicted by the phase diagram reported in Fig. 5.1a. It
identifies the stable host phases as a function of lithium content x and temperature T . Neglecting the
formation of the monoclinic phase (”Mono.” in Fig. 5.1a) in correspondence of x ∼ 0.5 for convenience,
the electrode exhibits a uniform single phase for x < 0.75 and x > 0.93. Phases I and II consist both of
hexagonal unit cells, differing for lithium content and lattice parameters as reported in Figure 5.1b. The
unit cell volume of Li-rich phase I seems to be insensitive to the lithium content, while poor Li phase II
contracts when Li increases. The transition from phase I to phase II (and vice versa) takes place between
x = 0.75 and x = 0.93 and has been recognized as a first-order phase transition. In this regime phases I and
II coexist in the host separated by a phase-interface.

(a) (b)

Figure 5.1: Phase diagram (a) and unit cell volume (b) evolition as a function of lithium
content x in LixCoO2. Figures have been reprinted from [310].

During phase-change, the overall lithium diffusion in the electrode is influenced by the phase boundary
motion, which is in turn affected by the diffusion in each coexisting phase. The mechanical response of
the electrode is influenced by the phase transition as well. Indeed a state of stress results from the lattice
parameter mismatch at the interface between the two coexisting phases. Such a stress generation constitutes
a so called internal stress since it is independent of any external stress as pointed out in [318]. Therefore,
in the two-phase regime, the state of stress intensifies and might cause a mechanical degradation of LiCoO2

compatible with plastic deformations.
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The typical features of a phase-change can be simulated through trapping of Li ions in the hosting material
as showed in Chapter 4. Despite some promising results has been achieved, this approach seems not to be
completely appropriate as it leads to severe differences in the behavior during lithiation and delithiation.
Moreover the phase-diagram of LiCoO2 cannot be reproduced accurately.

In order to meet the experimental evidence, a slightly modification of the model analyzed in Chapter
4 is proposed here. In particular the trap density will be considered non-constant during the process as
described in Section 5.2. The chemo-mechanical of a spherial LiCoO2 particle will be simulated in Section
5.4 to evaluate the peculiarities of the model proposed. A three dimensional case will be analyzed in Section
5.5.

5.2 Modeling the evolution of cmaxT

The phase-transition occurring in LixCoO2 between x = 0.75 and x = 0.93 is here modeled through a
trapping reaction. By doing so we assume that the formation of Li-rich phase I is due to an immobilization
of Li ions in the hosting material. On the other hand the electrode is assumed free of trapped lithium in
the single phase II regime. Therefore phases I and II differ in the content of trapped lithium. The trapping
process of lithium is described by the following chemical reaction

LiL
kT
�
kL

LiT , (5.1)

which portrays the conversion of mobile LiL to trapped LiT species and vice versa by the rate of the reaction
(5.1), denoted with w(1). The affinity A(5.1) = µT − µL (µ denotes the chemical potential) is the driving
force for the chemical reaction (5.1). Positive values of A(5.1) promote trapping, whereas negative values
induce lithium to escape traps. The condition A(5.1) = 0 expresses chemical equilibrium.

Lithium cannot be trapped if there are no trap sites in the hosting material, as for x < 0.75 in the phase
diagram of Fig. 5.1a. Furthermore, according to the same phase diagram the trapping process must be
completed when x > 0.93.

It will be assumed henceforth that the molar density of trap sites cmaxT is not constant1 (thus becoming
a function of the location ~x and time t) and that it evolves with an internal variable ξT , which in turn
is related to the concentration of interstitial lithium. It must be vanishing when x < 0.75: when lithium
insertion takes place in the single Li-poor phase II no ions are immobilized. Once further lithium insertion
takes place, i.e. 0.75 ≤ x ≤ 0.93, the trapping reaction is triggered by the increase of available trap sites
cmaxT . The lithium rich phase I is completely developed when traps are saturated with Li-ions and cmaxT

reaches its ultimate value cMAX
T . Further insertion is purely interstitial in the new material phase.

5.2.1 Helmholtz free energy and thermodynamic restrictions

We assume that an internal force χT allows cmaxT to evolve, in a similar manner as for the yield stress σy in
isotropic plasticity. It thus holds

cmaxT = −χT , (5.2)

under the constraints χT = 0 if cLi < cIILi and χT = −cMAX
T if cLi ≥ cILi.

χT =





0 if cLi < cIILi ,

− cMAX
T if cLi > cILi ,

being cIILi and cILi the concentration of total lithium correspondent to x = 0.75 and x = 0.93 in the phase
diagram Fig. 5.1a. These constraints are approximated by means of an internal variable ξT and a logistic
function L(ξT )

L(ξT ) = − χT
cMAX
T

=
1

1 + exp [−B ξT ]
. (5.3)

1Non-constant trap densities do not constitute a novelty for trapping models. It customary for hydrogen transport models in
metals to relate the density of trap sites to the equivalent plastic strains [286, 288, 287]. Here the trap sites are made dependent
on the lithium molar content to mimic the pseudo-phase diagram of LiCoO2.
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The parameter B controls the sharpness of L(ξT ) from 0 to 1, as depicted in Fig. 5.1a.

(a)
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Figure 5.1: (a) Plot of the logistic function for B = 5, 20, 100, 1000. In the limit
B → ∞, the trap density changes sharply from 0 to cMAX

T at ξT = 0. (b) Plot of the
corresponding energy function for B = 5, 20, 100, 1000 and cMAX

T = 1.

The internal force χT descends from an energetic contribution to the Helmholtz free energy, i.e.

ψT (ξT ) = cMAX
T

∫
L(ξT ) dξT =

cMAX
T

B
log [exp [B ξT ] + 1] , (5.4)

which is plotted in Fig. 5.1b. The evolution of the internal variable (conceptually analogous to the flow rule
in plasticity) is taken as non-associative, as follows

∂ξT
∂t

=
RT

cMAX
Li

∂cL
∂t

, (5.5)

with initial condition

ξ(0) =
RT

cMAX
Li

cIILi .

denoting with cMAX
Li the maximum possible total lithium concentration, given by cmaxL + cMAX

T . It thus
descends that

ξT (~x, t) = RT
cL(~x, t)− cIILi

cMAX
Li

, (5.6)

dimensionally equivalent to a chemical potential.

The Clausius-Duhem inequality (3.28) is now enriched by the term −∂ψdiff∂ξT

∂ξT
∂t + χT

∂ξT
∂t , and the re-

striction (3.31b) becomes

−~hL · ∇ [µL ]− ∂ψdiff
∂ξT

∂ξT
∂t

+ χT
∂ξT
∂t
≥ 0 . (5.7)

5.2.2 Free energy at chemical equilibrium

As in Chapter 4, a vanishing affinity at all times is here considered to study the evolution of the free energy,
specifically its convexity, as a function of the molar fraction of total Lithium ions. In view of the evolution
of ξT

cmaxT =
cMAX
T

1 + exp
[
−BRT cL−cIILi

cMAXLi

] , (5.8)
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and the trapped concentration cT can be related to the interstitial lithium cL by the following identity

cT =
1

1 + 1−θL
Keq θL

α

cMAX
T

1 + exp
[
−BRT cL−cIILi

cMAXLi

] (5.9)

that descends from Eq. (4.3) , with θL = cL/c
max
L as usual. The dimensionless concentration θLi has been

redefined with respect to (4.5), as follows

θLi =
cL + cT
cMAX
Li

. (5.10)

The ratio cMAX
T /cmaxL can be estimated following [243] for sharp-interface models. Phases I and II are in

equilibrium at phase-interface respectively with their minimum and maximum Li solubilities, i.e. θI
Li = 0.93

and θII
Li = 0.75, as the phase diagram advocates. Assuming that the trapping reaction (5.1) is the sole

responsible of segregation, phases I and II coexist at phase-boundaries with different content of immobile
Li but equal interstitial population. Moreover the fully developed rich phase I is characterized by saturated
traps (cT = cMAX

T ), while poor phase II contain only interstitial host sites (cmaxT = 0). As a consequence,
cMAX
T in (5.3) can be quantified from the difference between between θI

Li and θII
Li

cMAX
T

cMAX
Li

= θILi − θIILi = 0.18 . (5.11)

It follows that cMAX
T /cmaxL = 0.22 and cmaxL /cMAX

Li = 0.82.

The evolution of cmaxT is thus parametrized by Keq, B, T , and α. The impact of these parameters is
investigated in Figure 5.2 where cmaxT is plotted against θLi. In the case with Keq = 1000 and B = 1 the
evolution of cmaxT match well with the phase diagram. Traps does not change for either θLi < 0.75 (cmaxT = 0)
and θLi > 0.93 (cmaxT = cMAX

T ). Between θLi = 0.75 and 0.93 the trap density evolves essentially in a linear
manner with respect the concentration of lithium. On the other hand for Keq = B = 1 the trap density
grows also for θLi > 0.93 and reaches its maximum value for θLi = 1.

(a) (b)

Figure 5.2: Plot of the evolution of the trap density cmaxT as a function of the normalized
content of lithium x. In (a) Keq = 1 and B = 0.1, 1, while in (b) Keq = 1000 and
B = 0.1, 1. In both cases T = 300 K and α = 1.

In order to focus on the chemo-transport mechanisms, we neglect here the mechanical contribution.
By doing so, the Helmholtz free energy density ψ is decomposed into two separate parts: the diffusive
contribution ψdiff and ψT

ψ(cL, cT , ξT ) = ψdiff (cL, cT , ξT ) + ψT (ξT ) . (5.12)

The free energy density for the continuum approximation of mixing ψdiff has been described in Chapter
4 in Eq. (4.6b). ψT is taken as in Eq. (5.4). For convenience the free energy is rewritten in dimensionless
form as follow
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ψ̂ = ψ̂diff + ψ̂T , (5.13)

where

ψ̂diff = µ̂0
L ĉ

max
L (θLi) θL(θLi) + µ̂0

T ĉ
max
T (θLi) θT (θLi) + ψ̂η(θLi) ,

ψ̂η(θLi) = ĉmaxL (θLi)

{
θL(θLi) ln[θL(θLi)] + (1− θL(θLi)) ln[1− θL(θLi)]

}
+

+ ĉmaxT (θLi)

{
θT (θLi) ln[θT (θLi)] + (1− θT (θLi)) ln[1− θT (θLi)]

}
,

being ψ̂η the entropic part of the diffusive free energy and

µ̂0
β =

µ0
β

RT
, ĉmaxβ =

cmaxβ

cMAX
Li

, ψ̂T =
ψT

cMAX
Li RT

.

(a) (b)

Figure 5.3: Parametric plot of ψ(cL, cT , ξT ) as a function of θLi for B = 0.1 (a) and
B = 1 (b). In these plots, Keq = 1000, α = 1, and µ̂0

L = 0, T = 300 K, and α = 1.

In view of Eqs. (5.6), (5.9), and (5.10) the Helmholtz free energy ψ̂ can be plot against θLi. Figure 5.3

depicts ψ̂ for Keq = 1000, α = 1, and two different values of B. The plots show three distinctive behaviors
in three different zones, namely for θLi < 0.75, θLi > 0.93 and the remaining interval. These three zones
match well the phase domains in the diagram in Fig. 5.1a.

Because of the factor RT = 2578.73 within ξT , the graph of ψT is basically made by two straight lines.
For for θLi < 0.75 therefore, the Helmholtz free energy is essentially ψdiff . Since however Keq is very large
and cmaxT close to zero, θT ∼ 1 and the main part of ψdiff is in fact the entropic contibution for cL

ψLη = RT cmaxL (θL ln[θL] + (1− θL) ln[1− θL]) ,

in view of the assumption made that µ0
L = 0.

As θLi > 0.93, the amount of trapped lithium is significant: indeed, because of the factor RT = 2578.73
within ξT the logistic function is close to 1 and cmaxT ∼ cMAX

T . Since Keq is very large, traps tend to saturate
soon, and θT ∼ 1 again. Therefore, in the region θLi > 0.93 the Helmholtz free energy is dominated by the
entropic contibution for θL and by ψT .

In the remaining region 0.75 < θLi < 0.93 the slope of the graph of ψ̂ is almost constant. This behavior is
dictated by the equilibrium constant, that is very high and favor the immediate saturation of traps under the
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assumption of infinitely fast kinetics. In this region in fact, cmaxT evolves from a value close to zero to cMAX
T .

Since traps are instantaneously filled, θT ∼ 1 and the increment of ψ is essentially due to the factor µ0
T cT

and to ψT , which is linear in fact. In the simulations of Fig. 5.3 it was taken Keq = 1000 that corresponds
to µ̂0

T = −6.9078.
The smaller the value of B, the smoother the junction of the plot between the three regions described

above. Small values of B in fact allow cmaxT to change before cL reaches its maximum value. Figure 5.4 plots
the Helmholtz free energy for Keq = 1, α = 1, and µ̂0

L = µ̂0
T = 0. Although the curves differ from 5.3, the

qualitative description applies again.

(a) (b)

Figure 5.4: Parametric plot of ψ(cL, cT , ξT ) as a function of θLi for B = 0.1 (a) and
B = 1 (b). In these plots, Keq = 1, α = 1, ψ0 = 0, and µ0

L = 0.

The Helmholtz free energy is clearly non convex and this feature is dictated by the description of trapping
rather than by energetic interactions, that have not been accounted for here. One could then use this free
energy within a core-shell model, to determine the equilibrium concentrations of lithium in a solid (a sphere,
actually, in core-shell models) that contains two phases (Li-poor and Li-reach) separated by a sharp interface
that moves under the assumption of thermodynamic equilibrium at all instants. The solution is provided by
the so-called “tangent rule”. We are not going to follow this path, and interested readers may refer to the
large literature on the subject ( see a review in [319] or [32] ).

5.3 Governing equations with evolving cmaxT

Governing equations of the chemo-mechanical response of LiCoO2 electrodes with evolving cmaxT are discussed
in this section. As done in Chapter 4 we introduce several assumptions which simplify the general framework
developed in Chapter 3. In particular, the process is assumed to be isothermal (T = T0), the energetic
interaction in the free energy are neglected (χ| = 0), and the stress tensor does not include a viscous part
(σ = σe). In addition we consider the chemical reaction as an infinitely-fast process for simplicity. Therefore
the the concentration of trapped lithium is no longer an independent variable, but is in turn function of the
interstitial lithium and the stress tensor as follow

cT (cL, σ) =
Keq cL c

max
T (ξT )

Keq cL + (cmaxL − cL)α(tr [σ ])
, (5.15a)

with

α = exp

{
ωL − ωT
RT

tr [σ ]

}
, (5.15b)

and

cmaxT =
cMAX
T

1 + exp
[
−BRT cL−cIIL

cMAXLi

] . (5.15c)

96



The set of governing equations (3.68) thus reduces to

∂cL
∂t

+
∂cT
∂t

+ div
[
~hL

]
= 0 , (5.16a)

div [σ ] = ~0 , (5.16b)

for ~x ∈ B and time t ∈ ]0 , tf ] .

Equation (5.16a) is the conservation of total lithium. Note that the conservation of lithium is not
enforced here in terms of interstitial and trapped lithium separately. This fact relies on the assumption of
infinitely-fast kinetics, accordingly the chemical kinetics is not explicitly modeled here.

The mechanical inelastic behavior is modeled as in Chapter 4 through the following Perzyna type visco-
plastic law

∂εin

∂t
=

dev [σ ]

|| dev [σ ] || λ , λ =
ϕ H(ϕ)

g(cT )
. (5.17a)

In equation (5.17a) ϕ = ||dev [σ ] || −
√

2/3σY is the Mises yield function without hardening; H is the
Heaviside step function; g(cT ) is the viscosity, assumed as a given function of the concentration of trapped
species. A simple choice for g(cT ) is the affine function

g(cT ) = g0 + g1
cT

cMAX
T

, (5.17b)

with g0, g1 given positive parameters.
From definition (5.17a) εin is trace-less and the stress-strain relationship rewrites from (3.55) as

σ = 2Gdev
[
ε− εin

]
+K tr [ ε− εs ] 1 , (5.18a)

with

ε =
1

2

(
∇ [ ~u ] +∇ [ ~u ]

T
)
, (5.18b)

and

εs = ωL
(
cL − c0L

)
1+ ωT

(
cT − c0T

)
1 . (5.18c)

In the assumption of constant material parameters G and K, along with χ| = 0, the chemical potentials
derived in Chapter 3 Eq. (3.59) reduce to

µβ = µ0
β +RT ln

[
θβ

1− θβ

]
− ωβ tr [σ ] , β = L, T . (5.19)

Finally the constitutive definition of lithium flux yields

~hL = −D| L∇ [ cL ] +
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
∇ [ tr [σ ] ] . (5.20)

Boundary conditions

~hL · ~n = h̄ (5.21a)

σ · ~n = ~̄p (5.21b)

are imposed along the Neumann boundaries ∂NV . To ensure solvability of the problem, Dirichlet boundary
conditions have to be enforced along ∂DV as follow
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cL = c̄L

~u = ~̄u

Initial conditions are usually imposed for concentration of interstitial species cL. Balance of momentum,
together with boundary conditions, provide the necessary and sufficient equations to define ~u at t = 0.

5.4 Lithiation and delithiation of a LiCoO2 spherical particle

In this section the lithium insertion and extraction from LiCoO2 particles will be simulated. The influence
of parameters and model performance with evolving cmaxT will be analyzed with a series of one-dimensional
studies on spherical particles, using radial-symmetry to enlighten the computational burden. The governing
equations have been restated in a spherical coordinate system {r, θ, φ} with unit vectors {~er, ~eθ, ~eφ} centered
at the centroid of the sphere2

∂cL
∂t

+
∂cT
∂t

+
∂hr
∂r

+ 2
hr
r

= 0, (5.23a)

∂σr
∂r

+ 2
σr − σθ

r
= 0 , (5.23b)

having defined

~hL = hr ~er ,

σ = σr ~er ⊗ ~er + σθ (~eθ ⊗ ~eθ + ~eφ ⊗ ~eφ) .

The particle, of radius r0 = 10µm, allows free expansion and contraction at its boundary. Rigid motions
(one-dimensional in nature) have been restrained by imposing a null displacement at the center of the particle.
Boundary and initial conditions are modeled in the same manner as in Chapter 4. For Li removal simulations,

the particle is initially filled with lithium at the uniform concentration cLi(r, t = 0) = c
0(del)
Li . The Lithium is

extracted with an uniform and constant flux hr = hL, at the boundary r = r0, until the concentration cLi on

the external surface equals the limit c
F (del)
Li . Then the extraction process proceeds holding fixed cLi at r = r0.

The lithiation process is modeled in a similar way: an inward and constant flux hL is imposed at the sphere

boundary. The concentration of lithium increased from an initial uniform distribution cLi(r, t = 0) = c
0(lit)
Li .

Once the lithium concentration reaches the limit c
F (lit)
Li , this value is held fixed on the external boundary.

The initial (0) and limit (F) concentrations for lithiation (lit) and delithiation (F) processes are defined as

c
0 (lit)
Li = c

F (del)
Li = cMAX

Li /2 , (5.25a)

c
F (lit)
Li = c

0 (del)
Li = cMAX

Li , (5.25b)

in order to simulate the particle response upon fully battery charge/discharge3.
Chemical equilibrium is assumed throughout the process. Thus the initial concentration of interstitial

lithium cL(r, t = 0) can be computed from c
0 (lit)
Li or c

0 (del)
Li using Eqs. (5.9) - (5.10).

The prescribed Li flux on boundary hL corresponds to a charge/discharge current density iext = 0.534 A/m2,
equivalent to a C rate of 0.5 according to the formula [300]

C =
3600 iextA

V F
(
cMAX
Li − cMAX

Li /2
) , (5.26)

2The derivation of governing equations (5.23) is not reported here for convenience. The reader may refer to Section 4.5 for
all the details.

3For numerical convenience the equation (5.25b) has been implemented as c
F (lit)
Li = c

0 (del)
Li = 0.99 cMAX

Li
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Material Parameters Ref.

Maximum Lithium concentration cMAX
Li 2.390× 104 mol/m3 [152]

Lithium diffusivity D| L 5.387× 10−15 m2/s [152]

Coefficients of chemical expansion ωL = ωT −5.300× 10−7 m3/mol [107]

Young modulus E 370 GPa [152]

Poisson ratio ν 0.2 - [152]

Yield stress σY 1.0 GPa [318]

Maximum trap density cMAX
T /cMAX

Li 0.18 - this study

Relaxation time 0 g0/E 1.0 s this study

Relaxation time 1 (g0 + g1)/E 60 s this study

Table 5.1: Material parameters adopted for the numerical simulations.

where A and V are respectively volume and surface area of the particle, F is Faraday’s constant in Coulombs
per moles. Charge and discharge operations have been simulated for a total time of 4 hours at temperature
T = 300 K.

Others material constants used for the numerical simulation that follow are listed in Table 5.1. Material
parameters taken from the literature are representative of LiCoO2 commercial particles. The role of constants
B and Keq will be investigated on the evolution of lithium concentration profiles.

The system of equations (5.23) have been solved numerically through the Finite Element Method as
conducted in Chapter 4 (see Appendix 4.A for the details). Thus governing equations have been written in
integral form and then discretized in space with 400 elements along the radius r, while the time evolution is
resolved with a time increment ∆t = 3.6 s. The resulting nonlinear algebraic problem has been solved with
a Newton-Raphson scheme. This numerical procedure has been implemented in a MATLAB package script
purposely written. For completeness the explicit expressions for the residual vector and consistent tangent
matrix of the Newton-Raphson algorithm is explicitly listed in Appendix 5.A.

5.4.1 Numerical simulations neglecting mechanical effects

The impact of evolving cmaxT on particle response is first evaluated by neglecting mechanical effects. There-
fore, in this section we focus only on the chemo-diffusive problem described by governing equations (5.23).
Mechanical influence on the chemical potentials µL and µT is neglected, hence the chemical potentials from
Eq. (5.19) hold

µβ = µ0
β +RT ln

[
θβ

1− θβ

]
β = L, T . (5.27)

In this way the concentration of trapped species can be simplified from (5.15a) as follow

cT (cL) =
Keq cL c

max
T (ξT )

Keq cL + (cmaxL − cL)
. (5.28)

The governing equations for lithium transport in the particle thus reduce only to formula (5.23a), since
the mechanics does not play any role. Moreover the lithium flux is now constitutively defined simply as
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hr = −D| L
∂cL
∂r

. (5.29)

5.4.1.1 Lithium extraction

The role of B - Figures 5.1 and 5.2 show the evolution of lithium profile (a) and trap density (b) for
different values of B at given Keq = 100. For B = 1 mol/J the lithium distribution resembles that typical of
sharp-interface models (see [243] for comparison).

The extraction process can be divided in three different stages. For high content of lithium (cLi/c
MAX
Li >

0.93 everywhere) the trap density is uniform and equal to cMAX
T , hence the lithium distribution is governed

by Fick’s diffusion law in the entire particle. The initial regime is perturbed when cLi/c
MAX
Li ∼ 0.93 (i.e.

cL/c
MAX
Li approaches 0.75) because the trap density drops down to zero and the trapped lithium moves to

the interstitial sites. The traps density is no longer uniform in space but evolves separating two regions where
cmaxT = 0 (external shell) and cmaxT = cMAX

T (inner core). The Li ions distribute similarly in two regions with
rich (cLi/c

MAX
Li > 0.93) and poor (cLi/c

MAX
Li < 0.75) concentration, separated by a diffuse-interface with

small thickness (see Fig. 5.1a). Such an interface moves along the particle radius without significant change
in its thickness. The particle thus enters in a two-phase coexistence with a formation of a phase-interface
triggered by traps annhilation.

Once the trap density has been depleted everywhere the lithium distribution evolves with the same
peculiarity of the first stage.

(a) (b)

Figure 5.1: Li extraction - Lithium concentration (a) and trap density (b) profiles
as function of radial coordinate at intervals of 900 s for B = 1 mol/J and Keq = 100.

A sort of interface between Li rich and poor phases can be recognized for smaller values of B as well,
as shown in Fig. 5.2a. Its width is neither negligible nor constant, since it grows in the particle core. The
“smeariness” of the phase-interface that arises in Fig. 5.1a and 5.2a is thus essentially ruled by Eq. (5.15c)
through parameter B.

The role of Keq - The influence of theKeq is evaluated in Figures 5.1 - 5.3 at given parameter B = 1 mol/J.
The constant of chemical equilibrium has influence over the Li profile merely for cLi/c

MAX
Li ≥ 0.75, i.e. in

the regime when traps are available for the chemical reaction.
High equilibrium constants promote the saturation of traps, when they are present, as discussed in

Section 4.3 . Accordingly the trapped lithium remains basically untouched for high values of total lithium
(cLi/c

MAX
Li > 0.93) and the extraction process involves only the interstitial population (See Fig. 5.1a).

The scenario is different for Keq � 1 because the un-trapping reaction is favorite in the regime when
cmaxT = cMAX

T . The chemical reaction thus dominates the first part of the extraction process and the
Li concentration profiles develop with the same peculiarities described in Chapter 4. The effect of trap
annihilation is recognizable in the change in slope for cLi/c

MAX
Li ∼ 0.75. However the latter is less evident

than the one depicted in Fig. 5.1a for Keq � 1 because the trap sites are almost empty when they vanish.
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(a) (b)

Figure 5.2: Li extraction - Lithium concentration (a) and trap density (b) profiles
as function of radial coordinate at intervals of 900 s for B = 0.1 mol/J and Keq = 100.

(a) (b)

Figure 5.3: Li extraction - Lithium concentration (a) and trap density (b) profiles
as function of radial coordinate at intervals of 900 s for B = 1 mol/J and Keq = 0.01.

5.4.1.2 Lithium insertion

The role of B - The development of lithium profiles and trap density are reported in Figures 5.4 - 5.5 for
different values of B and Keq = 100. The insertion process for both B = 0.1 and B = 1 mol/J can be
partitioned in three stages as described for the extraction case. At first lithium fills the interstitial sites
since no traps are present in the particle. When cLi/c

MAX
Li approaches 0.75 the traps density evolves as

prescribed by formula (5.15c), causing the growth of a region with uniform cmaxT = cMAX
T (external shell)

which progressively consumes the particle core where cmaxT = 0. Similarly the Li distribution evolves with
the features of a phase-segregation with the presence of Li-rich and Li-poor phases in the particle. Once
the traps density reaches the limit value cMAX

T everywhere, the Li distribution evolves as in a single phase
hosting material. As noticed for the extraction process, lithium profiles typical of sharp-interface models are
well recovered for B = 1 mol/J and Keq = 100.

The role of Keq - The influence of Keq can be evaluated by comparison between Fig. 5.4 and Fig. 5.6.
As discussed for the extraction case, small values of Keq do not appear to be appropriate. The onset of a
phase-segregation is not visible in Fig. 5.6a because Keq � 1 does not promote an immediate saturation
of trap sites when they are created. Moreover, as noticed in Chapter 4, the particle is capable to host less
amount of lithium ions, especially in the particle core at the final time.

5.4.1.3 Lithium distribution at steady-state

For any finite value of B, Li concentration profiles cannot be discontinuous at steady-state if interface energies
are not accounted for. Phase-interfaces dissolve at steady state, reached when the Li flux at the boundary
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(a) (b)

Figure 5.4: Li insertion - Lithium concentration (a) and trap density (b) profiles as
function of radial coordinate at intervals of 900 s for B = 1 mol/J and Keq = 100.

(a) (b)

Figure 5.5: Li insertion - Lithium concentration (a) and trap density (b) profiles as
function of radial coordinate at intervals of 900 s for B = 0.1 mol/J and Keq = 100.

(a) (b)

Figure 5.6: Li insertion - Lithium concentration (a) and trap density (b) profiles as
function of radial coordinate at intervals of 900 s for B = 1 mol/J and Keq = 0.01.

vanishes and lithium internally redistributes. This feature relies on equations (5.23a) and (5.29) which at
steady state are solved for a flat distribution of cLi, as confirmed by the numerical results showed in Fig. 5.7.

5.4.2 Numerical simulations of the fully coupled chemo-mechanical problem

The role of the chemo-mechanical coupling - The evolution of lithium profiles accounting for mechanical
effects is shown in Figure 5.8 assuming B = 1 mol/J and Keq = 100. Parameters B and Keq have been
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Figure 5.7: Time evolution of Li profiles for an
isolated particles initially in a two-phase regime at
time intervals of 1 hour. The initial Li distribu-
tion has been obtained by stopping the extraction
process for B = 0.1 mol/J after 30 minutes (see
Fig.5.2a). The concentration distribution progres-
sively smoothes toward a uniform steady-state dis-
tributions in about 9 hours.

selected from the numerical analysis carried out in Section 5.4.1.
The impact of the mechanics on lithium distribution can be analyzed by comparison among Fig. 5.8 and

Figs. 5.1a - 5.4a. The chemo-mechanical coupling causes a relaxation of Li concentration gradients attained
during the evolution of cmaxT . Although the impact of mechanics is not negligible, the onset of a finite-with
interface separating Li-rich and Li-poor phases is still recognizable. Numerical analyses, that have not been
reported here for the sake of brevity, show that the lithium evolution does not change for B > 1 mol/J.

The numerical analysis with B ≥ 1 mol/J and Keq � 1 is thus able to reproduce phase diagram of LiCoO2

even though the mechanics is accounted for. For both charge and discharge processes, concentration profiles
show steep gradients, which resemble a core/shell structure typical of a phase transformation. Gradients
relax as the process advances, thus causing the phase boundary to progressively smear.

(a) (b)

Figure 5.8: Lithium concentration profiles for B = 1 mol/J and Keq = 100 at intervals
of 1200 s upon insertion (a) and extraction (b) processes.

The stress distribution - Figs. 5.9 and 5.10 plot the stress evolution during Li insertion and extraction, in
terms of radial stress σr, hoop stress σθ, hydrostatic pressure p, and deviatoric stress στ . Since the particle is
mechanically free to expand and contract, the state of stress emanates merely from the lithium redistribution
in the hosting lattice.

The hoop stress σθ (and the pressure p as well) is initially positive on the surface and compressive at
the particle center during lithiation (see Fig. 5.9d), because of the negative value of the chemical expansion
coefficients ωL and ωT . Vice versa during extraction. The radial stress is null on the particle surface, since
it is imposed by the boundary conditions. It is compressive during insertion and positive during extraction
(Figs. 5.9c and 5.10c).

The deviatoric part of the stress στ exhibits peaks, which move in time in correspondence of the phase-
boundary. Those peaks overcome the yield stress (because of the viscosity) close to the particle boundary,
where concentration gradients are steeper. Plastic flow is thus experienced close to the particle surface
during both insertion and extraction, causing a reversal of the hoop stress with time near the boundary
(Figs. 5.9a and 5.10a). Plastic deformations are also responsible of residual stresses at steady state, when
concentrations in the particle are uniform.
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The pressure in the core shell is high (well above the yield stress upon Li removal), thus suggesting
that the role of parameter α in equation (5.15) shall be considered carefully. Stress components σr, σθ as
well as p exhibit stress quasi-plateaus during phase-transition as clearly visible in the extraction case. The
extension of these plateaus is bounded by the smeared phase-interface, suggesting that lithium redistributes
homogeneously in the particle core.

Although the insertion and extraction processes induces similar stress distributions (with opposite signs),
their magnitude are considerably different during phase change.

(a) (b)

(c) (d)

Figure 5.9: Li insertion - Stress state in terms of deviatoric part (a) and pressure
(b), radial (c) and hoop (d) components as a function of radial coordinate at intervals
of 1200 s for B = 1 mol/J and Keq = 100. The letters highlight the correspondence
with the simultaneous lithium distributions as reported in Fig. 5.8a.
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(a) (b)

(c) (d)

Figure 5.10: Li extraction - Stress state in terms of deviatoric part (a) and pressure
(b), radial (c) and hoop (d) components as a function of radial coordinate at intervals
of 1200 s for B = 1 mol/J and Keq = 100. The letters highlight the correspondence
with the simultaneous lithium distributions as reported in Fig. 5.8b.

5.5 A 3D Example

A particle subjected to non-uniform boundary conditions is considered, specifically a sphere of radius r0 =
10µm free to expand and contract. The particle, with initial uniform Li concentration cLi(~x, t = 0) =
0.5 cMAX

Li , is lithiated as described below.
Li insertion is prescribed only on a part of the particle surface, as shown in Figure 5.1a. The insertion

area has been selected from the spherical cup with base radius rb = 1/5 r0, representing ∼ 2% of the whole
particle surface. Lithium ions are initially inserted with uniform radial flux h = 5.556 × 10−6 mol/(m2 s)
until Li concentration at point P (x2/r0 = −1) reaches the limit cLi = 0.99 cMAX

Li . The concentration is
held fixed afterwards, at a uniform value cLi. Based on the outcomes for the 1D examples, B = 1 mol/J and
Keq = 100. Material parameters are summarized in Table 5.1.

The computational domain reduces to a quarter of sphere, since the problem is axisymmetric with respect
to axis x2. The Finite Element discretization (28, 623 four-nodes tetrahedra for a total number of 151, 176
nodes) has been generated by means of ABAQUS CAE, biasing the mesh in correspondence to the Li insertion
area (see Fig. 5.1b).

The load history is divided into two loading steps, to accomplish the Li insertion procedure, namely Step1
for the Li-flux boundary condition and Step2 for Li concentration one. The Backward Euler Algorithm
allows time advancing, with time increments ∆t1 = 0.36 s and ∆t2 = 36 s respectively for Step1 and Step2.
To avoid volumetric locking, the mechanical governing equations have been implemented through B-BAR
method [306]. The numerical algorithm has been implemented by means of an ABAQUS User Element
Subroutine. Further details of the numerical resolution are postponed in Appendix 5.B.

Figure 5.2 plots the evolution of the lithium concentration along the x2 axis for Step1 (a) and Step2
(b). In Step1 lithium accumulates in a small region near the insertion area. The onset of the phase-
segregation additionally lowers the effective Li diffusivity, causing saturation at point P after 120 s. The
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(a) (b)

Figure 5.1: (a) Schematic representation of the geometry and boundary conditions
used for the three-dimensional example. The surface where Li insertion takes place is
highlighted in red. (b) Plot of the FE discretization generated with ABAQUS CAE.

analysis switches to Step2 afterwards. As showed in Fig. 5.2b, steep gradients arise in the concentration
gap between the solubility limits of phase I and phase II, resembling an interface with finite width. This
“interface” progressively moves and relaxes along the x2 axis as the particle fills.

The time scale of the processes in Step2 is remarkably slower than that of Step1, because of a different
Li flux between the two regimes at the particle surface. The inward flux that meets the Dirichlet boundary
condition in Step2 turns out to be much smaller than the assigned flux h at Step1.

Contour plots (see Fig. 5.3) also denotes the ability of the present model to recover a moving finite-width
interface between Li-rich and Li-poor phases.

(a) (b)

Figure 5.2: Lithium concentration profiles along the x2 axis at different time instants
during Step1 (a) and Step2. For the sake of readability the abscissa coordinate in (a)
has been restricted to −1 ≤ x2/r0 ≤ −1/2.

The stress distribution along x2 axis is plot in Fig. 5.4. Both pressure p and Mises stress ||dev[σ]||
show peaks in correspondence of the phase-interface. The thinner the interface thickness the higher the
stress peak. This conclusion is corroborated by the 3D contour plots in Figure 5.5, which confirm that the
stress components intensify near the phase-interface. The stress profile is quite complex: the Mises stress
magnitude attains its maximum on the external surface, vice-versa for the hydrostatic pressure.

In this numerical simulation a plastic deformation field is observed only close to the Li insertion surface,
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Figure 5.3: Contour plots of Li concentration at three different time instants.

as depicted in Figure 5.6. Such an inelastic deformation influences the stress distribution near to the insertion
surface. For example the hydrostatic pressure inverts its sign from positive (tensile) to negative (compressive)
in order to accomodate the residual plastic deformation.

(a) (b)

Figure 5.4: Hydrostatic pressure (a) and Mises stress (b) profiles along the x2 axis at
different time instants during Step2. For the sake of clarity the abscissa coordinate in
has been restricted to −1 ≤ x2/r0 ≤ 0.

(a) (b)

Figure 5.5: Contour plot of hydrostatic pressure (a) and Mises stress (b) at t = 30h.
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Figure 5.6: Three dimensional plot of the plasti-
cized region at t = 50h.

5.6 Conclusions

In this Chapter a chemo-mechanical model of the response of LiCoO2 electrodes has been proposed based
on experimental evidence. Phase-segregations and mechanical deformations are observed as lithium is in-
serted/extracted in the electrode. The first-order phase transition taking place between x = 0.75 and
x = 0.93 in LixCoO2 affects the diffusion of lithium in the electrode because of the coexistence of Li-rich
and Li-poor phases. Moreover, the stress state intensifies during the phase-segregation leading to a stress
evolution compatible with plastic flow in the electrode.

The phase-transition is here modeled through a trapping of Li ions in the hosting material. Accordingly
the transition from the Li-poor phase to the Li-rich phase is triggered by lithium immobilization in the
electrode and vice versa. In addition, the evolution of trap sites for Li immobilization has been prescribed
in order to simulate the phase-diagram of LiCoO2. The inelastic mechanical response is modeled by means
of a Perzyna-like visco plastic law introducing a viscosity dependent on the amount of trapped lithium. No
interface energies are introduced here differently from other models for phase-segregation, e.g. sharp-interface
and phase-field models.

Modeling the trapping reaction with evolving trap density leads to a non-convex Helmholtz free energy
density as customary for phase-segregating materials. In particular three distinctive regimes arise as a
function of lithium content in accordance to the phase diagram of LiCoO2.

The transient response of a spherical particle is analyzed through a series of numerical simulations. If
the mechanics is neglected, a lithium evolution resembling that typical of sharp-interface models is recovered
for both lithiation and delithiation. The numerical results slightly change if the mechanics is accounted for,
since the chemo-mechanical governing equations are fully coupled. The simulated stress evolution in the
particle shows an intensification of the stress state during the two-phase regime as observed experimentally.
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Appendix

5.A 1D Finite Element Implementation

The consistent tangent matrix [K
(k)
n+1] and residual vector [R

(k)
n+1] for the Newton-Raphson algorithm can

be easily derived following the same procedure described in Appendix 4.A. The approximated solution, at
time step n+ 1, is computed iteratively (superscript k stands for the iteration counter) in terms of solution

increments δy(k+1) = {δc(k+1)
L , δu(k+1), δΣ(k+1)} by solving the following linear problem




[KLL] [ 0 ] [KLΣ]

[KuL] [Kuu] [KuΣ]

[KΣL] [KΣu] [KΣ Σ]




︸ ︷︷ ︸
[K

(k)
n+1]




[δcL]

[δu]

[δΣ]




︸ ︷︷ ︸
[δ y

(k+1)
n+1 ]

=




[RL]

[Ru]

[RΣ]




︸ ︷︷ ︸
[R

(k)
n+1]

where the consistent tangent matrix [Kαβ ] and the residual vector components [Rα] are

[KLL] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NL]

(
1 +

∂cT
∂cL

∣∣∣∣(k)

(n+1)

)
r2 dr+

+
1

∆t

∫
Ωe

[NL]T [NL]
(
cL|(k)

n+1 − cL|n
) ∂2cT

∂c2L

∣∣∣∣(k)

(n+1)

r2 dr+

+
1

∆t

∫
Ωe

[NL]T [NL]
(

Σ|(k)
n+1 − Σ|n

) ∂2cT
∂Σ ∂cL

∣∣∣∣(k)

(n+1)

r2 dr+

+

∫
Ωe

[BL]T [BL] D| L r
2 dr −

∫
Ωe

[BL]T [NL]
(

[BΣ] [Σ](k)
n+1

) d D|Σ
d cL

∣∣∣∣(k)

n+1

r2 dr

}
,

[KLΣ] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NΣ]
(
cL|(k)

n+1 − cL|n
) ∂2cT
∂cL ∂Σ

∣∣∣∣(k)

(n+1)

r2 dr+

+
1

∆t

∫
Ωe

[NL]T [NΣ]
∂cT
∂Σ

∣∣∣∣(k)

(n+1)

r2 dr+

+
1

∆t

∫
Ωe

[NL]T [NΣ]
(

[Σ](k)
n+1 − [Σ]n

) ∂2cT
∂Σ2

∣∣∣∣(k)

(n+1)

r2 dr+

−
∫

Ωe
[BL]T [BΣ] D|Σ

∣∣(k)

n+1
r2 dr

}
,
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[KuL] =

Nh

A
e=1

{∫
Ωe

[Bu]T [NL]

(
2
∂στ
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r dr
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)
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}
.

The value assumed by the scalar functions and their derivatives appearing in [Kα,β ] and [Rα] can be easily
computed from the respective definitions for as long as they do not depend on inelastic deformations. This
does not apply for στ which constitutively depends on εin and vice versa. Therefore στ and its derivatives
are computed applying a viscoplastic Retur-mapping Algorithm, as described in Appendix 4.A.
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5.B 3D Finite Element Implementation

5.B.1 Non-dimensional governing equations and weak form

The system of governing equations has been scaled with suitable coefficients in order to deal with a system
of non-dimensional equations. In this way Eqs. (5.16) have been rephrased in term of the adimensional
variables

x∗i =
xi
l̄
, t∗ =

t

t̄
, c∗L =

cL
c̄
, c∗T =

cT
c̄
, u∗i =

ui
l̄
, σ∗ij =

σij
σ̄
, (5.30)

by introducing l̄, t̄, c̄, σ̄ as reference length, time, concentration, and stress respectively.

Taking advantage of definitions (5.30), governing equations (5.16) are equivalent to the following non-
dimensional ones

∂c∗L
∂t∗

+
∂c∗T
∂t∗

+ div∗[~h∗L] = 0 , (5.31a)

div∗[σ∗] = ~0 , (5.31b)

where

div∗[~h∗L] =

3∑

i=1

h∗Li
∂x∗i

, div∗[σ∗] =

3∑

i=1

3∑

j=1

σ∗ij
∂x∗j

~ei , ~h∗L =
~hL t̄

c̄ l̄
.

Note that equations (5.31) have the same expression of (5.16) but are formulated in terms of non-
dimensional variables. In the same way the non-dimensional constitutive laws keep the same expression of
(5.15) - (5.17) - (5.18) - (5.19) - (5.20) as long as the original variables and parameters are replaced with
(5.30) and the following non-dimensional constants

D| ∗L =
D| L t̄
l̄2

, ω∗L = ωL c̄ , ω∗T = ωT c̄ , (RT )∗ = RT
c̄

σ̄
,

(cmaxL )
∗

=
cmaxL

c̄
,

(
cMAX
T

)∗
=
cMAX
T

c̄
, (Keq)

∗
= Keq , B∗ = B

σ̄

c̄
,

K∗ =
K

σ̄
, G∗ =

G

σ̄
, g∗0 =

g0

t̄ σ̄
, g∗1 =

g1

t̄ σ̄
, σ∗Y =

σY
σ̄
.

The weak formulation results from multiplying the strong form of governing equations (5.31) by a suitable
set of tests functions and performing an integration upon the domain, exploiting the integration by parts
formula with the aim of reducing the order of differentiation in space.

Even though the first order derivative of hr can be reduced applying the integration by parts, its con-
stitutive definition contains a second order derivative. To include the effect of stress gradient in equations
(5.31a) we follow the approach adopted in Appendix 4.A by introducing a new variable Σ(r, t) defined as

Σ− tr [σ ] = 0 , (5.33)

which will be approximate as an explicit degree of freedom. Eq. (5.33) is then added to the set of
governing equations (5.31) for the numerical solution of the problem.

111



The overall weak form of the problem is derived starting from each governing equation separately. In
what follow the asterisk is omitted for the sake of readability.

From the mass balance Eq. (5.31a) we obtain

∫

Ω

ĉL

{
∂cL
∂t

+
∂cT
∂t

+ div
[
~hL

]}
dV =

=

∫

Ω

ĉL

{
∂cL
∂t

+
∂cT (cL,Σ)

∂t

}
dV +

∫

Ω

∇ [ ĉL ] ·
{

D| L∇ [ cL ]−D|Σ (cL)∇ [ Σ ]

}
dV+

+

∫

∂NΩ

ĉL h̄L dA = 0 ,

where D|Σ stands for

D|Σ =
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
.

For the equilibrium equation (5.31b)

∫

Ω

~̂u · div [σ ] dV = −
∫

Ω

∇S
[
~̂u
]

: σ(cL,Σ, ~u) dV +

∫

∂NΩ

~̂u · ˆ̄p dA = 0 ,

with ∇S denoting the symmetric gradient operator.

Finally Eq. (5.33) returns

∫

Ω

Σ̂
{

Σ− tr [σ(cL,Σ, ~u) ]
}

dV = 0 .

Note that boundary conditions (5.21) have been applied and test functions ĉL, ~̂u, Σ̂ are null on the
Dirichlet boundary. The latter condition arises since test functions represents admissible variations of the
related degrees of freedom, i.e. cL, ~u, Σ.

In conclusion, the weak form of the balance equations can be written in the time interval [0, tf ] as

Find y(~x, t) ∈ V [0, tf ] such that
∂

∂t
b (ŷ(~x), cL(~x, t)) + a (ŷ(~x), y(~x, t)) = f (ŷ(~x)) ∀ ŷ(~x) ∈ V (5.34)

where

b (ŷ(~x), cL(~x, t)) =

∫

Ω

ĉL cL dV ,

a (ŷ(~x), y(~x, t)) =

∫

Ω

ĉL
∂cT (cL,Σ)

∂t
dV +

∫

Ω

∇ [ ĉL ] ·
{

D| L∇ [ cL ]−D|Σ (cL)∇ [ Σ ]

}
dV+

+

∫

Ω

∇S
[
~̂u
]

: σ(cL,Σ, ~u) dV +

∫

Ω

Σ̂
{

Σ− tr [σ(cL,Σ, ~u) ]
}

dV ,

f (ŷ(~x)) = −
∫

∂NΩ

ĉL h̄L dA+

∫

∂NΩ

~̂u · ˆ̄p dA .

with y = {cL, ~u, Σ} collecting the time-dependent unknown fields. Column ŷ collects the steady state

test functions that correspond to the unknown fields in y, i.e. ŷ = {ĉL, ~̂u, Σ̂}. The identification of the
functional space V falls beyond the scope of this work.
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5.B.2 Numerical discretization

Following the standard finite element method, the spatial domain Ω is divided into Nh subdomains Ωe, each
one with nn nodes, such that

Ω =

Nh⋃

e=1

Ωe

Inside any subdomain any degree of freedom (and its variation) is approximated through the following
interpolation

hcL (~x, t) = [NL(~x)] [cL(t)] , hĉL (~x, t) = [NL(~x)] [ĉL(t)] , (5.35a)

h~u (~x, t) = [Nu(~x)] [u(t)] , h~̂u (~x, t) = [Nu(~x)] [û(t)] , (5.35b)

hΣ (~x, t) = [NΣ(~x)] [Σ(t)] , hΣ̂ (~x, t) = [NΣ(~x)] [Σ̂(t)] , (5.35c)

where the tables [N(~x)] collect the time-independent local shape functions N i(~x) as

[NL(~x)] = [NΣ(~x)] =
{
N1 , N2 , ... , Nnn

}
,

[Nu(~x)] =



N1 0 0 N2 0 0 ... Nnn 0 0
0 N1 0 0 N2 0 ... 0 Nnn 0
0 0 N1 0 0 N2 ... 0 0 Nnn


 ,

and [cL(t)] , [u(t)] , [Σ(t)] collect the nodal values of variable cL, ~u,Σ at time t as follow

[cL(t)] =
{
c1L , c

2
L , ... , c

nn
L

}T
, [ĉL(t)] =

{
ĉ1L , ĉ

2
L , ... , ĉ

nn
L

}T
,

[u(t)] =
{
u1

1 , u
1
2 , u

1
3 , u

2
1 , u

2
2 , u

2
3 , ... , u

nn
1 , unn2 , unn3

}T
,

[û(t)] =
{
û1

1 , û
1
2 , û

1
3 , û

2
1 , û

2
2 , û

2
3 , ... , û

nn
1 , ûnn2 , ûnn3

}T
,

[Σ(t)] =
{

Σ1 , Σ2 , ... , Σnn
}T

[Σ̂(t)] =
{

Σ̂1 , Σ̂2 , ... , Σ̂nn
}T

.

From Eq. (5.35) it results

∇ [ cL ] = [BL(~x)] [cL(t)] ,

∇S [ ~̂u ] : σ = [û(t)]
T

[Bu(~x)]
T

[σ(~x, t) ],

∇ [ Σ ] = [BΣ(~x)] [Σ(t)] ,

with

[BL(~x)] = [BΣ(~x)] =



N1,1 N2,1 ... Nnn,1

N1,2 N2,2 ... Nnn,2

N1,3 N2,3 ... Nnn,3


 ,
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[Bu(~x)] =




N1,1 0 0 N2,1 0 0 ... Nnn,1 0 0
0 N1,2 0 0 N2,2 0 ... 0 Nnn,2 0
0 0 N1,3 0 0 N2,3 ... 0 0 Nnn,3

N1,2 N1,1 0 N2,2 N2,1 0 ... Nnn,2 Nnn,1 0
0 N1,3 N1,2 0 N2,3 N2,2 ... 0 Nnn,3 Nnn,2

N1,3 0 N1,1 N2,3 0 N2,1 ... Nnn,3 0 Nnn,1



,

and

[σ(~x, t)] =
{
σ11 , σ22 , σ33 , σ12 , σ23 , σ13

}T

with

N i,j =
∂N i

∂xj
i = 1, 2, 3 j = 1, 2, 3

The discretization in time is performed applying the implicit backward Euler method. Accordingly we
divide time interval [0, tf ] into Nt temporal steps ∆t = tf/Nt. We define for convenience

y(r)|n = y(~x, n∆t) , ∆y(~x)|n+1 = y(~x)|n+1 − y(~x)|n n = 1, 2, ... , Nt

The discretized weak form is finally obtained from (5.34) by applying the finite element interpola-
tion (5.35) and the backward Euler scheme. It results in terms of approximate degrees of freedom hy ={
hcL,

hcT ,
h~u, hΣ

}
and variations hŷ = {hĉL, hĉT , h~̂u, hΣ̂} as follow

Find hy(~x)
∣∣
n+1
∈ hV such that

1

∆t
hb
(
hŷ(~x), ∆hcL(~x)

∣∣
n+1

)
+ ha

(
hŷ(~x), hy(~x)

∣∣
n+1

)
= f

(
hŷ(~x)

)
∀ hŷ(~x) ∈ hV , n = 1, 2, ... , Nt

(5.40)

where

hb
(
hŷ(~x), ∆hz(~x)

∣∣
n+1

)
=

Nh

A
e=1

{
[ĉL]

T
∫

Ωe
[NL]

T
[NL]

(
[cL]n+1 − [cL]n

)
dV

}
,

ha
(
hŷ(~x), hy(~x)

∣∣
n+1

)
=

Nh

A
e=1

{
1

∆t
[ĉL]

T
∫

Ωe
[NL]

T
[NL]

(
[cL]n+1 − [cL]n

) ∂cT (cL,Σ)

∂cL

∣∣∣∣
n+1

dV+

+
1

∆t
[ĉL]

T
∫

Ωe
[NL]

T
[NΣ]

(
[Σ]n+1 − [Σ]n

) ∂cT (cL,Σ)

∂Σ

∣∣∣∣
n+1

dV+ +[ĉL]
T
∫

Ωe
[BL]

T
[BL] [cL]n+1 D| L r2 dr+

+ [ĉL]
T
∫

Ωe
[BL]

T
[BL] [cL]n+1 D| L|n+1

dV +

− [ĉL]
T
∫

Ωe
[BL]

T
[BΣ] [Σ]n+1 D|Σ(cL)|

n+1
dV +

+ [ û ]T
∫

Ωe
[Bu]

T
[σ(cL,Σ, u) ]n+1 dV+

+ [Σ̂]T
∫

Ωe
[NΣ]

T
(

[NΣ] [Σ]n+1 − tr [σ(cL,Σ, ~u) ]
∣∣
n+1

)
dV

}
,
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f
(
hŷ(~x)

)
=

Nh

A
e=1

{
−[cL]

T
∫

∂NΩe
[NL]

T
h̄L dA+ [ û ]T

∫

∂NΩe
[Nu]

T · ˆ̄p dA

}
.

Note that the integrals in (5.34) are now computed summating the contribution of any subdomain Ωe

by means of the assembly operator A. Eq. (5.40) is equivalent to a system of non-linear equations for
the unknowns hy which is solved with a standard Newton-Raphson algorithm. Accordingly the solution is

computed iteratively in terms of solution increments δy(k+1) = {δc(k+1)
L , δc

(k+1)
T , δ~u(k+1), δΣ(k)} at iteration

k + 1 for any time step (the superscript h has been removed for clarity). Without going through all details
for convenience (see [323] for instance), the overall problem reduces to the following linear system




[KLL] [ 0 ] [KLΣ]

[KuL] [Kuu] [KuΣ]

[KΣL] [KΣu] [KΣ Σ]




︸ ︷︷ ︸
[K

(k)
n+1]




[δcL]

[δu]

[δΣ]




︸ ︷︷ ︸
[δ y

(k+1)
n+1 ]

=




[RL]

[Ru]

[RΣ]




︸ ︷︷ ︸
[R

(k)
n+1]

where the consistent tangent matrix [Kαβ ] and the residual vector components [Rα] are

[KLL] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NL]

(
1 +

∂cT
∂cL

∣∣∣∣(k)

(n+1)

)
dV +

+
1

∆t

∫
Ωe

[NL]T [NL]
(
cL|(k)

n+1 − cL|n
) ∂2cT

∂c2L

∣∣∣∣(k)

(n+1)

dV +

+
1

∆t

∫
Ωe

[NL]T [NL]
(

Σ|(k)
n+1 − Σ|n

) ∂2cT
∂Σ ∂cL

∣∣∣∣(k)

(n+1)

dV +

+

∫
Ωe

[BL]T [BL] D| L dV −
∫

Ωe
[BL]T [NL]

(
[BΣ] [Σ](k)

n+1

) d D|Σ
d cL

∣∣∣∣(k)

n+1

dV

}
,

[KLΣ] =

Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NΣ]
(
cL|(k)

n+1 − cL|n
) ∂2cT
∂cL ∂Σ

∣∣∣∣(k)

(n+1)

dV +

+
1

∆t

∫
Ωe

[NL]T [NΣ]
∂cT
∂Σ

∣∣∣∣(k)

(n+1)

dV +

+
1

∆t

∫
Ωe

[NL]T [NΣ]
(

[Σ](k)
n+1 − [Σ]n

) ∂2cT
∂Σ2

∣∣∣∣(k)

(n+1)

dV +

−
∫

Ωe
[BL]T [BΣ] D|Σ

∣∣(k)

n+1
dV

}
,

[KuL] =

Nh

A
e=1

{∫
Ωe

[Bu]T
[
∂σ

∂cL

](k)

n+1

[NL] dV

}
,

[Kuu] =

Nh

A
e=1

{∫
Ωe

[Bu]T
[
∂σ

∂ε

](k)

n+1

[Bu] dV

}
,
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[KuΣ] =

Nh

A
e=1

{∫
Ωe

[Bu]T
[
∂σ

∂Σ

](k)

n+1

[NΣ] dV

}
,

[KΣL] =

Nh

A
e=1

{
−
∫

Ωe
[NΣ]T [NL]

∂tr [σ ]

∂cL

∣∣∣∣(k)

n+1

dV

}
,

[KΣu] =

Nh

A
e=1

{
−
∫

Ωe
[NΣ]T

[
∂tr [σ ]

∂ε

](k)

n+1

[Bu] dV

}
,

[KΣ Σ] =

Nh

A
e=1

{∫
Ωe

[NΣ]T [NΣ] dV −
∫

Ωe
[NΣ]T

[
∂tr [σ ]

∂Σ

](k)

n+1

[NΣ] dV

}
,

[RL] = −
Nh

A
e=1

{
1

∆t

∫
Ωe

[NL]T [NL]
(

[cL](k)
n+1 − [cL]n

) (
1 +

∂cT
∂cL

∣∣∣∣(k)

(n+1)

)
dV +

+
1

∆t

∫
Ωe

[NL]T [NΣ]
(

[Σ](k)
n+1 − [Σ]n

) ∂cT
∂Σ

∣∣∣∣(k)

(n+1)

dV +

+

∫
Ωe

[BL]T [BL] [cL](k)
n+1 D| L dV +

−
∫

Ωe
[BL]T [BΣ] [Σ](k)

n+1 D|Σ
∣∣(k)

n+1
dV +

∫
∂NΩe

[NL]T h̄L dA

}
,

[Ru] = −
Nh

A
e=1

{∫
Ωe

[Bu]T [σ ]
(k)
n+1 dV −

∫
∂NΩe

[Nu]T · ˆ̄p dA

}
,

[RΣ] = −
Nh

A
e=1

{∫
Ωe

[NΣ]T
(

[NΣ] [Σ](k)
n+1 − tr [σ ]

∣∣(k)

n+1

)
dV

}
.

The value assumed by the scalar functions and their derivatives appearing in [Kαβ ] and [Rα] can be
easily computed from the respective definitions as long as they do not depend on the inelastic deformations.
This applies for the trapped concentration cT , the volumetric part of the stress tr [σ ], as well as for D|Σ.

Conversely the constitutive definition of dev [σ ] depends on εin and vice versa. In this case the flow rule
(5.17a) has to be integrated properly. This has been conducted here with a standard viscoplastic Return-
mapping Algorithm [323]. The method is based on the definition of a trial elastic state as a state in which
the evolution of εin is arbitrarily frozen from the previous time step. Accordingly the trial deviatoric stress
is defined as

dev [σ ]|trial = 2G
(
ε|(k)
n+1 − εin

∣∣
n

)
. (5.41)
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If the trial state does not cause the inelastic flow to occur, i.e. ϕ (dev [σ ]|trial) < 0, the step is elastic
which implies that

dev [σ ]|(k)
n+1 = dev [σ ]|trial ,

and the derivatives of σ can be calculated merely from (5.41) and (5.18a) obtaining in matrix notation

[
∂σ

∂ε

](k)

n+1

=

(
K − 2

3
G

)
[ i ] [ i ]T + 2G [I] ,

[
∂σ

∂cL

](k)

n+1

= −3K

(
ωL + ωT

∂cT
∂cL

∣∣∣∣
(k)

n+1

)
[ i ] ,

[
∂σ

∂Σ

](k)

n+1

= −3K ωT
∂cT
∂Σ

∣∣∣∣
(k)

n+1

[ i ] ,

with

[ i ] =
{

1 , 1 , 1 , 0 , 0 , 0
}T

, [I] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1

2 0 0
0 0 0 0 1

2 0
0 0 0 0 0 1

2



.

On the other hand, when ϕ (dev [σ ]|trial) ≥ 0 the solid undergoes viscoplastic flow. The increment of
inelastic deformation is computed by numerical integration of formula (5.17a)

εin
∣∣(k)

n+1
− εin

∣∣
n

= ∆λN trial , (5.42a)

which corrects the trial stress state as follow

dev [σ ]|(k)
n+1 = dev [σ ]|trial − 2G ∆λN trial , (5.42b)

with

N |trial =
dev [σ ]|trial

‖ dev [σ ]|trial ‖
(5.42c)

The symbol ∆λ = λ∆t defines the increment of the plastic multiplier for the current iteration. The
latter is calculated by inserting Eq. (5.42b) into Eq. (5.17a) in the closed form expression

∆λ =
‖ dev [σ ]|trial ‖ −

√
2
3 σY

g(cT )|(k)
n+1

∆t + 2G

. (5.43)
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The stress tensor is then computed by substituting (5.43) into (5.42b) and its derivatives read

[
∂σ

∂ε

](k)

n+1

=

(
K − 2

3
Gθn+1

)
[ i ] [ i ]T + 2Gθn+1 [I] − 2Gθn+1 [Nn+1] [Nn+1]

T
,

[
∂σ

∂cL

](k)

n+1

= −3K

(
ωL + ωT

∂cT
∂cL

∣∣∣∣
(k)

n+1

)
[ i ] − 2G

∂∆λ

∂cT

∣∣∣∣
(k)

n+1

∂cT
∂cL

∣∣∣∣
(k)

n+1

[Nn+1] ,

[
∂σ

∂Σ

](k)

n+1

= −3K ωT
∂cT
∂cL

∣∣∣∣
(k)

n+1

[ i ] − 2G
∂∆λ

∂cT

∣∣∣∣
(k)

n+1

∂cT
∂Σ

∣∣∣∣
(k)

n+1

[Nn+1] ,

where

[Nn+1] =
{
N trial

11 , N trial
22 , N trial

33 , N trial
12 , N trial

23 , N trial
13

}T
.

and

θn+1 = 1− 2G∆γ

‖ dev [σ ]|trial ‖
, θn+1 =

2G

2G+
g(cT )|(k)

n+1

∆t

+ θn+1 − 1 .

Finally the B-BAR method has been implemented in order to avoid volumetric locking. This numerical
procedure reduces operatively in substituting the matrix [Bu] with a matrix [Bu] defined conveniently. Details
can be found in the broad literature on the argument (see [306] for example).
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Part III

Porous Electrode
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Chapter 6

Microscopic modeling of porous
electrodes

6.1 Introduction

The behavior of battery cells is intrinsically multi-scale, as the multi-physics phenomena involving diffusion,
migration, intercalation, and the accompanying mechanical effects take place at the characteristic length
scale of the electrode compound, which is three orders of magnitudes smaller than the battery size [68].

In a recent contribution [67], a computational homogenization technique was tailored to Li-ion batteries
by using a multiscale scheme with a complex multi-particle representative volume element (RVE). Such an
approach allows modeling explicitly the electrochemical interactions that take place at the interface between
particles, in which neutral lithium is stored, and the electrolyte, in which ionic lithium moves together with
its salt counter-ions driven by diffusion and migration.

The mathematical modeling of porous-electrodes at microscopic scale is nowadays object of several studies
that aim at coupling the involved complex multi-physics phenomena with realistic electrode microstructures
[163, 151, 149, 150]. An accurate morphology reconstruction is crucial to model localized phenomena, like
hot spot formation that causes thermal runway, as well as to identify averaged properties, which have been
shown to be extremely sensitive to the size, shape, and particles distribution within the RVE.

(a) (b)

Figure 6.1: Cross-sectional image of a porous electrode microstructure obtained through
FIB-SEM microscope (a). The phases involved are schematized in (b) in an enlarged
portion.

Any porous electrode is a complex media made of different phases as showed in Fig. 6.1. It consists of
particles of micrometric size (as LiCoO2, LiFePO4, and LiMn2O4) embedded in a porous matrix formed by the
mixture of carbon nanoparticles and (polymeric) binder. The electrode particles are generally called active
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or storage particles since Li ions are inserted/extracted from them during battery charging/discharging.
The matrix increases the electrical conductivity of the electrode and provides structural integrity. The
liquid electrolyte penetrates in the carbon/binder porosity up to the active particles surface allowing the
electrochemical reaction to occur. For modeling perspectives, the electrode microstructure can be idealized
as a three-phase media formed by active particles, conductive particles, and electrolyte as represented in
Figure 6.2a.

For the sake of generality, the battery cell is supposed to have a single binary electrolyte which is a
solution of a binary salt, say LiX, in a solvent, say a polymer. The electrolyte is then characterized by the
presence of ionic species Li+ and X− after the complete dissociation of the binary salt LiX.

During battery discharging, Li ions intercalate in the active particles through the electrochemical reaction
schematized in Fig. 6.2b. According to [86], Li+ ions in active particles are screened by the mobile electrons,
which accompany Li+ when moves from one interstitial site to the other. Therefore the charge of Li cation
after intercalation into active particles is instantaneously wiped out by the transport of electrons over the
current collectors towards the particle surface. The active particles in the composite electrode are thus
idealized as interstitial solid solution containing dissolved lithium Li and electrons e− which are free to
move.

(a) (b)

Figure 6.2: Schematic illustration of the phases involved in the electrode modeling (a)
and representation of the electrochemical reaction that take place at the active particle
surface (b). In order to avoid confusion, Li ions dissolved in active particles are named
Li rather than Li+.

The conductive particles are modeled in a similar way allowing only the transport of electrons since this
phase does not admit the flow of any ionic species.

In this chapter the phenomena that take place in a porous electrode at micro-scale level are discussed.
The fundamental balance laws for the electro-chemo-mechanical behavior of the phases involved are first
introduced in a general form, then, specialized for active particles, conductive particles, and the electrolyte
separately. Interface conditions among these phases are discussed in section 6.3.2. Subsequently, in section
6.4, constitutive laws are derived from thermodynamic principles for any phase. Governing equations and
interface conditions are summarized in section 6.5. Finally numerical examples are shown in section 6.6.

6.2 Balance laws in abstract setting

Balance laws are here introduced in abstract setting. They will be particularized to the problem at hand
in Section 6.3. As customary for multi-component systems, we consider an abstract entity embedded in the
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solid or liquid, called network, which allows the definitions of displacements and strains [227]. The small
displacement theory is considered sufficient for the scope of this contribution.

6.2.1 Conservation of moving species

The content of a moving species β inside a body is characterized by its molar concentration cβ (~x, t) (i.e.
number of moles per unit current volume). We assume here that the time variation of the species content,
inside an arbitrary subregion P of a body B, is both due to a flux across the boundary ∂P and a species
generation inside P. The first contribution is described by the projection of a flux vector ~hβ (~x, t) (i.e. the
number of species moles per unit current area per unit time) along the outward normal vector ~n, whereas
the second one introduces a species supply rate sβ (~x, t) (i.e. number of moles per unit current volume per
unit time). Thus the global and local form of the species conservation laws are

d

dt

∫

P
cβ dV = −

∫

∂P
~hβ · ~n dA+

∫

P
sβ dV (6.1)

and

∂cβ
∂t

+ div
[
~hβ

]
= sβ . (6.2)

6.2.2 Maxwell’s equations for electro quasistatic

The presence of charged species involve Maxwell’s equations for the problem at hand. The electro quasistatic
model - EQS henceforth - is here adopted rather then the full set of Maxwell’s equations following [68]. This
choice has the main advantage to replace the hyperbolic form og Maxwell’s equations in favor of a simpler
parabolic problem, as pointed out in [281]. The EQS model can be easily derived by neglecting the time

derivative of the magnetic field ~B (~x, t) in Maxwell’s equations, obtaining [281]

div
[
~D
]

= ζ , (6.3a)

curl
[
~H
]

=
∂ ~D

∂t
+~i , (6.3b)

div
[
~B
]

= 0 , (6.4a)

curl
[
~E
]

= ~0 , (6.4b)

where the (free) charge density ζ (~x, t), (free) current density ~i (~x, t), electric displacement ~D (~x, t), magne-

tizing ~H (~x, t) and the electric ~E (~x, t) vector fields have been introduced.

Equations (6.3) coincide with the first pair of Maxwell’s equations [276], thus the local form of conservation
of charge is still valid in the EQS model

∂ζ

∂t
= −div

[
~i
]
. (6.5)

Conversely, equations (6.4) differ from the Maxwell’s equations since the electromagnetic induction is here
ignored. Accordingly the magnetic field is still solenoidal while the electric field is now irrotational. The
latter allow expressing the electromagnetic field in terms of an electric potential φ (~x, t), rather than both

an electric and magnetic potentials ~A (~x, t) as in the authentic electromagnetic problem

~E = −∇ [φ ] .

The connection between the first and second pairs of the EQS approximation is provided by the constitutive
laws
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~D = ε| 0 ~E + ~P , (6.6a)

~H = µ| 0
−1 ~B − ~M , (6.6b)

where ~P (~x, t) and ~M (~x, t) are respectively the polarization and magnetization fields, while ε| 0 and µ| 0 are non

negative universal constants [276]. In a general context ~P and ~M quantify the bounds charge and currents

densities in media as constitutive response functions of both ~E and ~B.

Owing to the Helmholtz decomposition theorem, the evolution of the electric field will be known once the
evolution of its divergence is determined. The latter can be computed, in view of (6.6a), from the differential
equation obtained by applying the divergence operator to (6.3b) as follow

div

[
∂ ~D

∂t
+~i

]
= 0 . (6.7)

The magnetic contribution to the Lorentz is neglected in the EQS approximation, as discussed in [281].
Accordingly the Lorentz force per unit volume reads

~bζ = ζ ~E . (6.8)

In view of formulae (6.6a) - (6.7) - (6.8) the magnetic field does not affect both the evolution of the

electric field and the Lorentz force, as long as ~P does not depend on ~B. This is the case of isotropic, linear,
homogeneous dielectrics for which ~P is usually expressed as

~P = ε| 0 χ ~E . (6.9)

being χ a constant called electric susceptibility. In this way the constitutive definition of the electric dis-
placement yields

~D = ε| 0ε| r ~E , (6.10)

where ε| r = (1 + χ) is the relative permittivity. Eq. (6.10) will be used in Section 6.4 for the electrolyte
solution. In this situation the magnetic field does exist but has not effect at all.

6.2.3 Faraday’s Law

The concentration of charged species in solution (e.g. ions in the electrolyte phase) is coupled with the
charge density through Faraday’s law

ζ = F
∑

β

zβ cβ , (6.11)

where F is Faraday’s constant and zβ is the valency of β-th species1. By comparison between (6.2) and (6.5)
in view of (6.11) we can write

~i = F
∑

α

zα ~hα , sζ = F
∑

α

zα sα . (6.12)

Thus the current density ~i is related to the charged species flux ~h, while the source term s in (6.2) entails a
charge generation sζ as well.

1i.e. the number of electrons transferred per ion, typically +1 for Li+ cations and -1 for X− anions.
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6.2.4 Balance of Momentum

The balance of linear and angular momentum are briefly summarized in its local form. As customary in the
literature [133], the balance of linear momentum is considered in its quasistatic approximation, since the
velocity of electro-diffusive processes is much slower than body deformation

div [σ ] +~b = ~0 , σ = σT , (6.13)

where the Cauchy stress tensor σ (~x, t) and the body forces for unit current volume ~b (~x, t) account respec-
tively for contact and action-at-a-distance forces (e.g. due to gravity and electromagnetic fields). However,

as justified in [68], the Lorentz force ~bζ is negligible compared to other mechanical effects since the charge
separation in both active particles and electrolyte is irrelevant. The electroneutrality approximation therefore
allows us to uncouple the mechanical and electric fields in the force balance equation (6.13), which in the
absence of mechanical body forces becomes homogeneous.

6.3 Balance laws and interface conditions

The evolution of the electrochemical and mechanical fields at the finest scale is defined and monitored in an
RVE of volume V and boundary ∂V . It is provided with the essential physical and geometrical information
on the microstructural components, i.e. the active particles, the conductive particles, and the pore filling
electrolyte. Two kinds of particles are modeled within the RVE: the active particles - collectively occupying
domain Va - and the conductive particles that define domain Vc. Accordingly, the solid phase will be occupy
volume Vs = Va ∪ Vc. The electrolyte will fill the remaining volume Ve such that V = Vs + Ve.

6.3.1 Balance Equations

The conservation of moving species characterizes the species transport in two phases, namely the transport of
lithium ions in the active particles and electrolyte as well as the transport of and X− ions in the electrolyte2

∂cLi

∂t
+ div

[
~hLi

]
= 0 ~x ∈ Va , (6.14a)

∂cLi+

∂t
+ div

[
~hLi+

]
= 0 ~x ∈ Ve , (6.14b)

∂cX−

∂t
+ div

[
~hX−

]
= 0 ~x ∈ Ve . (6.14c)

The concentration of lithium is identically zero in the conductive particles. There is no supply of species
at the micro scale, as: (i) intercalation phenomena are analytically described as mass flux along proper
interfaces; (ii) the degree of dissociation of the binary salt in the solution is complete.

Current density in active and conductive particles is due to electron transport so that the local form of
electrons conservation

∂ce−
∂t

+ div
[
~he−

]
= 0 ~x ∈ {Va ∪ Vc} , (6.15)

is equivalent to the local form of charge conservation in the assumption that the positively charged cores are
steady. Following the same path of reasoning the conservation of charge in the electrolyte is guaranteed by
equations (6.14b) - (6.14c).

As discussed in section 6.2.2 the electric displacement field (in the electrolyte denoted with ~De, in the

solid phase with ~Ds) is governed by the following rate equations

2As said before, the lithium ions in the active particles will be denoted with Li rather than Li+ for convenience.
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div

[
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

)]
= 0 ~x ∈ Ve , (6.16a)

div

[
∂ ~Ds

∂t
+~is

]
= 0 ~x ∈ Vs . (6.16b)

Inertia effects as well as non electrostatic bulk forces are neglected. In light of the electroneutrality as-
sumption, electro-static forces are of secondary order. Therefore the balance of momentum (6.13) specializes
as

div [σ ] = ~0 , σ = σT , ~x ∈ V . (6.17)

6.3.2 Interface Conditions

We introduce the boundary values and the jump of a generic function f (~x, t) at a generic interface I =
∂Vα ∩ ∂Vβ as

f |αI = lim
~x∈Vα→I

f (~x, t) , f |βI = lim
~x∈Vβ→I

f (~x, t) ,

and

JfKI = f |αI − f |βI .
In the present framework, compatibility and traction continuity are imposed along all internal interfaces.

These conditions along an interface ∂Va ∩ ∂Vc between active particles and conductive particles read

J ~u K = ~0 ,

JσK · ~n = ~0 , ~n = ~na = − ~nc .

where ~n denotes the normal vector to a surface. Similar conditions can be stated for interfaces between
active-active particles and conductive-conductive particles.

Interface between active particles and conductive particles ∂Va ∩ ∂Vc - electrons are free to flow
without causing discontinuities in the electric field, electric potential, and electrons chemical potential µe− .
Neutral lithium does not intercalate into conductive particles, thus

~hLi · ~na = 0 ~x ∈ ∂Va ∩ ∂Vc . (6.19)

Interface between electrolyte and conductive particles ∂Ve∩∂Vc - there is no intercalation neither
of Li ions nor of counterions. Electrons do not flow through the interface. The mass fluxes interfaces are
thus homogeneous

~hLi+ · ~ne = 0 ~x ∈ ∂Ve ∩ ∂Vc , (6.20a)

~hX− · ~ne = 0 ~x ∈ ∂Ve ∩ ∂Vc , (6.20b)

~he− · ~nc = 0 ~x ∈ ∂Ve ∩ ∂Vc , (6.20c)
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and there is no current transport along those interfaces.
In order to devise the interface conditions for the electric potential, equation (6.3b) is invoked

curl
[
~H
]
· ~n =

(
∂ ~D

∂t
+~i

)
· ~n . (6.21)

It turns out that the evaluation of the magnetizing field ~H is required. In order to evaluate the latter
across interfaces the differential problem (6.4a) must be deployed. In fact, interface conditions are the mere
link between the magnetic and electric fields due to the electro quasistatic assumption. It will be assumed
henceforth that the curl of the magnetizing field is continuous across all interfaces when projected in normal
direction

(
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

))
· ~n =

(
∂ ~Ds

∂t
+~is

)
· ~n ~x ∈ ∂Ve ∩ ∂Vs . (6.22)

being ~n = ~ne = −~ns. Under this assumption the evaluation of ~H is not necessary.

Interface between electrolyte and active particles ∂Ve∩∂Va - The electrochemical reaction occur-
ring at the active particle surface is here modeled through the standard Butler-Volmer equation. Therefore,
instead of resolving explicitly the boundary layers between active particle and electrolyte, the involved phe-
nomena are incorporated in a zero-thickness interface. Accordingly the electric potential can be discontinuous
at the interface (see [324, 325] for a comprehensive treatment of the argument).

The electrochemical reaction at the active particles/electrolyte interfaces converts the oxidized Lithium
to its neutral state before its diffusion into the active particles lattice (see Fig 6.2b). The surface current
density iBV is defined through the Butler-Volmer equation as

iBV = i0

{
exp

[
αA F ηS
RT

]
− exp

[
−αC F ηS

RT

]}
, (6.23)

where i0 is the exchange current density, αA and αB positive kinetic constants, and ηS is the surface
overpotential.

The exchange current density is function of the concentration of lithium at the interface as follow [152]

i0 = KS F
(
cLi+ |e∂Ve∩∂Va

)αA (
cmaxLi − cLi|a∂Ve∩∂Va

)αA (
cLi|a∂Ve∩∂Va

)αC
,

The surface overpotential is defined as

ηS = JφK− US , (6.24)

where US is the surface open circuit potential, while JφK refers to the electric potential jump at interface.
According to [116], the surface open circuit potential US (also referred as surface OCP) is related to the
ideal chemical potential, µLi, of lithium at the active particle surface through the following equation

F US(t) = µ̃Li − µLi(t)|a∂Ve∩∂Va (6.25)

where µ̃Li is the chemical potential of lithium of a reference electrode.

Positive surface overpotential drives anodic currents, i.e. iBV > 0, while negative ηS causes cathodic
currents, i.e. iBV < 0 . The surface mass flux at particles surface in normal direction will be denoted with
hBV . It is related through Faraday’s law to the surface current density in the same direction at the same
location

iBV = F hBV . (6.26)

On the other hand there is no intercalation of X− ions into the active particles. In conclusions interface
conditions can be summarized as follow
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~hLi+ · ~ne = −~hLi · ~na = −hBV ~x ∈ ∂Ve ∩ ∂Va , (6.27a)

~hX− · ~na = 0 ~x ∈ ∂Va ∩ ∂Ve , (6.27b)

~he− · ~na = 0 ~x ∈ ∂Ve ∩ ∂Va , (6.27c)

(
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

))
· ~n =

(
∂ ~Ds

∂t
+~is

)
· ~n ~x ∈ ∂Ve ∩ ∂Va . (6.27d)

with ~n = ~ne = −~na.

6.4 Constitutive theory

Constitutive relations are derived from thermodynamic principles as showed in Chapter 2 for electrolyte
solutions, and in Chapters 3 - 4 - 5 for active particles. For convenience we enforce isothermal conditions
throughout the process.

6.4.1 Electrolyte

The local form of entropy imbalance derived in (2.19) reads

∂εe
∂t

:

(
σe −

∂ψe
∂εe

)
+
∂ ~Ee
∂t
·
(
~De −

∂ψe

∂ ~Ee

)
+
∂cLi+

∂t

(
µLi+ −

∂ψe
∂cLi+

)
+

∂cX−

∂t

(
µX− − ∂ψe

∂cX−

)
− ~hLi+ · ∇ [ µ̄Li+ ]− ~hX− · ∇ [ µ̄X− ] ≥ 0 ,

(6.28)

with µ̄β = µβ + zβ F φe denoting the electrochemical potential.

The Helmholtz free energy density ψe is decomposed into separate parts: a diffusive contribution ψdiffe ,
an electric contribution ψelecte , and an elastic contribution ψele

3

ψe(εe, cLi+ , cX− , ~Ee) = ψdiffe (cLi+ , cX−) + ψelecte ( ~Ee) + ψele (εe) ,

with

ψdiffe = µ0
Li+ cLi+ +RT cmax

{
θLi+ ln[θLi+ ] + (1− θLi+) ln[1− θLi+ ]

}
+

+µ0
X− cLi+ +RT cmax

{
θX− ln[θX− ] + (1− θX−) ln[1− θX− ]

}
, (6.29a)

ψelecte =
1

2
ε| e ~Ee · ~Ee , (6.29b)

ψele =
1

2
Ke tr [ εe ]

2
+Ge ‖dev [ εe ] ‖2 . (6.29c)

In equations (6.29a) µ0
β and cmax denote the reference chemical potential and the ions saturation limit,

while θα = cβ/c
max is the molar fraction of a generic species β. Symbol ε| e = ε| 0ε| r is the permittivity of the

3For simplicity the electrolyte is modeled as an elastic media.
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electrolyte solution. The mechanical behavior is here modeled assuming a linear-elastic response (Ke and
Ge denote the bulk and shear modulus respectively) with the elastic strain tensor in formula (6.29c) defined
as

εe =
1

2

(
∇ [ ~ue ] +∇ [ ~ue ]

T
)
,

being ~ue the displacement field in the electrolyte.

The definition of the stress tensor σe, electric displacement ~De, and chemical potentials µLi+ , µX− follow
from Eq. (6.28) using the Coleman-Noll procedure

σe =
∂ψe

∂εe
= Ke tr [ εe ]1+ 2Ge dev [ εe ] , (6.30a)

~De =
∂ψe

∂ ~Ee
= ε| e ~Ee = −ε| e∇ [φe ] , (6.30b)

µLi+ =
∂ψe

∂cLi+
= µ0

Li+ +RT ln

[
cLi+

cmax − 2 cLi+

]
, (6.30c)

µX− =
∂ψe

∂cX−
= µ0

X− +RT ln

[
cX−

cmax − 2 cX−

]
. (6.30d)

Finally the flux of Li+ and X− ions is modeled through the Nernst-Plank equation (see Chapter 2 for
the details)

~hLi+ = −D| Li+ ∇ [ cLi+ ]− D| Li+ F

RT
cLi+

(
1− 2

cLi+

cmax

)
∇ [φe ] , (6.31a)

~hX− = −D|X− ∇ [ cX− ] +
D|X− F

RT
cX−

(
1− 2

cX−

cmax

)
∇ [φe ] . (6.31b)

6.4.2 Active particles

The flow of electrons in the solid part of the electrode is here modeled by Ohm’s law as pursued in several
publications [97, 116, 270]. Accordingly, the electromagnetic problem in the active and conductive particles

will be considered in the electro static formulation. The time variation of the charge density
∂ce−
∂t and electric

displacement ∂ ~De
∂t is thus neglected so that the local form of charge conservation (6.5) simplifies as

div
[
~ia

]
= 0 . (6.32)

The chemo-mechanical response of the active particles is modeled following the framework developed in
Chapters 3 - 4 - 5. We therefore assume that the particle host structure is made of two distinct sites for
lithium insertion, namely interstitial L and trapped sites T . By doing so the concentration of neutral lithium
reads

cLi = cL + cT ,

with cL denoting interstitial (or lattice) lithium while cT is trapped lithium. The latter cannot diffuse in
the storage particles in the assumption that trap sites are isolated, thus the lithium flux yields

~hLi = ~hL ,
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being ~hL the flux of lattice lithium.

The Clausius-Duhem inequality for active particles accounts for the electro static energy added to the
expression derived in Chapter 3 Eq. (3.28)

∂εce

∂t
:

(
σa −

∂ψa
∂εce

)
+
∂cL
∂t

(
µL −

∂ψa
∂cL

)
+
∂cT
∂t

(
µT −

∂ψa
∂cX−

)
+

− ~hL · ∇ [µL ]− w(1)A(1) + σa :
∂εin

∂t
+~ia · ~Ea ≥ 0 .

(6.33)

Symbols A(1) = µL − µT and w(1) refer to the chemical affinity and rate of the trapping reaction
respectively.

Note that the electrostatic term appearing in (6.33), i.e. the so called Joule effect~ia · ~Ea, can be obtained

following the same procedure adopted in Chapter 2 along with the electro static approximation, i.e. ∂ ~Da
∂t = ~0.

The chemo-elastic strain εce is considered to be made up of two separate contributions: an elastic
recoverable part εel, and a swelling (or chemical) contribution εs

εce = εel + εs .

The chemical strain is assumed to be volumetric and proportional to the deviation cβ−c0β from a reference

concentration c0β by means of a chemical expansion coefficient ωβ of species β

εs = ωL (cL − c0L)1+ ωT (cT − c0T )1 .

Assuming also that the active particles can deform inelastically, the total strain tensor εa results in the
sum of three contributions

εa = εel + εs + εin ,

with

εa =
1

2

(
∇ [ ~ua ] +∇ [ ~ua ]

T
)
,

and ~ua the displacement field in the active particles.

The evolution of the inelastic deformation εin must be consistent with the equation (6.33). A possible
choice is the Perzyna like visco-plastic law adopted for the numerical simulations carried out in Chapters 4
and 5.

As customary the Helmholtz free energy emanates from the following additive decomposition

ψa(εce, cL, cT ) = ψdiffa (cL, cT ) + ψela (εce) , (6.34)

where

ψdiffa = µ0
L cL +RT cmaxL

{
θL ln[θL] + (1− θL) ln[1− θL]

}
+

+µ0
T cT +RT cmaxT

{
θT ln[θT ] + (1− θT ) ln[1− θT ]

}
, (6.35a)

ψela =
1

2
Ka tr [ εce − εs ]

2
+Ga ‖dev [ εce − εs ] ‖2 . (6.35b)

with obvious meaning of symbols µ0
β , cmaxL , cmaxT , Ka, and Ga.

The constitutive definitions of the stress tensor σa and chemical potentials µL and µT are derived from
Eq. (6.33) as follow
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σa =
∂ψa

∂εce
= Ka tr [ εce − εs ]1+ 2Ga dev [ εce − εs ] , (6.36a)

µL =
∂ψa

∂cL
= µ0

L +RT ln

[
θL

1− θL

]
− ωL tr [σa ] , (6.36b)

µT =
∂ψa

∂cT
= µ0

T +RT ln

[
θT

1− θT

]
− ωT tr [σa ] . (6.36c)

Guided by the Joule effect in Clausius-Duhem inequality a linear law is set as usual for the electrons
flow. The current density is made proportional to the gradient of the electric potential through the electrical
conductivity κa > 0

~ia = κa ~Ea = −κa∇ [φa ] . (6.37)

The trapping reaction is assumed to be infinitely fast so that the condition of chemical equilibrium
A(1) = 0 holds throughout the process and the trapping reaction does not involve any energetic dissipation.
Under this hypothesis the chemical potential of lithium dissolved in active particles yields

µLi = µL = µT .

Finally the expression of lithium flux is derived by applying the generalized Fick’s law (see Chapter 3 for
the details) obtaining

~hL = −D| L∇ [ cL ] +
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
∇ [ tr [σa ] ] . (6.38)

In order to model phase-segregations in active particles as conducted in Chapter 5, an appropriate
evolution law for cmaxT has to be defined.

6.4.3 Conductive particles

We assume the conductive particles made up of an electrical conductive medium with linear-elastic mechanical
behavior. Following the same procedure detailed for the active particles, the constitutive definition of stress
tensor and current density yield

σc = Kc tr [ εc ]1+ 2Gc dev [ εc ] , (6.39a)

~ic = κc ~Ec = −κc∇ [φc ] (6.39b)

with obvious meaning of material constants Kc, Gc, and κc.

6.5 Governing Equations

6.5.1 Electrolyte

Governing equations can be derived by incorporating the constitutive equations (6.30a), (6.30b), and (6.31)
into balance equations (6.14b), (6.14c), (6.16a), and (6.17). The variable fields that rule the problem,
resulting from the choice made for thermodynamic prescriptions, are ionic concentrations cLi+ and cX− , the
electric potential φe, and the displacements ~ue. The governing equations hold at all points ~x ∈ Ve and time
t ∈]0, tf ]
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∂cLi+

∂t
+ div

[
~hLi+ (cLi+ , φe)

]
= 0 ,

∂cX−

∂t
+ div

[
~hX− (cX− , φe)

]
= 0 ,

div

[
∂ ~De(φe)

∂t
+ F

(
~hLi+ (cLi+ , φe)− ~hX− (cX− , φe)

)]
= 0 ,

div [σe (~ue) ] = ~0 .

(6.40)

Interface conditions at the boundary between active particles and conductive particles follow the pre-
scriptions given in Section 6.3.2. The boundary condition (6.22) must be rewritten since the electromagnetic

problem in the solid part has been considered in the electro static approximation. Accordingly the term ∂ ~Ds
∂t

vanishes for the solid phase so that the interface condition (6.22) reduces to

(
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

))
· ~ne +~is · ~ns = 0 ~x ∈ ∂Ve ∩ ∂Vs . (6.41)

The current density and Li+ ions flux at the interface between electrolyte and active particles is prescribed
by the Butler-Volmer equation (6.23). The latter establishes the discontinuity of the electric potential at the
interface JφK = φa − φe as a result of the surface electrochemical reaction. The X− ions cannot intercalate
neither into the active particles nor into the conductive particles. The continuity of the displacement field
is prescribed for equation (6.40d) at all the interfaces. The interface conditions for the electrolyte phase can
be summarized as follow

~hLi+ · ~ne =





− hBV ~x ∈ ∂Ve ∩ ∂Va

0 ~x ∈ ∂Ve ∩ ∂Vc
(6.42a)

~hX− · ~ne = 0 ~x ∈ {∂Ve ∩ ∂Va ∪ ∂Ve ∩ ∂Vc} (6.42b)

curl
[
~He

]
· ~ne =





− iBV ~x ∈ ∂Ve ∩ ∂Va

0 ~x ∈ ∂Ve ∩ ∂Vc
(6.42c)

~ue =





~ua ~x ∈ ∂Ve ∩ ∂Va

~uc ~x ∈ ∂Ve ∩ ∂Vc
(6.42d)

6.5.2 Active particles

Governing equations are derived incorporating the constitutive equations (6.36a), (6.37), and (6.38) into
balance equations (6.14a), (6.17), and (6.32). The variable fields that rule the problem, resulting from the
choice made for thermodynamic prescriptions, are the concentrations cL, the electric potential φa, and the
displacements ~ua. The governing equations hold at all points ~x ∈ Va and time t ∈]0, tf ]
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∂cL
∂t

+
∂cT
∂t

+ div
[
~hL (cL, σa)

]
= 0 ,

div
[
~ia (φa)

]
= 0 ,

div [σa (cL, ~ue) ] = ~0 ,

(6.43)

Interface conditions at the boundary between the electrolyte and conductive particles follow the pre-
scriptions given in Section 6.3.2. The electro-chemical interface conditions at the boundary between the
electrolyte are explicitly modeled through the Butler-Volmer kinetic equation. On the other hand, at the
boundary shared with conductive particles the neutral lithium cannot flow in normal direction. The continu-
ity of the electric potential is enforced between the active and conductive particles. Displacements continuity
is prescribed at the interfaces between both active and conductive particles. The interface conditions can be
summarized as follow

~hL · ~na =





hBV ~x ∈ ∂Va ∩ ∂Ve

0 ~x ∈ ∂Va ∩ ∂Vc
(6.44a)

~ia · ~na = iBV ~x ∈ ∂Va ∩ ∂Ve

φa = φc ~x ∈ ∂Va ∩ ∂Vc
(6.44b)

~ua =





~ue ~x ∈ ∂Va ∩ ∂Ve

~uc ~x ∈ ∂Va ∩ ∂Vc
(6.44c)

6.5.3 Conductive particles

Governing equations can be derived by incorporating the constitutive equations (6.39) into balance equations
(6.17), and (6.32). The variable fields that rule the problem, resulting from the choice made for thermody-
namic prescriptions, are the electric potential φc, and the displacements ~uc. The governing equations hold
at all points ~x ∈ Vc and time t ∈]0, tf ]





div
[
~ic (φc)

]
= 0 ,

div [σc (~uc) ] = ~0 ,

(6.45)

Following the same path of reasoning of Sections 6.5.1 - 6.5.2, the interface conditions for conductive
particles can be summarized as follow

~ic · ~nc = 0 ~x ∈ ∂Vc ∩ ∂Ve

φc = φa ~x ∈ ∂Vc ∩ ∂Va
(6.46a)
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~uc =





~ue ~x ∈ ∂Vc ∩ ∂Ve

~ua ~x ∈ ∂Vc ∩ ∂Va
(6.46b)

6.6 Numerical Example

The case study reported in the article by Danilov et al. [86] is reproduced for model validation. It considers
a 10µAh all-solid state battery made up of three different layers as shown in Fig. 6.1a. The electrodes
consist of a 320 nm thick polycrystalline LiCoO2 cathode and a metallic Li anode separated by 1.5µm
solid-state electrolyte. The battery was charged and discharged according to the following regime: constant
current/constant voltage (CCCV) charging with a 1.6 C-rate till the maximum voltage level of 4.2 V was
reached, followed by 30 min relaxation period and a current constant discharge. Fig. 6.1b depicts the
experimentally measured voltage profiles for the following applied discharge rates: 3.2, 6.4, 12.8, 25.6, and
51.2 C. In line with the cell morphology, the battery response was also simulated in [86] through a one-
dimensional model. Material parameters difficult to measure experimentally, i.e. the kinetic constants of the
Butler-Volmer equation, were estimated by comparing the experimental and numerical results.

(a) (b)

Figure 6.1: SEM images of the all-solid-state battery tested in [86] (a), and experimen-
tally measured voltage profiles during 1.6 C-rate charging and discharging at various
C-rates (3.2, 6.4, 12.8, 25.6, and 51.2 C-rate) (b). Time t=0 corresponds to the start
of each discharge rate.

6.6.1 Modeling assumptions and material parameters

Although the battery morphology and boundary conditions are suitable for a one-dimensional description,
governing equations have been implemented in a 2D plane-strain formulation. A schematic representation
of the simulated battery geometry is depicted in Fig. 6.2.

Since the model proposed in [86] does not consider the mechanics in any battery components, the relevant
material constants are taken from other references here, i.e [152, 107, 112, 326, 116].

Electrodes - The subscripts an and ca will identify anode and cathode from now to on. The electrodes
are both modeled by means of governing equations of active particles (6.43). For simplicity trapping of
lithium as well as the effect of inelastic deformations are not accounted for. In this way cmaxT = 0 and
∂εin

∂t = ~0 in the electrodes.
We also assume the metallic lithium as an unlimited reservoir of Li ions so that it is unaffected by the

lithiation/delithiation processes. Therefore the concentration of lithium in the anode is uniform and constant
throughout the process. All the material parameters of the electrodes are listed in Table 6.1.

Electrolyte - The solid-electrolyte response is described by governing equations (6.40) assuming a com-
plete dissociation in Li+ and X− ions. In the absence of experimental evidence, we model the electrolyte as
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Figure 6.2: Schematic representation of the planar all-solid-state Li-ion battery simu-
lated in the numerical example. Conductive particles are not present in this case.

rigid compared to the electrodes. This has been implemented by choosing a Young’s modulus two orders of
magnitude larger than for the cathode.

Differently from governing equations (6.40), the electrolyte model in [86] does not include the effects
of saturation. Therefore parameter cmax is not provided. Here we take cmax much larger than the initial
concentrations of the moving ions, in order to simulate the case of diluite solutions. A discussion on the role
of saturation can be found in Chapter 2. The material parameters of the electrolyte are reported in Table
6.2.

Interfaces - The anode/electrolyte Γan and cathode/electrolyte Γca interfaces follow the prescriptions
of the interfaces between active particles and electrolyte.

Although the surface open circuit potential US is given in terms of the ideal chemical potential µLi at
interface (see. Eq. (6.25)), here we take US of LiCoO2 from [86] for reasons of consistency.

A relation between the battery OCP potential and extracted charge, Qext, has been experimentally
determined by Danilov et al. [86]. The outcomes of those experimental fitting are depicted in Fig. 6.3 and
have been used in their numerical computations. In equilibrium conditions, the concentration of lithium is
uniform in the cathode, so that the extracted charge can written as

Qext = F
(
cLi − cinitLi

)
Vca , (6.47)

where cinitLi is the concentration of lithium at the beginning of discharging, while Vca is the volume of the
cathode. According to Eq. (6.47), the battery OCP is function of the concentration of lithium in the cathode.
During battery charging/discharging the concentration of lithium is no longer uniform in the cathode. In
this regime the surface open circuit potential US at the Γca interface is taken from Fig. 6.3 by computing
Qext through formula (6.47) with cLi measured at Γca.

The other material parameters appearing in equation (6.23) for the interface Γca are taken from [86] and
read

αA = 0.6 , αC = 0.4 , KS = 5.1× 10−6 m2.8 mol−0.6 s−1 on Γca.

For the interface between anode and electrolyte, it has been reported in [86] that the exchange current
density for the metallic lithium electrode is much larger than for LiCoO2

ian0 � ica0

hence the potential jump occurring at Γan is negligible compared to that at Γca. In addition the open
circuit potential of the metallic lithium is zero since it has been taken as the reference electrode.
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Material Parameters Electrodes Ref.

Maximum concentration of lithium in the cathode cmaxL 2.33× 104 mol/m3 [86]

Diffusivity of Li ions in the cathode D| L 1.76× 10−15 m2/s [86]

Coefficient of chemical expansion of LiCoO2 cathode ωL −5.300× 10−7 m3/mol [107]

Young modulus of LiCoO2 cathode Eca 370 GPa [152]

Poisson ratio of LiCoO2 cathode νca 0.2 - [152]

Electrical conductivity of LiCoO2 cathode κca 10 S/m [112]

Young modulus of lithium anode Ean 4.9 GPa [326]

Poisson ratio of lithium anode νan 0.36 - [326]

Electrical conductivity of lithium anode κan 1.08× 107 S/m [116]

Table 6.1: Material parameters of electrodes used in the numerical simulations. The
mechanical parameters are given in term of Young’s modulus E and Poisson ratio ν.

Material Parameters Electrolyte Ref.

Saturation limit of the electrolyte cmax 1.0× 106 mol/m3 this study

Diffusivity of Li+ ions in the electrolyte D| Li+ 1.0× 10−16 m2/s [86]

Diffusivity of X− ions in the electrolyte D|X− 5.1× 10−15 m2/s [86]

Young modulus of electrolyte Eel 1.0× 104 GPa this study

Poisson ratio of electrolyte νel 0.3 - this study

Relative permittivity of electrolyte ε| r 2.25 - this study

Table 6.2: Material parameters of the electrolyte used in the numerical simulations.
The mechanical parameters are given in term of Young’s modulus E and Poisson ratio
ν.

Figure 6.3: Plot of the equilibrium voltage against
the amount of extracted charge Qext determined
from regression extrapolation [86]. The equilibrium
voltage of the battery is equal to that of the positive
electode as the metallic Li is taken as reference elec-
trode.
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Boundary conditions - The boundary conditions are imposed on the boundary of both the electrodes,
∂Ωan and ∂Ωca, and electrolyte ∂Ωe. For the sake of clarity the electrodes boundary is split in two parts as
follow (see Fig. 6.2)

∂Ωan = ∂ΩAan ∪ ∂ΩBan , and ∂Ωca = ∂ΩAca ∪ ∂ΩBca .

An uniform charging current is prescribed on the boundary ∂ΩAca, while a null reference potential φ is
imposed on ∂ΩAan

~ica · ~nca =
I(t)

A
on ∂ΩAca , φan = 0 on ∂ΩAan ,

where A = 1 cm2 is the battery cross-sectional area and I(t) refers to the current flowing through the
battery. In order to make initial and boundary conditions compatible with thermodynamic equilibrium at
t = 0, I is tuned in time as

I(t) =
(
1− e−t

)
I1.0 Cr , (6.49)

where I1.0 = 1 × 10−1 A/m2 is the electric current corresponding to 1 C-rate discharge, while Cr is the
discharge rate.

On the other hand the flux of current is zero on the remaining part of the boundary for reasons of
symmetry, thus the following boundary conditions arise

~ian · ~nan = 0 on ∂ΩBan , ~ica · ~nca = 0 on ∂ΩBca , ~iel · ~nel = 0 on ∂Ωel ,

Neither neutral lithium nor ionic species Li+ and X− can flow through the external boundary so that

~hL · ~nan = 0 on ∂Ωan , ~hL · ~nca = 0 on ∂Ωca , ~hLi+ · ~nel = ~hX− · ~nel = 0 on ∂Ωel .

Battery cell expansion/contraction is prevented by applying the following mechanical boundary conditions

ux = 0 on
{
∂ΩAan ∪ ∂ΩAca

}
, uy = 0 on

{
∂Ωel ∪ ∂ΩBan ∪ ∂ΩBca

}
.

Initial conditions - Initial conditions at t = 0 are imposed for species concentration in both the cathode
and electrolyte. Following [86] the distribution of moving species is uniform in each component at initial
time

cL

∣∣∣
t=0

= 1.2× 104mol/m3 in Ωca ,

cLi+

∣∣∣
t=0

= cX+

∣∣∣
t=0

= 1.1× 104mol/m3 in Ωel .

Balance of momentum and Maxwell equations, together with boundary conditions, provide the necessary
and sufficient equations to define ~u and φ at t = 0.

Numerical implementation - The governing equations have been solved numerically through the Finite
Element Method. To this end the cell geometry has been discretized in space with 520 elements along the
x coordinate (50 elements for anode, 150 elements or the electrolyte, 320 elements for the cathode), while
the time evolution is resolved with a time increment ∆t = 0.1 s throughout the simulations. The numerical
method has been implemented in a MATLAB package script purposely written. The detailed procedure of
the numerical approximation and resolution is postponed to Appendix 6.A for convenience.
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6.6.2 Numerical outcomes and discussion

6.6.2.1 Electro-chemo-mechanical response at high discharge rate

The response of the battery at high C-rates is here investigated for Cr=51.2.

The evolution of lithium concentration - Figure 6.4a plots the evolution in time of Li+ ions in the elec-
trolyte and in the electrodes. The lithium ions intercalate inside the cathode, at Γca, while the lithium
cannot flow through the boundary ∂ΩAca. In this way the lithium content progressively increases in the
cathode accumulating at the electrolyte interface. The simulation ends after 49.8 seconds, when lithium in
the cathode reaches its saturation limit in correspondence of Γca (cmaxL = 2.33×104 mol/m3). Indeed further
current flow, in the prescribed regime, is prevented by saturation of lithium in the cathode. The latter is
thus the limiting factor for the performance of this Li-ion battery.

(a) (b)

Figure 6.4: Lithium concentration (a) and concentration of X− ions (b) as function of
x coordinate at intervals of 5 s for Cr=51.2. For clarity the domain occupied by the
electrodes is highlighted in gray.

The concentration of Li+ ions in the electrolyte, uniform at initial time, increases rapidly near Γan
triggered by anode oxidation during battery discharge. On the contrary, near the interface Γca the content
of Li+ ions depletes since lithium intercalates inside the cathode. Note that the overall amount of Li+ ions
dissolved in the electrolyte is conserved since lithium is consumed at Γca with the same velocity as it is
inserted at Γan, and charge remains balanced.

The distribution of X− (see Fig. 6.4b), evolves similarly to Li+ even though X− can be neither inserted
nor consumed at the electrolyte boundaries. This behavior relies on equations (6.40) whithout imposing the
electroneutrality condition as pursued in [86]. The reader may refer to Chapter 2 for a detailed discussion
on the argument.

The battery voltage - The evolution in time and space of the electric potential is shown in Fig. 6.5a. Since
metallic Li has taken as the reference electrode, φ = 0 V has been imposed at x = 0 throughout the process.
At initial time φ is uniform in electrodes and electrolyte in view of thermodynamic equilibrium. Moreover
the electric potential is continuous at the interface Γan while presents a a discontinuity on Γca. The latter
is prescribed at t = 0 based on the measured battery OCP at full charge state, i.e. JφKt=0 = 4.2 V (see Fig.
6.3).

During battery discharge, the profile of φ develops according to Ohm’s law in the electrodes. Therefore,
the electric potential evolves linearly against the x coordinate, with negative slope. This feature is difficult
to appreciate in Fig. 6.4b because the potential change in the electrodes is much smaller than the potential
jump at x = 2000 nm.

The total battery voltage, which is the difference between the electric potential at the positive and
negative electrodes, decreases in time during battery discharge. Assuming that the variation of φ in the
electrodes is minor, the change in battery voltage is mainly due to the variations of φ inside the electrolyte
and at the interface Γca.
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(a) (b)

Figure 6.5: (a) Evolution of the electric potential as a function of the x coordinate at
intervals of 5 s for Cr=51.2. (b) Comparison between the battery voltage, simulated at
discharge rate Cr=51.2, and the battery open circuit potential OCP.

The battery voltage is plotted against the extracted charge Qext and compared with the equilibrium
voltage in Fig. 6.5b. Note that not all the charge available in the battery is extracted when the discharge
process is stopped. Moreover the simulated battery voltage is always below than the battery OCP. The
difference between the OCP and the simulated potential is called battery overpotential ηbatt.

The mechanical response - Figure 6.6 depicts the simulated mechanical response in terms of horizontal
displacement ux and stress component σxx. Since both anode and electrolyte do not account for any chem-
ical strain, the stress evolution is induced only by a volume change in the cathode due to the lithiation
process. The anode and electrolyte act passively by contrasting the volume change in the cathode with their
mechanical stiffness.

(a) (b)

Figure 6.6: Stress component σxx (a) and horizontal displacement ux (b) and profiles
as function of x coordinate at intervals of 5 s for Cr=51.2. For clarity the domain
occupied by the electrodes is highlighted in gray.

As shown in Figure 6.6a, the stress component σxx is constant inside the battery as a consequence of
the one-dimensional nature of the problem at hand. In this conditions the state of stress does not influence
the flux of lithium in the cathode (see Eq. 6.38). Since the coefficient of chemical expansion of LiCoO2

is negative (see Chapter 4 for details) σxx is positive (tensile). The stress magnitude, zero at initial time,
increases in time up to a maximum value value, at the end of the discharge process, comprised between 30
and 40 MPa.

The displacement profile develops linearly, with respect to the x coordinate, in both the anode and
electrolyte (see Fig. 6.6b). On the other hand ux does not evolve linearly inside the cathode because of
the non linear distribution of neutral lithium. Note that the gradient of ux in the electrolyte is essentially

138



zero compared to those simulated in the electrodes. This because the electrolyte has been modeled as rigid
compared to the electrodes.

6.6.2.2 The influence of the discharge rate

The battery has been simulated upon discharging for various C-rates (3.2, 6.4, 12.8, 25.6, and 51.2) and
charging with a 1.6 C-rate. Fig. 6.7 depicts a comparison between experiments and model predictions.
Good agreement is obtained for all the curves.

Figure 6.7: Plot of the measured and simulated battery
voltage during discharges with various C-rates, and
charge at Cr=1.6. The black lines are the measure-
ments, while the red dots are the model predictions.

The simulated battery voltage are also plotted as function of the extracted charge in Fig. 6.8a. The rate
of battery discharge influences the amount of extracted charge at the end of discharging. The higher the
discharge rates, the less the extracted charge. In fact lower discharge rates implies a lower rate of lithium
insertion in the cathode, and a more uniform Li distribution in the positive electrode. The total battery
overpotential varies with the discharge rate as well. As expected, higher discharge rates cause higher battery
overpotentials.

The influence of the discharge rate on the mechanical response is investigated in Figure 6.8b. It gathers
the evolution of stress component σxx in time for the simulated discharge rates. It turns out that the stress
rate is higher for higher C-rates. In fact, for the problem at hand, the stress magnitude is merely proportional
to the amount of the intercalate ions in the cathode, i.e. proportional to the current flowing through the
battery.

(a) (b)

Figure 6.8: Influence of the discharge rate on the evolution of the battery voltage (a)
and stress component σxx (b).
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6.7 Conclusions

This chapter focuses on the microscopic modeling of a porous electrode compound. Any porous electrode is
a heterogeneous media made of different phases. It consists of active (or storage) particles embedded in a
porous matrix, and a liquid electrolyte that flows in the electrode porosity.

The fundamental electro-chemo-mechanical processes that characterize the overall battery response take
place at the length scale of the electrode compound. Therefore a multiscale modeling is suitable for batteries
that implement porous electrodes. A two-scale modeling has been proposed for example in [68] in the spirit
of a computational homogenization approach.

Focusing on the microscopic scale, the electrode has been idealized as a three-phase media formed by active
particles, conductive particles, and electrolyte. Balance laws and interface conditions among these phases are
formulated starting from the fundamental laws of continuum mechanics. Constitutive equations are derived
from rigorous thermodynamic principles. The electro-chemical reaction that take place at active particles
surfaces in contact with the electrolyte has been modeled using the standard Butler-Volmer equation.

The model proposed has been validated by simulating the response of an all-solid-state battery. To
this end, the governing equations has been resolved numerically through the finite element method. Good
agreement between the simulated and the measured response of the battery is obtained for different discharge
rates. The evolution of the involved electro-chemo-mechanical fields inside any battery components has been
discussed as well.
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Appendix

6.A 2D Finite Element Implementation

6.A.1 Non-dimensional governing equations and weak form

Electrodes - It is customary to scale the system of governing equations with suitable coefficients in order
to deal with a system of non-dimensional equations. In this way Eqs. (6.43) have been rephrased in term
adimensional variables4

x∗i =
xi
l̄
, t∗ =

t

t̄
, c∗L =

cL
c̄
, φ∗ =

φF

RT
, u∗i =

ui
l̄
, σ∗ij =

σij
σ̄
, (6.54)

by introducing l̄, t̄, c̄, σ̄ as reference length, time, concentration, and stress respectively.

Taking advantage of definitions (6.54), the governing equations (6.43) are equivalent to the following
non-dimensional ones

∂c∗L
∂t∗

+ div∗[~h∗L] = 0 , (6.55a)

div∗[~i∗a] = 0 , (6.55b)

div∗[σ∗a] = ~0 , (6.55c)

where

div∗[~h∗L] =

2∑

i=1

h∗Li
∂x∗i

, div∗[σ∗a] =

2∑

i=1

2∑

j=1

σ∗ij
∂x∗j

~ei , ~h∗L =
~hL t̄

c̄ l̄
, ~i∗a =

~ia t̄

c̄ l̄ F
.

Note that equations (6.55) have the same expression of (6.43) but are formulated in terms of non-
dimensional variables. In the same way the non-dimensional constitutive laws keep the same expression of
(6.36a) - (6.37) - (6.38) as long as the original variables and parameters are replaced with (6.54) and the
following non-dimensional constants

D| ∗L =
D| L t̄
l̄2

, ω∗L = ωL c̄ , (RT )∗ = RT
c̄

σ̄
, (cmaxL )

∗
=
cmaxL

c̄
,

κ∗a =
κa t̄ R T

c̄ l̄2 F 2
, K∗a =

Ka

σ̄
, G∗a =

Ga
σ̄
.

4The trapping of neutral Li is not considered in this example, accordingly cT has been removed from governing equations
(6.43).
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The weak formulation results from multiplying the strong form of governing equations (6.55) by a suitable
set of tests functions and performing an integration upon the domain, exploiting the integration by parts
formula with the aim of reducing the order of differentiation in space.

Even though the first order derivative of hr can be reduced applying the integration by parts, its con-
stitutive definition contains a second order derivative. To include the effect of stress gradient in equations
(6.55a) we follow the approach adopted in Appendix 4.A by introducing a new variable Σ(r, t) defined as

Σ− tr [σ ] = 0 , (6.57)

which will be approximate as an explicit degree of freedom. Eq. (6.57) is then added to the set of
governing equations (6.55) for the numerical solution of the problem.

The weak form of each governing equation is derived below. The asterisk is omitted for the sake of
readability.

From the mass balance Eq. (6.55a) we obtain

∫

Ωa

ĉL

{
∂cL
∂t

+ div
[
~hL

]}
dA =

=

∫

Ωa

ĉL
∂cL
∂t

dA+

∫

Ωa

∇ [ ĉL ] ·
{

D| L∇ [ cL ]−D|Σ (cL)∇ [ Σ ]

}
dA+

+

∫

∂NΩan

ĉL

{
~hL · ~nan

}
ds +

∫

∂NΩca

ĉL

{
~hL · ~nca

}
ds+

+

∫

Γan

ĉL

{
~hL · ~nan

}
ds+

∫

Γca

ĉL

{
~hL · ~nca

}
ds = 0 ,

where D|Σ stands for

D|Σ =
D| L ωL
RT

cL

(
cmaxL − cL
cmaxL

)
.

and Ωa = Ωan ∪ Ωca is the domain occupied by the electrodes.

The weak form of Eq. (6.55b) is simply

∫

Ωa

φ̂a div
[
~ia

]
dA =

=

∫

Ωa

∇
[
φ̂a

]
·
{
κa∇ [φa ]

}
dA+

+

∫

∂NΩan

φ̂an

{
~i · ~nan

}
ds +

∫

∂NΩca

φ̂ca

{
~i · ~nca

}
ds+

+

∫

Γan

φ̂an

{
~i · ~nan

}
ds +

∫

Γca

φ̂ca

{
~i · ~nca

}
ds = 0 .

For the equilibrium equation (6.55c) we have

∫

Ωa

~̂ua · div [σa ] dA =

= −
∫

Ωa

∇S
[
~̂ua
]

: σa(cL,Σ, ~ua) dA+

+

∫

∂NΩan

~̂uan · (σan ~nan) ds +

∫

∂NΩca

~̂uca · (σca ~nca) ds+
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+

∫

Γan

~̂uan · (σan ~nan) ds +

∫

Γca

~̂uca · (σca ~nca) ds = 0 ,

with ∇S denoting the symmetric gradient operator.

Finally Eq. (6.57) returns

∫

Ωa

Σ̂
{

Σ− tr [σa(cL,Σ, ~ua) ]
}

dA = 0 .

Note that test functions ĉL, φ̂a, ~̂ua, Σ̂ are null on the Dirichlet boundary since represent admissible
variations of the related degrees of freedom cL, φa, ~ua, Σ.

Electrolyte - Following the same procedure used for electrodes, the governing equations (6.40) are first
made non-dimensional by introducing the following non dimensional variables

x∗i =
xi
l̄
, t∗ =

t

t̄
, c∗Li+ =

cLi+

c̄
, c∗X− =

cX−

c̄
, φ∗ =

φF

RT
, u∗i =

ui
l̄
, σ∗ij =

σij
σ̄
, (6.58)

with l̄, t̄, c̄, σ̄ representing reference length, time, concentration, and stress respectively.

Taking advantage of the definitions (6.58), the governing equations (6.40) are equivalent to the following
non-dimensional ones

∂c∗
Li+

∂t∗
+ div∗[~h∗Li+ ] = 0 , (6.59a)

∂c∗
X−

∂t∗
+ div∗[~h∗X− ] = 0 , (6.59b)

div∗
[
∂ ~D∗e
∂t∗

+
(
~h∗Li+ − ~h∗X−

)]
= 0 , (6.59c)

div∗[σ∗e ] = ~0 , (6.59d)

where

div∗[~h∗β ] =

2∑

i=1

h∗β
∂x∗i

, div∗[σ∗e ] =
2∑

i=1

2∑

j=1

σ∗ij
∂x∗j

~ei , ~h∗β =
~hβ t̄

c̄ l̄
, ~D∗e =

~De

c̄ l̄ F
, β = Li+, X− .

In the same way the non-dimensional constitutive laws mantain the same expression of (6.30a) - (6.30b)
- (6.31) as long as the original variables and parameters are replaced with (6.58) and the following non-
dimensional constants

D| ∗Li+ =
D| Li+ t̄

l̄2
, D| ∗X− =

D|X− t̄

l̄2
,

(
F

RT

)∗
= 1 ,

(
cmax

)∗
=
cmax

c̄
,

ε| ∗e =
ε| eRT
c̄ l̄2 F 2

, K∗e =
Ke

σ̄
, G∗e =

Ge
σ̄
.

The weak formulation results from multiplying the strong form of governing equations (6.59) by a suitable
set of tests functions and performing an integration upon the domain, exploiting the integration by parts
formula with the aim of reducing the order of differentiation in space.
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As done for electrodes the overall weak form of the problem is derived by analyzing each governing equa-
tion separately at first. In what follow the asterisk is omitted for the sake of readability.

From the mass balance Eq. (6.59a) we obtain

∫

Ωe

ĉLi+

{
∂cLi+

∂t
+ div

[
~hLi+

]}
dA =

=

∫

Ωe

ĉLi+
∂cLi+

∂t
dA+

∫

Ωe

∇ [ ĉLi+ ] ·
{

D| Li+ ∇ [ cLi+ ] + D|+φ (cLi+)∇ [φe ]

}
dA+

+

∫

Γan

ĉLi+

{
~hLi+ · ~ne

}
ds +

∫

Γca

ĉLi+

{
~hLi+ · ~ne

}
ds = 0 ,

where D|+φ stands for

D|+φ =
D| Li+ F

RT
cLi+

(
1− 2

cLi+

cmax

)
.

Similarly the weak form of (6.59b) reads

∫

Ωe

ĉX−

{
∂cX−

∂t
+ div

[
~hX−

]}
dA =

=

∫

Ωe

ĉX−
∂cX−

∂t
dA+

∫

Ωe

∇ [ ĉX− ] ·
{

D|X− ∇ [ cX− ]−D|−φ (cX−)∇ [φe ]

}
dA+

+

∫

Γan

ĉX−

{
~hX− · ~ne

}
ds +

∫

Γca

ĉX−

{
~hX− · ~ne

}
ds = 0 ,

with

D|−φ =
D|X− F

RT
cX−

(
1− 2

cX−

cmax

)
.

The weak form of Eq. (6.59c) is simply

∫

Ωe

φ̂e

{
div

[
∂ ~De

∂t
+
(
~hLi+ − ~hX−

)]}
dA =

+

∫

Ωe

∇
[
φ̂e

]
·
{
ε| e∇

[
∂φe
∂t

]}
dA+

+

∫

Ωe

∇
[
φ̂e

]
·
{

D| Li+∇ [ cLi+ ] + D|+φ (cLi+) ∇ [φe ]−D|X−∇ [ cX− ] + D|−φ (cX−) ∇ [φe ]

}
dA+

+

∫

Γan

φ̂e

{
curl

[
~He

]
· ~ne
}

ds +

∫

Γca

φ̂e

{
curl

[
~He

]
· ~ne
}

ds = 0 .

Finally equation (6.59d) returns

∫

Ωe

~̂ua · div [σe ] dA =

= −
∫

Ωe

∇S
[
~̂ue
]

: σe(~ue) dA+

∫

Γan

~̂ue · (σe ~ne) ds +

∫

Γca

~̂ue · (σe ~ne) ds = 0 ,

with ∇S denoting the symmetric gradient operator.
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Test functions ĉLi+ , ĉX− , φ̂e, ~̂ue, are null on the Dirichlet boundary since represent admissible variations
of the related degrees of freedom cLi+ , cX− , φe, ~ue.

Interface conditions - The interface conditions (6.42) - (6.44) apply for integrals defined on interfaces
Γca and Γan for both electrodes and electrolyte. It is convenient to gather together all the contributions as
follow

∫

Γan

∆̂cLi hBV (∆φ) ds+

∫

Γan

∆̂φ iBV (∆φ) ds +

∫

Γan

∆̂~u · ~TΓ (∆~u) ds , (6.61)

and

∫

Γca

∆̂cLi hBV (∆φ) ds+

∫

Γca

∆̂φ iBV (∆φ) ds +

∫

Γca

∆̂~u · ~TΓ (∆~u) ds . (6.62)

Symbol ∆ defines the jump of a certain variable at the interfaces (a stands for an or ca depending on
the interface Γ where integrals are computed)

∆cLi = cL − cLi+ , ∆φ = φa − φe , ∆~u = ~ua − ~ue , (6.63)

while ~TΓ is the traction normal to the interface

~TΓ = σa ~na = −σe ~ne . (6.64)

The interface conditions (6.42d) - (6.44c) are imposed by means of a penalty method. Accordingly the

traction ~TΓ is assumed function of the displacement jump at interface through the following linear formula

~TΓ = KΓ ∆~u , (6.65)

with KΓ denoting the penalty parameter.

Overall weak form - In conclusion, the overall weak form of battery governing equations can be written
in the time interval [0, tf ] as

Find y(~x, t) ∈ V [0, tf ] such that
∂

∂t
b (ŷ(~x), cL(~x, t)) + a (ŷ(~x), y(~x, t)) = f (ŷ(~x)) ∀ ŷ(~x) ∈ V (6.66)

where

b (ŷ(~x), cL(~x, t)) =

∫

Ωa

ĉL cL dA +

∫

Ωe

ĉLi+ cLi+ dA +

∫

Ωe

ĉX− cX− dA +

∫

Ωe

ε| e∇[ φ̂e ] · ∇ [φe ] dA ,

a (ŷ(~x), y(~x, t)) =

∫

Ωa

∇ [ ĉL ] ·
{

D| L∇ [ cL ]−D|Σ (cL)∇ [ Σ ]

}
dA +

∫

Ωa

κa∇[ φ̂a ] · ∇ [φa ] dA+

+

∫

Ωa

∇S
[
~̂ua
]

: σa(cL,Σ, ~ua) dA +

∫

Ωa

Σ̂
{

Σ− tr [σa(cL,Σ, ~ua) ]
}

dA+

+

∫

Ωe

∇ [ ĉLi+ ] ·
{

D| Li+ ∇ [ cLi+ ] + D|+φ (cLi+)∇ [φe ]

}
dA+

+

∫

Ωe

∇ [ ĉX− ] ·
{

D|X− ∇ [ cX− ]−D|−φ (cX−)∇ [φe ]

}
dA+

+

∫

Ωe

∇
[
φ̂e

]
·
{

D| Li+∇ [ cLi+ ] + D|+φ (cLi+) ∇ [φe ]−D|X−∇ [ cX− ] + D|−φ (cX−) ∇ [φe ]

}
dA+
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+

∫

Ωe

∇S
[
~̂ue
]

: σe(~ue) dA+

+

∫

Γan

∆̂cLi hBV (∆φ) ds+

∫

Γan

∆̂φ iBV (∆φ) ds −
∫

Γan

∆̂~u · ~TΓ (∆~u) ds+

+

∫

Γca

∆̂cLi hBV (∆φ) ds+

∫

Γca

∆̂φ iBV (∆φ) ds −
∫

Γca

∆̂~u · ~TΓ (∆~u) ds ,

f (ŷ(~x)) = −
∫

∂NΩan

ĉL

{
~hL · ~nan

}
ds −

∫

∂NΩca

ĉL

{
~hL · ~nca

}
ds+

−
∫

∂NΩan

φ̂an

{
~i · ~nan

}
ds −

∫

∂NΩca

φ̂ca

{
~i · ~nca

}
ds+

+

∫

∂NΩan

~̂uan · (σan ~nan) ds +

∫

∂NΩca

~̂uca · (σca ~nca) ds .

with y = {cL, φa, ~ua, Σ, cLi+ , cX− , φe, ~ue} collecting the time-dependent unknown fields. Column ŷ

collects the steady state test functions that correspond to the unknown fields in y, i.e. ŷ = { ĉL, φ̂a, ~̂ua, Σ̂,

ĉLi+ , ĉX− , φ̂e, ~̂ue}. The identification of the functional space V falls beyond the scope of this work.

6.A.2 Numerical discretization

Following the standard finite element method, any domain Ωβ is divided into Nβ subdomains Ωeβ , each one
with nn nodes, such that

Ωa =

Na⋃

e=1

Ωea , Ωe =

Ne⋃

e=1

Ωee .

Similarly the interfaces Γan and Γca are divided into NΓ zero-thickness finite elements as customary for
cohesive fracture mechanics (see [327] for the details)

Γan ∪ Γca =

NΓ⋃

e=1

Γe .

Inside any subdomain any degree of freedom (and its variation) is approximated through the following
interpolation

hcL (~x, t) = [NL(~x)] [cL(t)] , hĉL (~x, t) = [NL(~x)] [ĉL(t)] , (6.67a)

hφβ (~x, t) = [Nφ(~x)] [φβ(t)] , hφ̂β (~x, t) = [Nφ(~x)] [φ̂β(t)] , (6.67b)

h~uβ (~x, t) = [Nu(~x)] [uβ(t)] , h~̂uβ (~x, t) = [Nu(~x)] [ûβ(t)] , (6.67c)

hΣ (~x, t) = [NΣ(~x)] [Σ(t)] , hΣ̂ (~x, t) = [NΣ(~x)] [Σ̂(t)] , (6.67d)

hcLi+ (~x, t) = [NLi(~x)] [cLi+(t)] , hĉLi+ (~x, t) = [NLi(~x)] [ĉLi+(t)] , (6.67e)

hcX− (~x, t) = [NX(~x)] [cX−(t)] , hĉX− (~x, t) = [NX(~x)] [ĉX−(t)] , (6.67f)

where tables [N(~x)] collect the time-independent local shape functions N i(~x) as
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[NL(~x)] = [Nφ(~x)] = [NΣ(~x)] = [NLi(~x)] = [NX(~x)] =
{
N1 , N2 , ... , Nnn

}
,

[Nu(~x)] =

[
N1 0 N2 0 ... Nnn 0
0 N1 0 N2 ... 0 Nnn

]
,

and [cL(t)] , [φβ(t)] , [uβ(t)] , [Σ(t)] , [cLi+(t)] , [cX−(t)] collecting the nodal values of variables cL, φβ , ~uβ ,
Σ, cLi+ , cX− at time t as follow

[cL(t)] =
{
c1L , c

2
L , ... , c

nn
L

}T
, [ĉL(t)] =

{
ĉ1L , ĉ

2
L , ... , ĉ

nn
L

}T
,

[φβ(t)] =
{
φ1
β , φ

2
β , ... , φ

nn
β

}T
, [φ̂β(t)] =

{
φ̂1
β , φ̂

2
β , ... , φ̂

nn
β

}T
,

[uβ(t)] =
{
u1
x , u

1
y , u

2
x , u

2
y , ... , u

nn
x , unny

}T
, [ûβ(t)] =

{
û1
x , û

1
y , û

2
x , û

2
y , ... , û

nn
x , ûnny

}T
,

[Σ(t)] =
{

Σ1 , Σ2 , ... , Σnn
}T

, [Σ̂(t)] =
{

Σ̂1 , Σ̂2 , ... , Σ̂nn
}T

,

[cLi+(t)] =
{
c1Li+ , c

2
Li+ , ... , c

nn
Li+

}T
, [ĉLi+(t)] =

{
ĉ1Li+ , ĉ

2
Li+ , ... , ĉ

nn
Li+

}T
,

[cX−(t)] =
{
c1X− , c2X− , ... , cnnX−

}T
, [ĉX−(t)] =

{
ĉ1X− , ĉ2X− , ... , ĉnnX−

}T
,

Moreover from Eq. (6.67) it results

∇ [ cL ] = [BL(~x)] [cL(t)] , ∇ [φβ ] = [Bφ(~x)] [φβ(t)] , ∇S [ ~̂u ] : σ = [û(t)]
T

[Bu(~x)]
T

[σ(~x, t) ],

∇ [ Σ ] = [BΣ(~x)] [Σ(t)] , ∇ [ cLi+ ] = [BLi(~x)] [cLi+(t)] , ∇ [ cX− ] = [BX(~x)] [cX−(t)] ,

with

[BL(~x)] = [Bφ(~x)] = [BΣ(~x)] = [BLi(~x)] = [BX(~x)] =

[
N1,1 N2,1 ... Nnn,1

N1,2 N2,2 ... Nnn,2

]
,

[Bu(~x)] =



N1,1 0 N2,1 0 ... Nnn,1 0

0 N1,2 0 N2,2 ... 0 Nnn,2

N1,2 N1,1 N2,2 N2,1 ... Nnn,2 Nnn,1


 ,

and

[σ(~x, t)] =
{
σ11 , σ22 , σ12

}T

with

N i,j =
∂N i

∂xj
i = 1, 2 j = 1, 2

The discretization in time is performed applying the implicit backward Euler method. Accordingly we
divide time interval [0, tf ] into Nt temporal steps ∆t = tf/Nt. We define for convenience

y(r)|n = y(~x, n∆t) , ∆y(~x)|n+1 = y(~x)|n+1 − y(~x)|n n = 1, 2, ... , Nt
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The discretized weak form is finally obtained from (6.66) by applying the finite element interpolation
(6.67) and the backward Euler scheme. It results in terms of approximate degrees of freedom hy = { hcL,
hφa, h~ua, hΣ, hcLi+ , hcX− , hφe,

h~ue} and variations hŷ = { hĉL, hφ̂a, h~̂ua, hΣ̂, hĉLi+ , hĉX− , hφ̂e,
h~̂ue} as

follow

Find hy(~x)
∣∣
n+1
∈ hV such that

1

∆t
hb
(
hŷ(~x), ∆hcL(~x)

∣∣
n+1

)
+ ha

(
hŷ(~x), hy(~x)

∣∣
n+1

)
= f

(
hŷ(~x)

)
∀ hŷ(~x) ∈ hV , n = 1, 2, ... , Nt

(6.71)

where

hb

(
hŷ(~x), ∆hz(~x)

∣∣∣
n+1

)
=

Na

A
e=1

{
[ĉL]T

∫
Ωea

[NL]T [NL]
(

[cL]n+1 − [cL]n

)
dA+

}
+

+

Ne

A
e=1

{
[ĉLi+ ]T

∫
Ωee

[NLi]
T [NLi]

(
[cLi+ ]n+1 − [cLi+ ]n

)
dA +

+ [ĉX− ]T
∫

Ωee

[NX]T [NX]
(

[cX− ]n+1 − [cX− ]n

)
dA+

+ [ φ̂e ]

∫
Ωee

[Bφ]T [Bφ]
(

[φe]n+1 − [φe]n

)
dA

}
,

ha

(
hŷ(~x), hy(~x)

∣∣∣
n+1

)
=

Na

A
e=1

{
[ĉL]T

∫
Ωea

[BL]T [BL] [cL]n+1 D| L dA +

− [ĉL]T
∫

Ωea

[BL]T [BΣ] [Σ]n+1 D|Σ(cL)
∣∣
n+1

dA+

+ [φ̂a]T
∫

Ωea

[Bφ]T [Bφ] [φa]n+1 κa dA+

+ [ ûe ]T
∫

Ωea

[Bu]T [σ(cL,Σ, ~ue) ]n+1 dA+

+ [Σ̂]T
∫

Ωea

[NΣ]T
(

[NΣ] [Σ]n+1 − tr [σ(cL,Σ, ~ua) ]
∣∣
n+1

)
dA

}
+

+

Ne

A
e=1

{
[ĉLi+ ]T

∫
Ωee

[BLi]
T [BLi] [cLi+ ]n+1 D| Li+ dA +

+ [ĉLi+ ]T
∫

Ωee

[BLi]
T [Bφ] [φe]n+1 D|+φ (cLi+)

∣∣∣
n+1

dA+

+ [ĉX− ]T
∫

Ωee

[BX]T [BX] [cX− ]n+1 D|X− dA+

− [ĉX− ]T
∫

Ωee

[BX]T [Bφ] [φe]n+1 D|−φ (cX−)
∣∣∣
n+1

dA+

+ [φ̂e]
T

∫
Ωee

[Bφ]T [BLi] [cLi+ ]n+1 D| Li+ dA+

+ [φ̂e]
T

∫
Ωee

[Bφ]T [Bφ] [φe]n+1 D|+φ (cLi+)
∣∣∣
n+1

dA+
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− [φ̂e]
T

∫
Ωee

[Bφ]T [BX] [cX− ]n+1 D|X− dA+

+ [φ̂e]
T

∫
Ωee

[Bφ]T [Bφ] [φe]n+1 D|−φ (cX−)
∣∣∣
n+1

dA+

+ [ û ]T
∫

Ωee

[Bu]T [σ(u ) ]n+1 dA

}
+

+

NΓ

A
e=1

{
[ĉL]T

∫
Γe

[NL]T hBV (∆φ)|n+1 ds− [ĉLi+ ]T
∫

Γe
[NLi]

T hBV (∆φ)|n+1 ds+

+ [φa]T
∫

Γe
[Nφ]T iBV (∆φ)|n+1 ds − [φe]

T

∫
Γe

[Nφ]T iBV (∆φ)|n+1 ds+

−[Ns
u]T

∫
Γe

[Nu]T · ~TΓ (∆u)
∣∣∣
n+1

ds + [Ns
u]T

∫
Γe

[Nu]T · ~TΓ (∆u)
∣∣∣
n+1

ds

}
,

f
(
hŷ(~x)

)
=

Na

A
e=1

{
−[cL]T

∫
∂NΩean

[NL]T
(
~hL · ~nan

)∣∣∣
n+1

ds− [cL]T
∫
∂NΩeca

[NL]T
(
~hL · ~nca

)∣∣∣
n+1

ds+

− [φa]T
∫
∂NΩean

[Nφ]T
(
~i · ~nan

)∣∣∣
n+1

ds− [φa]T
∫
∂NΩeca

[Nφ]T
(
~i · ~nca

)∣∣∣
n+1

ds+

+ [ ûa ]T
∫
∂NΩean

[Nu]T · (σca ~nca)|n+1 ds+ [ ûa ]T
∫
∂NΩeca

[Nu]T · (σca ~nca)|n+1 ds

}
.

Note that the integrals in (6.71) are now computed summating the contribution of any subdomain Ωe

and Γe by means of the assembly operator A. Eq. (6.71) is equivalent to a system of non-linear equations
for the unknowns hy which is solved with a standard Newton-Raphson algorithm. Accordingly the solution

is computed iteratively in terms of solution increments δy(k+1) = { δc(k+1)
L , δφ

(k+1)
a , δ~u

(k+1)
a , δΣ(k), δc

(k+1)

Li+
,

δc
(k+1)

X− , δφ
(k+1)
e , δ~u

(k+1)
e } at iteration k+1 for any time step (the superscript h has been removed for clarity).

Without going through all details for convenience (see [323] for instance), the overall problem reduces to the
following linear system

(
[Ka ]

(k)
n+1 + [Ke ]

(k)
n+1 + [KΓ ]

(k)
n+1

)
[ δ y

(k+1)
n+1 ] = [R

(k)
n+1 ]

where

[Ka ]
(k)
n+1 =



[KLL
a ] [KLΣ

a ] [ 0 ] [ 0 ]

[KΣL
a ] [KΣ Σ] [ 0 ] [KΣu

a ]

[ 0 ] [ 0 ] [Kφφ
a ] [ 0 ]

[KuL
a ] [KuΣ] [ 0 ] [Kuu

a ]


, [Ke ]

(k)
n+1 =



[KLi Li
e ] [ 0 ] [KLiφ

e ] [ 0 ]

[ 0 ] [KX X
e ] [KXφ

e ] [ 0 ]

[KφLi
e ] [KφX

e ] [Kφφ
e ] [ 0 ]

[ 0 ] [ 0 ] [ 0 ] [Kuu
e ]


,

[KΓ ]
(k)
n+1 =



[ 0 ] [ 0 ] [KLiφ
Γ ] [ 0 ]

[ 0 ] [ 0 ] [ 0 ] [ 0 ]

[ 0 ] [ 0 ] [Kφφ
Γ ] [ 0 ]

[ 0 ] [ 0 ] [ 0 ] [Kuu
Γ ]


, [ δ y

(k+1)
n+1 ] =



[δU1]

[δU2]

[δU3]

[δU4]


, [R

(k)
n+1 ] =



[R1]

[R2]

[R3]

[R4]


.
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The consistent tangent matrix [Kαγ
β ], residual vector components [Rα], and solution vector [δU α ] are

[KLL
a ] =

Na

A
e=1

{
1

∆t

∫
Ωea

[NL]T [NL] dA+

∫
Ωea

[BL]T [BL] D| L dA −
∫

Ωea

[BL]T [NL]
(

[BΣ] [Σ](k)
n+1

) d D|Σ
d cL

∣∣∣∣(k)

n+1

dA

}
,

[KLΣ
a ] =

Na

A
e=1

{
−
∫

Ωea

[BL]T [BΣ] D|Σ
∣∣(k)

n+1
dA

}
,

[KΣL
a ] =

Na

A
e=1

{
−
∫

Ωea

[NΣ]T [NL]
∂tr [σ ]

∂cL

∣∣∣∣(k)

n+1

dA

}
,

[KΣ Σ
a ] =

Na

A
e=1

{∫
Ωea

[NΣ]T [NΣ] dA −
∫

Ωea

[NΣ]T
[
∂tr [σ ]

∂Σ

](k)

n+1

[NΣ] dA

}
,

[KΣu
a ] =

Na

A
e=1

{
−
∫

Ωea

[NΣ]T
[
∂tr [σ ]

∂ε

](k)

n+1

[Bu] dA

}
,

[Kφφ
a ] =

Na

A
e=1

{∫
Ωea

[Bφ]T [Bφ]κa dA

}
,

[KuL
a ] =

Na

A
e=1

{∫
Ωea

[Bu]T
[
∂σ

∂cL

](k)

n+1

[NL] dA

}
,

[Kuu
a ] =

Na

A
e=1

{∫
Ωea

[Bu]T
[
∂σ

∂ε

](k)

n+1

[Bu] dA

}
,

[KuΣ
a ] =

Na

A
e=1

{∫
Ωea

[Bu]T
[
∂σ

∂Σ

](k)

n+1

[NΣ] dA

}
,

[KLi Li
e ] =

Ne

A
e=1

 1

∆t

∫
Ωee

[NLi]
T [NLi] dA+

∫
Ωee

[BLi]
T [BLi] D| Li+ dA +

∫
Ωee

[BLi]
T [NLi]

(
[Bφ] [φe]

(k)
n+1

) d D|+φ
d cLi+

∣∣∣∣∣
(k)

n+1

dA

 ,

[KLiφ
e ] =

Ne

A
e=1

{∫
Ωee

[BLi]
T [Bφ] D|+φ

∣∣∣(k)

n+1
dA

}
,

[KX X
e ] =

Ne

A
e=1

 1

∆t

∫
Ωee

[NX]T [NX] dA+

∫
Ωee

[BX]T [BX] D|X− dA −
∫

Ωee

[BX]T [NX]
(

[Bφ] [φe]
(k)
n+1

) d D|−φ
d cX−

∣∣∣∣∣
(k)

n+1

dA

 ,

[KXφ
e ] =

Ne

A
e=1

{∫
Ωee

[BX]T [Bφ] D|−φ
∣∣∣(k)

n+1
dA

}
,
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[KφLi
e ] =

Ne

A
e=1


∫

Ωee

[Bφ]T [BLi] D| Li+ dA+

∫
Ωee

[Bφ]T [NLi]
(

[Bφ] [φe]
(k)
n+1

) d D|+φ
d cLi+

∣∣∣∣∣
(k)

n+1

dA

 ,

[KφX
e ] =

Ne

A
e=1

−
∫

Ωee

[Bφ]T [BX] D|X− dA+

∫
Ωee

[Bφ]T [NX]
(

[Bφ] [φe]
(k)
n+1

) d D|−φ
d cX−

∣∣∣∣∣
(k)

n+1

dA

 ,

[Kφφ
e ] =

Ne

A
e=1

{
1

∆t

∫
Ωee

[Bφ]T [Bφ] ε| edA+

∫
Ωee

[Bφ]T [Bφ] D|+φ
∣∣∣(k)

n+1
dA−

∫
Ωee

[Bφ]T [Bφ] D|−φ
∣∣∣(k)

n+1
dA

}
,

[Kuu
e ] =

Ne

A
e=1

{∫
Ωee

[Bu]T
[
∂σ

∂ε

](k)

n+1

[Bu] dA

}
,

[KLiφ
Γ ] =

NΓ

A
e=1

{∫
Γe

(
[NL]T − [NLi]

T
)

[Nφ]
dhBV
dφa

∣∣∣∣(k)

n+1

ds+

∫
Γe

(
[NL]T − [NLi]

T
)

[Nφ]
dhBV
dφe

∣∣∣∣(k)

n+1

ds

}
,

[Kφφ
Γ ] =

NΓ

A
e=1

{∫
Γe

(
[Nφ]T − [Nφ]T

)
[Nφ]

d iBV
dφa

∣∣∣∣(k)

n+1

ds+

∫
Γe

(
[Nφ]T − [Nφ]T

)
[Nφ]

d iBV
dφe

∣∣∣∣(k)

n+1

ds ,

}
,

[Kuu
Γ ] = −

NΓ

A
e=1


∫

Γe

(
[Nu]T − [Nu]T

)
[Nu]

d ~TΓ

d ~ua

∣∣∣∣∣
(k)

n+1

ds+

∫
Γ∗e

(
[Nu]T − [Nu]T

)
[Nu]

d ~TΓ

d ~ue

∣∣∣∣∣
(k)

n+1

ds

 ,

[R1] = −
Na

A
e=1

{
1

∆t

∫
Ωea

[NL]T [NL]
(

[cL](k)
n+1 − [cL]n

)
dA +

∫
Ωea

[BL]T [BL] [cL](k)
n+1 D| L dA+

−
∫

Ωea

[BL]T [BΣ] [Σ](k)
n+1 D|Σ

∣∣(k)

n+1
dA+

+

∫
∂NΩean

[NL]T
(
~hL · ~nan

)∣∣∣
n+1

ds +

∫
∂NΩeca

[NL]T
(
~hL · ~nan

)∣∣∣
n+1

ds

}
+

−
Ne

A
e=1

{
1

∆t

∫
Ωee

[NLi]
T [NLi]

(
[cLi+ ](k)

n+1 − [cLi+ ]n

)
dA +

∫
Ωea

[BLi]
T [BLi] [cLi+ ](k)

n+1 D| Li+ dA+

+

∫
Ωee

[BLi]
T [Bφ] [φe]

(k)
n+1 D|+φ

∣∣∣(k)

n+1
dA

}
+

−
NΓ

A
e=1

{∫
Γe

[NL]T hBV |(k)
n+1 ds−

∫
Γe

[NLi]
T hBV |(k)

n+1 ds

}
.

[R2] = −
Na

A
e=1

{∫
Ωea

[NΣ]T
(

[NΣ] [Σ](k)
n+1 − tr [σ ]

∣∣(k)

n+1

)
dV

}
+

−
Ne

A
e=1

{
1

∆t

∫
Ωee

[NX]T [NX]
(

[cX− ](k)
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)
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[BX]T [BX] [cX− ](k)
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−
∫

Ωee
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dA

}
,
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[R3] = −
Na

A
e=1

{∫
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n+1 κa dA +
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[Nφ]T
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1
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+

∫
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[Bφ]T [Bφ] [φe]
(k)
n+1 D|+φ

∣∣∣(k)

n+1
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∫
Ωea
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n+1 D|X− dA +

+

∫
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}
+
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A
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n+1 ds−
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}
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[R4] = −
Na

A
e=1

{∫
Ωea

[Bu]T [σ ]
(k)
n+1 dV −

∫
∂NΩean

[Ns
u]T · (σca ~nca)|n+1 ds−

∫
∂NΩeca

[Ns
u]T · (σca ~nca)|n+1 ds

}
+

−
Ne

A
e=1

{∫
Ωee

[Bu]T [σ ]
(k)
n+1 dV

}
+

+

NΓ

A
e=1

{∫
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[Nu]T ~TΓ

∣∣∣(k)

n+1
ds−

∫
Γe

[Nu]T ~TΓ

∣∣∣(k)

n+1
ds

}
,

[δU1] =

Na

A
e=1

[ cL ] +

Ne

A
e=1

[ cLi+ ] , [δU2] =

Na

A
e=1

[ Σ ] +

Ne

A
e=1

[ cX− ] ,

[δU3] =

Na

A
e=1

[φa ] +

Ne

A
e=1

[φe ] , [δU4] =

Na

A
e=1

[ua ] +

Ne

A
e=1

[ue ] .

The value assumed by the scalar functions and their derivatives appearing in [Kαβ ] and [Rα] can be
easily computed from the respective definitions.
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[132] A. Gillman, G. Amadio, K. Matouš, and T.L. Jackson. Third-order thermo-mechanical properties for
packs of platonic solids using statistical micromechanics. P R SOC A, 471, 2015.

[133] Y.T. Cheng and M.W. Verbrugge. Evolution of stress within a spherical insertion electrode particle
under potentiostatic and galvanostatic operation. J POWER SOURCES, 190:453–460, 2009.

[134] Y.T. Cheng and M.W. Verbrugge. Diffusion-induced stress, interfacial charge transfer, and criteria for
avoiding crack initiation of electrode particles. J ELECTROCHEM SOC, 4:508–516, 2010.

[135] J. Christensen and J. Newman. Stress generation and fracture in Lithium insertion materials. J SOLID
STATE ELECTR, 10:293–319, 2006.

[136] Z. Cui, F. Gao, and J. Qu. A finite deformation stress-dependent chemical potential and its applications
to Lithium ion batteries. J MECH PHYS SOLIDS, 60:1280–1295, 2012.

[137] R. Deshpande, Y.T. Cheng, and M.W. Verbrugge. Modeling diffusion-induced stress in nanowire
electrode structures. J POWER SOURCES, 195:5081–5088, 2010.

[138] R. Deshpande, Y.T Cheng, M.W. Verbrugge, and A. Timmons. Diffusion induced stresses and strain
energy in a phase-transforming spherical electrode particle. J ELECTROCHEM SOC, 158(6):A718–
A724, 2011.

[139] S. Golmon, K. Maute, S.H. Lee, and M.L. Dunn. Stress generation in silicon particles during Lithium
insertion. APPL PHYS LETT, 97:033111, 2010.

[140] C. Miehe and H. Dal. Computational electro-chemo-mechanics of Lithium-ion battery electrodes at
finite strains. COMPUT MECH, 55:303–325, 2015.

[141] R.T. Purkayastha and R.M. McMeeking. A parameter study of intercalation of Lithium into storage
particles in a Lithium-ion battery. COMP MATER SCI, 80:2–14, 2013.

[142] X. Zhang, A.M. Sastry, and W. Shyy. Intercalation-induced stress and heat generation within single
Lithium-ion battery chatode particles. J ELECTROCHEM SOC, 155(7):A542–A552, 2008.

[143] X. Zhang, W. Shyy, and A.M. Sastry. Numerical simulation of intercalation-induced stress in Li-ion
battery electrode particles. J ELECTROCHEM SOC, 154:A910–A916, 2007.

[144] K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, and Z. Suo. Large plastic deformation in high-capacity
Lithium-ion batteries caused by charge and discharge. J AM CERAM SOC, 94(S1):S226–S235, 2011.

[145] A. Awarke, S. Lauer, M. Wittler, and S. Pischinger. Quantifying the effects of strains on the conduc-
tivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach. COMP
MATER SCI, 50(3):871–879, 2011.

[146] A. Gupta, J. H. Seo, X. Zhang, W. Du, A.M. Sastry, and W. Shyy. Effective transport properties of
LiMn2O4 electrode via particle-scale modeling. J ELECTROCHEM SOC, 158(5):A487–A497, 2011.

[147] S.A. Roberts, V.E. Brunini, K.N. Long, and A.M. Grillet. A framework for three-dimensional mesoscale
modeling of anisotropic swelling and mechanical deformation in Lithium-ion electrodes. J ELEC-
TROCHEM SOC, 161(11):F3052–F3059, 2014.

160



[148] A.J. Stershic, S. Simunovic, and J. Nanda. Modeling the evolution of Lithium-ion particle contact
distributions using a fabric tensor approach. J POWER SOURCES, 297:540–550, 2015.

[149] M. Ender, J. Joos, T. Carraro, and E. Ivers-Tiffee. Three dimensional reconstruction of a composite
cathode for Lithium-ion cells. ELECTROCHEM COMMUN, 13(2):166–168, 2011.

[150] T. Hutzenlaub, S. Thiele, R. Zengerle, and C. Ziegler. Three-dimensional reconstruction of a LiCoO2

Li-ion battery cathode. ELECTROCHEM SOLID ST, 15(3):A33–A36, 2012.

[151] T. Hutzenlaub, S. Thiele, R. Paust, R.M. Spotnitz, R. Zengerle, and C. Walchshofer. Three dimensional
electrochemical Li-ion battery modeling featuring a focused ion-beam/scanning electrode microscopy
based three-phase reconstruction of a LiCoO2 cathode. ELECTROCHIM ACTA, 115:131–139, 2014.

[152] V. Malave, J. Berger, H. Zhu, and R.J. Kee. A computational model of the mechanical behavior within
reconstructed LixCoO2 Li-ion battery cathode particles. ELECTROCHIM ACTA, 130:707–717, 2014.

[153] V. Malave, J.R. Berger, and P.A. Martin. Concentration-dependent chemical expansion in Lithium-ion
battery cathode particles. J APPL MECH, 81(9), 2014.

[154] D.E. Stephenson, E.M. Hartman, J.N. Harb, and D.R. Wheeler. Modeling of particle-particle inter-
actions in porous cathodes for Lithium-ion batteries. J ELECTROCHEM SOC, 154:A1146–A1155,
2007.

[155] Christian Wieser, Torben Prill, and Katja Schladitz. Multiscale simulation process and application to
additives in porous composite battery electrodes. J POWER SOURCES, 277:64–75, 2015.

[156] S.K. Babu, A.I. Mohamed, J.F. Whitacre, and S. Litster. Multiple imaging mode X-ray computed
tomography for distinguishing active and inactive phases in Lithium-ion battery cathodes. J POWER
SOURCES, 283:314–319, 2015.

[157] P.R. Shearing, L.E. Howard, P. Jorgensen, N.P. Brandon, and S.J. Harris. Characterization of the
3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. ELECTROCHEM
COMMUN, 12(3):374 – 377, 2010.

[158] L. Zielke, T. Hutzenlaub, D.R. Wheeler, I. Manke, T. Arlt, N. Paust, R. Zengerle, and S. Thiele. A
combination of X-Ray tomography and carbon binder modeling: reconstructing the three phases of
LiCoO2 Li-ion battery cathodes. ADV ENERGY MATER, 4(8):1301617, 2014.

[159] L. Zielke, T. Hutzenlaub, D.R. Wheeler, C.W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle,
and S. Thiele. Three-phase multiscale modeling of a LiCoO2 cathode: combining the advantages of
FIB-SEM imaging and X-Ray tomography. ADV ENERGY MATER, 5:1401612, 2015.

[160] J.R. Wilson, J.S. Cronin, S.A. Barnett, and S.J. Harris. Measurements of three-dimensional microstruc-
ture in a LiCoO2 positive electrode. J POWER SOURCES, 196:3443–3447, 2011.

[161] Z. Liu, J.S. Cronin, Y. Chen-Wiegart, J.R. Wilson, K.J. Yakal-Kremski, J. Wang, K.T.
Faber, and S.A. Barnett. Three-dimensional morphological measurements of LiCoO2 and
LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 Lithium-ion battery cathodes. J POWER SOURCES, 227:267–274,
2013.

[162] A.H. Wiedemann, G.M. Goldin, S.A. Barnett, H. Zhu, and R.J. Kee. Effects of three-dimensional
cathode microstructure on the performance of Lithium-ion battery cathodes. ELECTROCHIM ACTA,
pages 580–588, 2013.

[163] Z. Liu, Y. Chen-Wiegart, J. Wang, S.A. Barnett, and K.T. Faber. Three-phase 3d reconstructions of
a LiCoO2 cathode via FIB-SEM tomography. MICROSC MICROANAL, 22:140–148, 2016.

[164] J. Newman and W.M. Tiedemann. Temperature rise in a battery module with constant heat generation.
J ELECTROCHEM SOC, 142(4):1054–1057, 1995.

161



[165] C.R. Pals and J. Newman. Thermal modeling of the Lithium/polymer battery. J ELECTROCHEM
SOC, 142(10):3274–3281, 1995.

[166] L. Rao and J. Newman. Heat-generation rate and general energy balance for insertion battery systems.
J ELECTROCHEM SOC, 144(8):2697–2704, 1997.

[167] C.Y. Jhua, Y.W. Wang, C.Y. Wen, and C.M. Shu. Thermal runaway potential of LiCoO2 and
Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. APPL EN-
ERG, 100(127–131), 2012.

[168] S. Abada, G. Marlair, A. Lecocq, M. Petit, V. Sauvant-Moynot, and F. Huet. Safety focused modeling
of lithium-ion batteries: A review. J POWER SOURCES, 306:178 – 192, 2016.

[169] M. Fleckenstein, O. Bohlen, M.A. Roscher, and B. Baeker. Current density and state of charge
inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients.
J POWER SOURCES, 196:4769–4778, 2011.

[170] A. Latz and J. Zausch. Thermodynamic consistent transport theory of Li-ion batteries. J POWER
SOURCES, 196:3296–3302, 2011.

[171] S. Rothe, J.H. Schmidt, and S. Hartmann. Analytical and numerical treatment of electro-thermo-
mechanical coupling. ARCH APPL MECH, 85:1245–1264, 2015.

[172] I. Baghdadi, O. Briat, J.Y. Delétage, P. Gyan, and J.M. Vinassa. Lithium battery aging model based
on Dakin’s degradation approach. J POWER SOURCES, 325:273 – 285, 2016.

[173] R. Darling and J. Newman. Modeling side reactions in composite Liy Mn2O4 electrodes. J ELEC-
TROCHEM SOC, 145(3):990–998, 1998.

[174] J.R. Belt, C.D. Ho, C.G. Motloch, T.J. Miller, and T.Q. Duong. A capacity and power fade study of
Li-ion cells during life cycle testing. J POWER SOURCES, 123(2):241–246, 2003.

[175] I. Bloom, B.W. Cole, J.J. Sohn, S.A. Jones, E.G. Polzin, V.S. Battaglia, G.L. Henriksen, C. Motloch,
R. Richardson, T. Unkelhaeuser, D. Ingersoll, and H.L. Case. An accelerated calendar and cycle life
study of Li-ion cells. J POWER SOURCES, 101(2):238–247, 2001.

[176] K. Asakura, M. Shimomura, and T. Shodai. Study of life evaluation methods for Li-ion batteries for
backup applications. J POWER SOURCES, 119-121:902–905, 2003. Selected papers presented at the
11th International Meeting on Lithium Batteries.

[177] M. Safari and C. Delacourt. Simulation-based analysis of aging phenomena in a commercial
graphite/LiFePO4 cell. J ELECTROCHEM SOC, 158(12):A1436–A1447, 2011.

[178] Y.P. Wu, E. Rahm, and R. Holze. Carbon anode materials for Lithium ion batteries. J POWER
SOURCES, 114(2):228–236, 2003.

[179] R. Fong, U. von Sacken, and J. R. Dahn. Studies of Lithium intercalation into carbons using nonaqueous
electrochemical cells. J ELECTROCHEM SOC, 137(7):2009–2013, 1990.

[180] J. Christensen and J. Newman. A mathematical model for the Lithium-ion negative electrode solid
electrolyte interphase. J ELECTROCHEM SOC, 151(11):A1977–A1988, 2004.

[181] J. Deng, G.J. Wagner, and R.P. Muller. Phase field modeling of solid electrolyte interface formation
in Lithium ion batteries. J ELECTROCHEM SOC, 160(3):A487–A496, 2013.

[182] D. Li, D. Danilov, Z. Zhang, H. Chen, Y. Yang, and P.H.L Notten. Modeling the SEI-formation on
graphite electrodes in LiFePO4 batteries. J ELECTROCHEM SOC, 162(6):A858–A869, 2015.

[183] L. Liu, J. Park, X. Lin, A.M. Sastry, and W. Lu. A thermal-electrochemical model that gives spatial-
dependent growth of solid electrolyte interphase in a Li-ion battery. J POWER SOURCES, 268:482–
490, 2014.

162



[184] M. Nie, D. Chalasani, D.P. Abraham, Y. Chen, A. Bose, and B.L. Lucht. Lithium ion battery graphite
solid electrolyte interphase revealed by microscopy and spectroscopy. J PHYS CHEM-US, 117:1257–
1267, 2013.

[185] H.J. Ploehn, P. Ramadass, and R.E. White. Solvent diffusion model for aging of Lithium-ion battery
cells. J ELECTROCHEM SOC, 151(3):A456–A462, 2004.

[186] E. Rejovitzky, C.V. Di Leo, and L. Anand. A theory and a simulation capability for the growth of a
solid electrolyte interphase layer at an anode particle in a Li-ion battery. J MECH PHYS SOLIDS,
78(210-230), 2015.

[187] H. Shin, J. Park, S. Han, A.M. Sastry, and W. Lu. Component-/structure-dependent elasticity of solid
electrolyte interphase layer in Li-ion batteries: Experimental and computational studies. J POWER
SOURCES, 277:169–179, 2015.

[188] H. Shin, J. Park, A.M. Sastry, and W. Lu. Degradation of the solid electrolyte interphase induced by
the deposition of manganese ions. J POWER SOURCES, 284:416–427, 2015.

[189] M. Tang, S. Lu, and J. Newman. Experimental and theoretical investigation of solid-electrolyte-
interphase formation mechanisms on glassy carbon. J ELECTROCHEM SOC, 159(11):A1775–A1785,
2012.

[190] Y. Xie, J. Li, and C. Yuan. Multiphysics modeling of Lithium ion battery capacity fading process with
solid-electrolyte interphase growth by elementary reaction kinetics. J POWER SOURCES, 248:172–
179, 2014.

[191] H. Ekström and G. Lindbergh. A model for predicting capacity fade due to SEI formation in a
commercial graphite/LiFePO4 cell. J ELECTROCHEM SOC, 162(6):A1003–A1007, 2015.

[192] D. Bothe. On the Maxwell-Stefan approach to multicomponent diffusion. PROG NONLIN, 80:81–93,
2011.

[193] S.H. Lam. Multicomponent diffusion revisited. PHYSICS OF FLUIDS, 18:073101, 2006.

[194] Y.T. Cheng and M.W. Verbrugge. The influence of surface mechanics on diffusion induced stresses
within spherical nanoparticles. J APPL PHYS, 104:083521, 2008.

[195] K. Higa and V. Srinivasan. Stress and strain in silicon electrode models. J ELECTROCHEM SOC,
162(6):A1111–A1122, 2015.

[196] R.A. Huggins and W.D. Nix. Decrepitation model for capacity loss during cycling of alloys in recharge-
able electrochemical systems. IONICS, 6:57–63, 2000.

[197] K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, and Z. Suo. Fracture of electrodes in Lithium-ion batteries
caused fast charging. J APPL PHYS, 108:073517, 2010.

[198] K.E. Aifantis and J.P. Dempsey. Stable crack growth in nanostructured Li-batteries. J POWER
SOURCES, 143:203–211, 2005.

[199] K.E. Aifantis, S.A. Hackney, and J.P. Dempsey. Design criteria for nanostructured Li-ion batteries. J
POWER SOURCES, 165:874–879, 2007.

[200] Y. Hu, X. Zhao, and Z. Suo. Averting cracks caused by insertion reaction in Lithium-ion batteries. J
MATER RES, 25(6):1007–1010, 2010.

[201] I. Ryu, J. W. Choi, Y. Cui, and W.D. Nix. Size-dependent fracture of si nanowire battery anodes. J
MECH PHYS SOLIDS, 59:1717–1730, 2011.

[202] H. Woodford, Y.M. Chiang, and W.C. Carter. Electrochemical shock of intercalation electrodes: A
fracture mechanics analysis. J ELECTROCHEM SOC, 157(10):A1052–A1059, 2010.

163



[203] K. Zhao, M. Pharr, J.J. Vlassak, and Z. Suo. Inelastic hosts as electrodes for high-capacity Lithium-ion
batteries. J APPL PHYS, 109:016110, 2011.

[204] A. Salvadori. A plasticity framework for (linear elastic) fracture mechanics. J MECH PHYS SOLIDS,
56:2092–2116, 2008.

[205] A. Salvadori. Crack kinking in brittle materials. J MECH PHYS SOLIDS, 58:1835–1846, 2010.

[206] A. Salvadori and F. Fantoni. Minimum theorems in 3D incremental linear elastic fracture mechanics.
INT J FRACTURE, 184(1):57–74, 2013.

[207] A. Salvadori and F. Fantoni. Fracture propagation in brittle materials as a standard dissipative process:
general theorems and crack tracking algorithms. J MECH PHYS SOLIDS, 95:681–696, 2016.

[208] A. Salvadori and A. Giacomini. The most dangerous flaw orientation in brittle materials and structures.
INT J FRACTURE, 183(1):19–28, 2013. DOI: 10.1007/s10704-013-9872-x.

[209] T.K. Bhandakkar and H. Gao. Cohesive modeling of crack nucleation under diffusion induced stresses
in a thin strip: Implications on the critical size for flaw tolerant battery electrodes. INT J SOLIDS
STRUCT, 47:1424–1434, 2010.

[210] T.K. Bhandakkar and H. Gao. Cohesive modeling of crack nucleation in a cylindrical electrode under
axisymmetric diffusion induced stresses. INT J SOLIDS STRUCT, 48:2304–2309, 2011.

[211] C. Miehe, L.M. Schaenzel, and H. Ulmer. Phase field modeling of fracture in multi-physics problems.
Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids.
COMPUT METHOD APPL M, 294:449–485, 2015.

[212] C. Miehe, M. Hofacker, L.M. Schaenzel, and F. Aldakheel. Phase field modeling of fracture in multi-
physics problems. Part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-
elastic–plastic solids. COMPUT METHOD APPL M, 294:486–522, 2015.

[213] C. Miehe, H. Dal, and A. Raina. A phase field model for chemo-mechanical induced fracture in
Lithium-ion battery electrode particles. INT J NUMER METH ENG, 106(9):683–711, 2016.

[214] P. Zuo and Y.P. Zhao. A phase field model coupling Lithium diffusion and stress evolution with crack
propagation and application in Lithium ion batteries. PHYS CHEM CHEM PHYS, 17:287–297, 2015.

[215] C. Miehe and S. Mauthe. Phase field modeling of fracture in multi-physics problems. Part III. crack
driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. COM-
PUT METHOD APPL M, 304:619–655, 2016.

[216] Y. Zhao, B.X. Xu, P. Stein, and D. Gross. Phase-field study of electrochemical reactions at exterior
and interior interfaces in Li-ion battery electrode particles. COMPUT METHOD APPL M, pages –,
2016.

[217] M. Klinsmann, D. Rosato, M. Kamlah, and R.M. McMeeking. Modeling crack growth during Li extrac-
tion in storage particles using a fracture phase field approach. J ELECTROCHEM SOC, 163(2):A102–
A118, 2016.

[218] D.T. O’Connor, M.J. Welland, W.K. Liu, and P.V. Voorhees. Phase transformation and fracture
in single LixFePO4 cathode particles: a phase-field approach to Li-ion intercalation and fracture.
MODELLING SIMUL MATER SCI ENG, 24(3):035020, 2016.

[219] M. Klinsmann, D. Rosato, M. Kamlah, and R.M. McMeeking. Modeling crack growth during Li
insertion in storage particles using a fracture phase field approach. J MECH PHYS SOLIDS, 92:313
– 344, 2016.

[220] J. Christensen and J. Newman. A mathematical model of stress generation and fracture in Lithium
manganese oxide. J ELECTROCHEM SOC, 153(6):A1019–A1030, 2006.

164



[221] M.W. Verbrugge and Y.T. Cheng. Stress and strain-energy distributions within diffusion- controlled
insertion-electrode particles subjected to periodic potential excitations. J ELECTROCHEM SOC,
156:A927–A937, 2009.

[222] Y.F. Gao and M. Zhou. Strong stress-enhanced diffusion in amorphus Lithium alloy nanowire elec-
trodes. J APPL PHYS, 109:014310, 2011.

[223] J.C.M. Li. Physical chemistry of some microstructural phenomena. METALL TRANS, 9A:1353–1380,
1978.

[224] S. Prussin. Generation and distribution of dislocations by solute diffusion. J APPL PHYS, 32(10):1876–
1881, 1961.

[225] S. Lee, W.L. Wang, and J.R. Chen. Diffusion-induced stresses in a hollow cylinder: Constant surface
stresses. MATER CHEM PHYS, 64(2):123 – 130, 2000.

[226] F. Yang. Interaction between diffusion and chemical stresses. MATER SCI ENG A, 409:153–159, 2005.

[227] F. Larche and J.W. Cahn. A linear theory of thermochemical equilibrium under stress. ACTA METALL
MATER, 21:1051–1063, 1973.

[228] F. Larche and J.W. Cahn. Non linear theory of thermochemical equilibrium under stress. ACTA
METALL MATER, 26:53–60, 1978.

[229] R.T. Purkayastha and R.M. McMeeking. A linearized model for Lithium ion batteries and maps for
their performance and failure. J APPL MECH, 79:1–16, 2012.

[230] J.H. Seo, M. Chung, M. Park, S.W. Han, X. Zhang, and A.M. Sastry. Generation of realistic structures
and simulations of internal stress: A numerical/AFM study of LiMn2O4 particles. J ELECTROCHEM
SOC, 158(4):A434–A442, 2011.

[231] C.H. Wu. The role of Eshelby stress in composition-generated and stress-assisted diffusion. J MECH
PHYS SOLIDS, 49(8):1771–1794, 2001.

[232] H. Haftbaradaran, J. Song, W.A. Curtin, and H. Gao. Continuum and atomistic models of strongly
coupled diffusion, stress, and solute concentration. J POWER SOURCES, 196:361–370, 2011.

[233] J. W. Wang, Y. He, F. Fan, X.H. Liu, S. Xia, Y. Liu, C.T. Harris, H. Li, J.Y. Huang, S.X. Mao,
and T. Zhu. Two-phase electrochemical lithiation in amorphous silicon. NANO LETT, 13(2):709–715,
2013.

[234] L. Brassart, K. Zhao, and Z. Suo. Cyclic plasticity and shakedown in high-capacity electrodes of
Lithium-ion batteries. INT J SOLIDS STRUCT, 50:1120–1129, 2013.

[235] V.A. Sethuraman, V. Srinivasan, A. F. Bower, and P.R. Guduru. In situ measurements of stress-
potential coupling in lithiated silicon. J ELECTROCHEM SOC, 157:1253–1261, 2010.

[236] J. Wang, Y. Chen-Wiegart, and J. Wang. In operando tracking phase transformation evolution of
Lithium iron phosphate with hard X-ray microscopy. NAT COMMUN, 5, 2014.

[237] G. Chen, X. Song, and T.J. Richardson. Electron microscopy study of the LiFePO4 to FePO4 phase
transition. ELECTROCHEM SOLID ST, 9:A295, 2006.

[238] L. Laffont, C. Delacourt, P. Gibot, M. Wu, P. Kooyman, C. Masquelier, and J. Tarascon. Study of
the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. CHEM
MATER, 18(23):5520–5529, 2006.

[239] J.W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. interfacial free energy. J CHEM
PHYS, 28:258–267, 1958.

165



[240] K. Thornton, J. Agren, and P.W. Voorhees. Modelling the evolution of phase boundaries in solids at
the meso- and nano-scales. ACTA MATER, 51(19):5675 – 5710, 2003.

[241] V. Srinivasan and J. Newman. Discharge model for the Lithium iron-phosphate electrode. J ELEC-
TROCHEM SOC, 151(10):A1517–A1529, 2004.

[242] V. R. Subramanian, H. J. Ploehn, and R. E. White. Shrinking core model for the discharge of a metal
hydride electrode. J ELECTROCHEM SOC, 147(8):2868–2873, 2000.

[243] Q. Zhang and R.E. White. Moving boundary model for the discharge of a LiCoO2 electrode. J
ELECTROCHEM SOC, 154(6):A587–A596, 2007.

[244] F. Gao and W. Hong. Phase-field model for the two-phase lithiation of silicon. J MECH PHYS
SOLIDS, 94:18 – 32, 2016.

[245] G.K. Singh, G. Ceder, and M.Z. Bazant. Intercalation dynamics in rechargeable battery materials:
General theory and phase-transformation waves in LiFePO4. ELECTROCHIM ACTA, 53:7599–7613,
2008.

[246] D. Burch, G.K. Singh, G. Ceder, and M.Z. Bazant. Phase-transformation wave dynamics in LiFePO4.
SOLID STATE PHENOM, 139:95–100, 2008.

[247] B.C. Han, A. Van der Ven, D. Morgan, and G. Ceder. Electrochemical modeling of intercalation
processes with phase field models. ELECTROCHIM ACTA, 49(26):4691 – 4699, 2004.

[248] M. Tang, W. Craig Carter, J.F. Belak, and Y.M. Chiang. Modeling the competing phase transition
pathways in nanoscale olivine electrodes. ELECTROCHIM ACTA, 56(2):969 – 976, 2010.

[249] M. Tang, H.-Y. Huang, N. Meethong, Y.-H. Kao, W. C. Carter, and Y.-M. Chiang. Model for the
particle size, overpotential, and strain dependence of phase transition pathways in storage electrodes:
Application to nanoscale olivines. CHEM MATER, 21(8):1557–1571, 2009.

[250] D.A. Cogswell and M.Z. Bazant. Coherency strain and the kinetics of phase separation in LiFePO4

nanoparticles. ACS NANO, 6(3):2215–2225, 2012.

[251] L. Anand. A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic defor-
mations. J MECH PHYS SOLIDS, 60(12):1983–2002, 2012.

[252] C. Di Leo, E. Rejovitzky, and L. Anand. A Cahn-Hilliard-type phase-field theory for species diffusion
coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials. J
MECH PHYS SOLIDS, 70:1–29, 2014.

[253] P. Areias, E. Samaniego, and T. Rabczuk. A staggered approach for the coupling of Cahn-Hilliard
type diffusion and finite strain elasticity. COMPUT MECH, 57(2):339–351, 2016.

[254] S. Huang, F. Fan, J. Li, S. Zhang, and T. Zhu. Stress generation during lithiation of high-capacity
electrode particles in Lithium ion batteries. ACTA MATER, 61:4354–4364, 2013.

[255] H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, and S. Zhang. A chemo-mechanical model of lithiation
in silicon. J MECH PHYS SOLIDS, 70:349–361, 2014.

[256] A.D. Drozdov. A model for the mechanical response of electrode particles induced by Lithium diffusion
in Li-ion batteries. ACTA MECH, 225:2987–3005, 2014.

[257] A.D. Drozdov. Viscoplastic response of electrode particles in Li-ion batteries driven by insertion of
Lithium. INT J SOLIDS STRUCT, 51:690–705, 2014.

[258] Z. Cui, F. Gao, and J. Qu. Interface-reaction controlled diffusion in binary solids with applications to
lithiation of silicon in Lithium ion batteries. J MECH PHYS SOLIDS, 61:293–310, 2013.

166



[259] K. Zhao, M. Pharr, Q. Wan, W.L. Wang, E. Kaxiras, J.J. Vlassak, and Z. Suo. Concurrent reaction and
plasticity during initial lithiation of crystalline silicon in Lithium-ion batteries. J ELECTROCHEM
SOC, 159:A238–A243, 2012.

[260] H. Yang, S. Huang, X. Huang, F. Fan, W. Liang, X.H. Liu, L.Q. Chen, J.Y. Huang, J. Li, T. Zhu,
and S. Zhang. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated
silicon nanowires. NANO LETT, 12(4):1953–1958, 2012.

[261] W.J. Drugan and J.R. Willis. A micromechanics-based nonlocal constitutive equation and estimates of
representative volume element size for elastic composites. J MECH PHYS SOLIDS, 44(4):497 – 524,
1996.

[262] Z. Shan and A. M. Gokhale. Representative volume element for non-uniform micro-structure. COMP
MATER SCI, 24(3):361 – 379, 2002.

[263] S. Swaminathan, S. Ghosh, and N. J. Pagano. Statistically equivalent representative volume ele-
ments for unidirectional composite microstructures: Part I - without damage. J COMPOS MATER,
40(7):583–604, 2006.

[264] S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer,
2002.

[265] J.R. Willis. Elasticity Theory of Composites. Defense Technical Information Center, 1980.

[266] D. E. Stephenson, B. C. Walker, C. B. Skelton, E. P. Gorzkowski, D J. Rowenhorst, and D. R. Wheeler.
Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes. J ELECTROCHEM
SOC, 158:A781–A789, 2011.

[267] T.R. Ferguson and M.Z. Bazant. Nonequilibrium thermodynamics of porous electrodes. J ELEC-
TROCHEM SOC, 159(12):A1967–A1985, 2012.

[268] M. Schmuck and M.Z. Bazant. Homogenization of the Poisson-Nernst-Planck equations for ion trans-
port in charged porous media. SIAM J APPL MATH, 75(3):1369–1401, 2015.

[269] S. Lee, A.M. Sastry, and J. Park. Study on microstructures of electrodes in Lithium-ion batteries using
variational multi-scale enrichment. J POWER SOURCES, 315:96 – 110, 2016.

[270] S. Golmon, K. Maute, and M.L. Dunn. Numerical modeling of electrochemical-mechanical interactions
in Lithium polymer batteries. COMPUT STRUCT, 87:1567–1579, 2009.

[271] S. Golmon, K. Maute, and M.L. Dunn. Multiscale design optimization of Lithium ion batteries using
adjoint sensitivity analysis. INT J NUMER METH ENG, 92:475–494, 2012.

[272] S. Golmon, K. Maute, and M.L. Dunn. A design optimization methodology for Li+ batteries. J
POWER SOURCES, 253:239–250, 2014.

[273] S. Allu, S. Kalnaus, S. Simunovic, J. Nanda, J.A. Turner, and S. Pannala. A three-dimensional meso-
macroscopic model for Li-ion intercalation batteries. J POWER SOURCES, 325:42 – 50, 2016.

[274] P.M. Suquet. Local and global aspects in the mathematical theory of plasticity. In A. Sawczuk and
G. Bianchi, editors, Plasticity today: modeling, methods and applications, pages 279–310. Elsevier
Applied Science Publishers, London, 1985.

[275] M.G.D. Geers, V.G. Kouznetsova, and Brekelmans W.A.M. Multi-scale computational homogenization:
trends and challenges. J COMPUT APPL MATH, 234:2175–2182, 2010.

[276] A. Kovetz. The principles of electromagnetic theory. Cambridge University Press, 1989.

[277] R.A. Huggins. Energy storage. Springer, 2010.

167



[278] A.A. Franco, M.L. Doublet, and W.G.B. Bessler, editors. Physical Multiscale Modeling and Numerical
Symulation of Electrochemical Devices for Energy Conversion and Storage. Springer, London, 2016.

[279] M.A. Rahman, S. Anwar, and A. Izadian. Electrochemical model parameter identification of a Lithium-
ion battery using particle swarm optimization method. J POWER SOURCES, 307:86 – 97, 2016.

[280] K. Takahashi, K. Higa, S. Mair, M. Chintapalli, N. Balsara, and V. Srinivasan. Mechanical degradation
of graphite/PVDF composite electrodes: A model-experimental study. J ELECTROCHEM SOC,
163(3):A385–A395, 2016.

[281] J. Larsson. Electromagnetics from a quasistatic perspective. AM J PHYS, 75(3):230–239, 2007.

[282] A. McNabb and P.K. Foster. A new analysis of the diffusion of hydrogen in iron and ferritic steels. T
METALL SOC AIME, 227:618–627, 1963.

[283] Oriani R.A. The diffusion and trapping of hydrogen in steel. ACTA METALL MATER, 18(1):147–157,
1970.

[284] J.P. Hirth. Effects of hydrogen on the properties of iron and steel. METALL TRANS A, 11A:861–876,
1980.

[285] A.J. Kumnick and H.H Johnson. Deep trapping states for hydrogen in deformed iron. ACTA METALL
MATER, 28:33–39, 1980.

[286] P. Sofronis and R.M. McMeeking. Numerical analysis of hydrogen transport near a blunting crack tip.
J MECH PHYS SOLIDS, 37(317-350), 1989.

[287] A.H.M. Krom, R.W.J Koers, and A. Bakker. Hydrogen transport near a blunting crack tip. J MECH
PHYS SOLIDS, 47:971–992, 1999.

[288] A.H.M. Krom and A. Bakker. Hydrogen trapping models in steel. METALL MATER TRANS B,
31B:1475–1482, 2000.

[289] J. Toribio and V. Kharin. A generalised model of hydrogen diffusion in metals with multiple trap
types. PHILOS MAG, 95(31):3429–3451, 2015.

[290] M. Pharr, K. Zhao, X. Wang, Z. Suo, and J.J. Vlassak. Kinetics of initial lithiation of crystalline
silicon electrodes of lithium-ion batteries. NANO LETT, 12:5039–5047, 2012.

[291] X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Krylyuk, J. Yoo, S.A. Dayeh, A.V.
Davydov, S.X. Mao, S.T. Picraux, S. Zhang, J. Li, T. Zhu, and J.Y. Huang. In situ atomic-scale
imaging of electrochemical lithiation in silicon. NAT NANOTECHNOL, 7:749–756, 2012.

[292] M.T. McDowell, S.W. Lee, J.T. Harris, B.A. Korgel, C. Wang, W.D. Nix, and Y. Cui. In situ TEM of
two-phase lithiation of amorphous silicon nanospheres. NANO LETT, 13(2):758–764, 2013.

[293] G. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley &
Sons, Ltd., 2001.

[294] S. Paolucci. Continuum Mechanics and Thermodynamics of Matter. Cambridge University Press, 2016.

[295] V.A. Lubarda. Consitutive theories based on the multiplicative decomposition of deformation gradient:
Thermoelasticity, elastoplasticity, and biomechanics. APPL MECH REV, 57(2):95–108, 2004.

[296] J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and
the multiplicative decomposition: Part i. continuum formulation. COMPUT METHODS IN APPL
MECH ENG, 66(2):199 – 219, 1988.

[297] J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and
the multiplicative decomposition. part ii: Computational aspects. COMPUT METHODS IN APPL
MECH ENG, 68(1):1 – 31, 1988.

168



[298] I. Prigogine. Nobel lecture: Time, structure and fluctuations., 1977.

[299] P. Rosakis, A.J. Rosakis, G. Ravichandran, and J. Hodowany. A thermodynamic internal variable
model for the partition of plastic work into heat and stored energy in metals. J MECH PHYS SOLIDS,
48:581–607, 2000.

[300] E. Bohn, T. Eckl, M. Kamlah, and R. McMeeking. A model for Lithium diffusion and stress generation
in an intercalation storage particle with phase change. J ELECTROCHEM SOC, 160(10):A1638–
A1652, 2013.

[301] J. Lemaitre and J.L. Chaboche. Mechanics of solid materials. Cambridge University Press, 2000.

[302] K. Hackl and F.D. Fischer. On the relation between the principle of maximum dissipation and inelastic
evolution given by dissipation potentials. P R SOC A, 464(2089):117–132, 2008.

[303] J.P. Thomas and C.E. Chopin. Modeling of coupled deformation-diffusion in non-porous solids. INT
J ENG SCI, 37:1–24, 1999.

[304] V. Deshpande, M. Mrksich, R.M. Mc Meeking, and A.G. Evans. A bio-mechanical model for coupling
cell contractility with focal adhesion formation. J MECH PHYS SOLIDS, 56:1484–1510, 2008.

[305] C. Di Leo and L. Anand. Hydrogen in metals: a coupled theory for species diffusion and large elastic-
plastic deformations. INT J PLASTICITY, 43:42–69, 2013.

[306] J.C. Simo and T.J.R. Hughes. Computational inelasticity. Springer-Verlag, New York, 1998.

[307] L. Anand. A thermo-mechanically-coupled theory accounting for hydrogen diffusion and large elastic-
viscoplastic deformations of metals. INT J SOLIDS STRUCT, 48:962–971, 2011.

[308] A. Villani, E. P. Busso, K. Ammar, S. Forest, and M. G. D. Geers. A fully coupled diffusional-
mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on
equilibrium. ARCH APPL MECH, 84:1647–1664, 2014.

[309] K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough. LixCoO2: A new cathode material
for batteries of high energy density. MRS BULLETIN, 15(6):783 – 789, 1980.

[310] J.N. Reimers and J.R. Dahn. Electrochemical and in situ X-ray diffraction studies of lithium interca-
lation in LixCoO2. J ELECTROCHEM SOC, 139(8):2091–2097, 1992.

[311] G.G. Amatucci, J.M. Tarascon, and L.C. Klein. CoO2, the end member of the LixCoO2 solid solution.
J ELECTROCHEM SOC, 143(3):1114–1123, 1996.

[312] A. Van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner. First-principles investigation of
phase stability in LixCoO2. PHYS REV B, 58:2975–2987, 1998.

[313] G. Ceder and A. Van der Ven. Phase diagrams of lithium transition metal oxides: investigations from
first principles. ELECTROCHIM ACTA, 45(1–2):131 – 150, 1999.

[314] H. Xia, L. Lu, and G. Ceder. Li diffusion in LixCoO2 thin films prepared by pulsed laser deposition.
J POWER SOURCES, 159(2):1422 – 1427, 2006.

[315] P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, and P.H.L. Notten. Influence of diffusion plane
orientation on electrochemical properties of thin film LixCoO2 electrodes. J ELECTROCHEM SOC,
149(6):A699–A709, 2002.

[316] L. Wu and J. Zhang. Ab initio study of anisotropic mechanical properties of LixCoO2 during lithium
intercalation and deintercalation process. J APPL PHYS, 118(22):225101, 2015.

[317] L. Wu, W.H. Lee, and J. Zhang. First principles study on the electrochemical, thermal and mechanical
properties of LixCoO2 for thin film rechargeable battery. MATER TODAY, 1(1):82 – 93, 2014.

169



[318] V. Malav, M.K. Jangid, I. Hait, and A. Mukhopadhyay. In situ monitoring of stress developments and
mechanical integrity during galvanostatic cycling of LiCoO2 thin films. ECS ELECTROCHEM LETT,
4(12):A148–A150, 2015.

[319] D. Grazioli, M. Magri, and A. Salvadori. Computational modeling of li-ion batteries. COMPUT
MECH, 58(6):889–909, 2016.

[320] A.F. Bower, P.R. Guduru, and E. Chason. A continuum model of deformation, transport and ir-
reversible changes in atomic structure in amorphous Lithium–silicon electrodes. ACTA MATER,
98:229–241, 2015.

[321] H.C. Shin and S. Pyun. The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis
of current transient. ELECTROCHIM ACTA, 45(3):489 – 501, 1999.

[322] A. Salvadori, R.M. Mc Meeking, D. Grazioli, and M. Magri. A coupled model of transport-reaction-
mechanics with trapping. part I - small strain analysis. Under review, 2017.

[323] E.D.S. Neto, D. Peric, and D. Owens. Computational methods for plasticity: theory and applications.
John Wiley & Sons Ltd, 2008.

[324] W. Dreyer and R. Guhlke, C.and Muller. Modeling of electrochemical double layers in thermodynamic
non-equilibrium. PHYS CHEM CHEM PHYS, 17:27176–27194, 2015.

[325] W. Dreyer, C. Guhlke, and R. Muller. A new perspective on the electron transfer: recovering the butler-
volmer equation in non-equilibrium thermodynamics. PHYS CHEM CHEM PHYS, 18:24966–24983,
2016.

[326] E. A. Brandes and G. B. Brook. Smithells Metals Reference Book. Butterworth Einemann, 1998.

[327] K. Park and G.H. Paulino. Computational implementation of the ppr potential-based cohesive model
in abaqus: Educational perspective. ENG FRACT MECH, 93(Supplement C):239–262, 2012.

170


