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Abstract

The crack propagation problem for Linear Elastic Fracture Mechanics (LEFM) has been studied
by several authors exploiting its analogy with standard dissipative systems theory [18, 96, 103].
From the analogy with plasticity theory, minimum theorems are derived in terms of crack tip “quasi-
static velocity” for two-dimensional fracture mechanics [125]. They are reminiscent of Ceradini’s
[24] theorem in plasticity. Following the cornerstone work of Rice [117] on weight function theory,
Leblond et al. [82, 83] proposed asymptotic expansions for Stress Intensity Factors (SIFs) in three
dimensions. As formerly in 2D, expansions can be given a Colonnetti’s decomposition [30, 31]
interpretation. In view of the expression of the expansions proposed in [82, 83] however, symmetry
of Ceradini’s theorem operator is not evident and extension of the outcomes proposed in [125] not
straightforward. Following a different path of reasoning, based on the physical meaning of the
operator itself, minimum theorems are derived for 3D LEFM [127].

Such minimum theorems are then rephrased in terms of weight functions [129], removing in
full the hypothesis of steady location of a point along the crack front assumed by several authors
in previous works (among others [43, 44, 45, 117]) in order to formulate the problem in terms
of Cauchy principal value. Stategies exploited to circumvent the steady location hypothesis give
complete generality to the formalism for calculating the variation in the SIFs along the crack front,
at the price of the purposely introduced assumption of infinite domains.
The final formalism obtained in this thesis invokes the more general concept of finite part of
Hadamard of the integrals involved and shows the desirable symmetric structure. It can be applied
to finite bodies, provided that an accurate approximation of weight functions, known in closed
form for a very limited set of geometries, can be given. A general method to approximate weight
functions for finite bodies is handled in the thesis by means of an algorithm based on the definition
of weight function itself.

An implicit and effective 3D crack tracking algorithm is therefore allowed. It is based on
a Newton-Raphson numerical strategy for the Griffith-Maximum Energy Release Rate (MERR)
condition, which is endowed with a variational formulation at every iteration [128]. Owing to the
convexity of the MERR safe equilibrium domain, the algorithm provides a finite elongation at
each point of the crack front based upon the increment of the external loads as the minimum of a
constrained quadratic functional, where the constraint is computationally handled by means of the
penalty method. Numerical experiments show that the proposed algorithm is more accurate, and
numerically stable than explicit algorithms in time, which have been formulated moving from the
map of velocities of crack elongation along the crack front [130].

Finally, the obtained variational formulation of the incremental quasi-static fracture propagation
problem is extended to the case of fractures in the presence of diffusion of neutral species in solids.
As for example in the case of hydrogen embrittlement, species diffuse into the crack tip region
because of the driving force created by the chemical potential and such a phenomenon greatly
influences the subsequent fracture processes. These latter can ultimately take place in a completely
embrittled environment, motivating the use of the LEFM to describe the fracture growth.
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Sommario

Il problema della propagazione di una fessura per la Meccanica della Frattura Elastica Lineare
(LEFM) é stato studiato da diversi autori utilizzando l’analogia con la teoria dei sistemi dissipativi
standard [18, 96, 103].
Dall’analogia con la teoria della plasticitá, vengono ricavati teoremi di minimo in termini di “ve-
locitá quasi-statica” dell’apice di fessura per la meccanica della frattura bi-dimensionale [125]. Essi
costituiscono una reminiscenza del teorema di Ceradini [24] in plasticitá. Basandosi sul fondamen-
tale lavoro di Rice [117] riguardante la teoria delle funzioni peso, Leblond e altri [82, 83] hanno
proposto espansioni asintotiche per i Fattori di Intesificazione degli Sforzi (SIFs) in tre dimensioni.
Come accadeva precedentemente in 2D, tali espansioni possono essere interpretate secondo la de-
composizione di Colonnetti [30, 31]. Tuttavia, basandosi sull’espressione delle espansioni proposte
in [82, 83], la simmetria dell’operatore di Ceradini non é evidente ed un’estensione dei risultati
proposti in [125] non risulta immediata. Seguendo un tipo di ragionamento diverso, basato sul
significato fisico dell’operatore stesso, vengono formulati teoremi di minimo per la LEFM 3D [127].

Tali teoremi di minimo sono poi riformulati in termini di funzioni peso [129], rimuovendo com-
pletamente l’ipotesi di stazionarietá di un punto lungo il fronte assunta da diversi autori in lavori
precedenti (tra gli altri [43, 44, 45, 117]) al fine di formulare il problema in termini di valore princi-
pale di Cauchy. Le strategie utilizzate per eludere l’ipotesi di stazionarietá di un punto forniscono
generalitá assoluta al formalismo usato per calcolare le variazioni degli SIFs lungo il fronte di frat-
tura, al prezzo di introdurre volontariamente l’ipotesi di domini illimitati. Il formalismo finale
ottenuto in questa tesi chiama in causa il concetto piú generale di parte finita di Hadamard degli
integrali coinvolti ed esibisce la vantaggiosa struttura simmetrica. Esso puó essere applicato a mezzi
limitati, a patto che possa essere fornita un’accurata approssimazione delle funzioni peso, note in
forma chiusa per un insieme molto limitato di geometrie. Un metodo generale per approssimare
le funzioni peso in mezzi limitati, é trattato nella tesi per mezzo di un algoritmo basato sulla
definizione stessa di funzione peso.

Un algoritmo 3D di crack tracking implicito ed efficace é pertanto consentito. Esso é basato su
di uno schema numerico di tipo Newton-Raphson per la condizione di Griffith di Massima Energia
Rilasciata (MERR), la quale é dotata di una formulazione variazionale ad ogni iterazione [128].
Stante la convessitá del MERR dominio di non propagazione, l’algoritmo fornisce l’allungamento
finito in ogni punto del fronte dovuto all’incremento dei carichi esterni come minimo di un fun-
zionale quadratico vincolato, dove il vincolo é computazionalmente trattato con il metodo penalty.
Esperimenti numerici mostrano che l’algoritmo proposto risulta essere piú accurato e numerica-
mente piú stabile di algoritmi di tipo esplicito nel tempo, che sono stati formulati a partire dalla
mappa delle velocitá dell’allungamento di frattura lungo il fronte [130].

Infine, la formulazione variazionale ottenuta del problema di propagazione incrementale quasi-
statico viene estesa al caso di fratture in presenza di diffusione di speci neutre in solidi. Come
ad esempio nel caso dell’infragilimento da idrogeno, le speci diffondono verso l’apice di fessura a
causa della forza motrice generata dal potenziale chimico e tale fenomeno influenza notevolmente
i successivi processi di frattura. Questi ultimi possono in definitiva avere luogo in un ambiente
completamente infragilito, il che spiega l’utilizzo della LEFM per descrivere la propagazione della
frattura.
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Notation

Symbols used in the thesis have the meaning described in the following list, unless otherwise indi-
cated in the text.

Symbols

x position vector in R3, [xi]
3
i=1

t time
s curvilinear abscissa along the crack front
u(x, t) displacement vector
σ(x, t) Cauchy stress tensor
ε(x, t) small strains tensor
C Hooke tensor

K̃ stiffness matrix
Ω domain
Γ ≡ ∂Ω boundary of the domain
F crack front
S crack surface
{x1, x2, x3} local Frenet frame in each point along the crack front
p(x, t) tractions vector
f(x, t) bulk forces
κ(t) load factor
θ(s, t) kink angle at abscissa s and time t
l(s; t, τ) curvilinear length of crack extension in the normal plane at point s
v(s, t) crack front quasi-static velocity at abscissa s and time t
K = {K1,K2,K3} Stress Intensity Factors vector
K∗ zero order term of SIFs expansion

K(1/2) 1/2 order term of SIFs expansion

K(1)[·] first order term of SIFs expansion

K
(1)
0 first component of K(1)[·]

K
(1)
1 second component of K(1)[·]

K
(1)
nl third, non local component of K(1)[·]

KC
1 fracture toughness

ϕ

{
= 0
< 0

{
onset of crack propagation
safe equilibrium domain

w(x, t) crack opening and sliding
ρ distance from the crack front
K = [kij ] Crack Face Weight Functions (CFWFs) matrix
WF Fundamental Kernels (FKs) matrix
G energy release rate
GC fracture energy
E Young’s modulus
ν Poisson’s coefficient
µ shear modulus
K̄ bulk modulus
K̄in hardening modulus
L interstitial species
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T trapped species
w̄ chemical reaction rate
Keq equilibrium constant of the chemical reaction
cβ molarity of species β denoting the concentration measure
hβ mass flux of species β
µβ chemical potential of species β, also known as partial molar free energy
q heat flux vector
sβ external supply of species β
Ā affinity of the chemical reaction
ωβ chemical expansion coefficient of species β
ML interstitial mobility tensor
u| L mobility
D| L diffusivity

Operators

−
∫

Cauchy principal value
=
∫

finite part of Hadamard
H(x) Heaviside step function
I identity matrix
∇ [ · ] gradient operator
∇s[·] symmetric part of the gradient operator
tr [ · ] trace operator
div [ · ] divergence operator
dev [ · ] deviatoric operator
sph [ · ] volumetric part of a tensor
· single contraction of two vectors or two tensors
: double contraction of two tensors
‖x‖ norm of vector x
T transpose of a tensor

Constants

NA = 6.02214129(27)× 1023mol−1 Avogadro’s number
R = 8.3144621JK−1mol−1 universal gas constant
kB = 1.38064852× 10−23JK−1 Boltzmann constant



Chapter 1

Introduction

Fracture mechanics has been plagued by three main issues: initiation, irreversibility and path
[18]. The present work treats the third of them, aiming at investigating the evolution of three
dimensional fractures in brittle or embrittled materials in the context of Linear Elastic Fracture
Mechanics (LEFM). Cracks can form and propagate catastrophically with very little warning in
brittle materials, before any plastic deformation takes place. The copious literature of the last
decades devoted to model and control the initiation and growth of fractures in brittle materials,
assesses the importance of understanding and predicting the fracture pattern evolution, in order to
increase the safety and improve the mechanical performance of materials and components. Modeling
crack geometry and predicting crack paths has been one of the most challenging aspects of fracture
mechanics, which has captured attention of many researchers.

If a body in reality is elastoplastic, LEFM is a good approximation, provided that the remote
stress from the crack tip is sufficiently small with respect to the yield stress, and the calculated
stresses show a square root singular behavior in a small region enclosing the crack tip [151]. In
LEFM framework, the stress-strain field in the crack front vicinity is uniquely determined by the
Stress Intensity Factors (SIFs), which are coefficients weighting the singularity of the stress-strain
field itself [18].

Quasi-static hypothesis is assumed in this work, meaning that kinetics effects of crack growth
are a priori supposed to be negligible and time is a positive, real parameter that merely order
events. All loads are functions of such a parameter, and the cracked solid is, at each instant, in
equilibrium with the loads that it supports at that time.
The variational approach to different rate independent processes has been a topic of active research
in recent years; variational approach to brittle fracture in particular, has been developed in the
seminal work of Francfort and Marigo [39], and further deployed with Bourdin in the past twenty
years [17, 18]. The fundamental idea dates back to the energy-based Griffith’s concept [49] that the
crack growth is the result of a competition between bulk energy away from the crack and surface
energy on the crack. In the seminal paper of Griffith [49], crack is represented by a discontinuity
surface for the deformation field under investigation. Griffith’s criterion can be articulated in the
well known three points:

• cracking processes satisfy the irreversibility condition for which the crack can only grow

• the energy release rate, meaning the bulk energy released during an infinitesimal advance of
the crack, is bounded from above by the fracture toughness

• the crack doesn’t grow unless the energy release rate is critical, equating the energy that has
to be spent in creating additional crack length (or area).

1



CHAPTER 1. INTRODUCTION 2

Bourdin, Francfort and Marigo’s variational approach to fracture relies on global unilateral poten-
tial energy minimization, where potential energy consists of the stored elastic energy, the work of
external forces, and the energy dissipated trough fracture growth. Evolution in time is accounted
for only trough the irreversibility condition, making the formulation rate-independent. In order
to take into account the high level of complexity that can derive from a minimization of the dis-
placement field with respect to any kinematically admissible displacement and any set of crack
curves, some regularization parameters are introduced to represent the crack and to define a sort of
regularized energy. At each time step, minimization strategy is allowed by the separate convexity
of the regularized energy with respect to the displacement field and the regularization parameter.
A feature of this method is that the orientation and length of the crack are the direct outcomes of
the analysis.

Such a regularized energy has been introduced as a phase field numerical approximation of a
sharp interface problem. From the material modeling perspective, a phase field approach to fracture
is conceptually linked with continuum damage mechanics models, where a scalar damage field can
be interpreted as the phase field. In the context of phase field models of fracture, regularized brittle
crack propagations can be considered as gradient-type damage models with particular definition of
an energy function with a gradient-type regularized surface energy. A sharp crack surface topology
in the solid is regularized by a diffusive crack zone governed by a scalar auxiliary variable, the
phase field, that interpolates between the unbroken and the broken states of the material and the
crack phase field evolution is governed through the definition of suitable convex dissipation func-
tions (see for example the work of Hakim and Karma [52], and the works of Miehe et al. [93, 94]).
Phase field methods have undergone great developments with applications in various multi-physics
contexts [95], and are nowadays standard techniques to deal with the global quasi-static fracture
propagation problem.

The approach introduced by Salvadori and Carini [125] for 2D LEFM, and later extended by
Salvadori and Fantoni [127] for 3D LEFM, differs from Bourdin, Francfort and Marigo’s variational
approach to fracture and from phase-field methods, framing the problem of crack propagation in
brittle materials into the theory of standard dissipative processes and ultimately leading to formu-
late algorithms for crack propagation that do not seek for global minima and do not require any
regularization parameter.

The global incremental quasi-static fracture propagation problem, framed in the mechanics of
standard dissipative systems [17, 18, 96, 102, 122], can be posed in the following way: given the
state of stress and the history of crack propagation (if any) at each instant, express the crack prop-
agation rate (if any) of the crack front due to a variation of the external actions as a function of
the stress and of the history. As in Bourdin, Francfort and Marigo’s interpretation [18], the crack
length is an internal variable, and its variation induces a dissipation which must in turn satisfy
the Clausius-Duhem’s inequality. Enforcement of Clausius-Duhem’s inequality is provided by the
introduction of a convex dissipation potential. In this regard, the internal conjugate variables pair
is here essentially changed with the SIFs vector after a kink, modeled as a thermodynamic force,
conjugated to an internal variable related to the crack length.

Fracture elongation causes energy dissipation in the process region, in the surrounding plastic
region, and eventually in the wake of the process region. In this work, infinitesimally small scale
yielding is assumed to idealize the fracture process and as such, energy dissipation is considered to
be localized at the crack front.
Smoothness of the latter, together with isotropic linear elasticity of the domain, are also assumed,
making use of Hooke’s law without limitation of stress and strain magnitudes.

In the formulation of the analogy between associated plasticity and incremental LEFM pro-
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posed in [122], incipient crack growth is a difficult concept to identify and the problem is solved
by a convention, likewise the determination of the elastic limit in plasticity. An onset of crack
propagation and a safe equilibrium domain are governed theoretically by a local condition on SIFs,
describing when the process region reaches a critical state which, in most cases of engineering in-
terest, is independent of body, geometry and loading. This property is termed autonomy [13].

Crack propagation is here restricted to smooth in space and continuous in time growth [25, 124].
Variational formulations are stated, which characterize the three dimensional crack front quasi-
static velocity as minimizer of constrained quadratic functionals. A crack tracking algorithm is
formulated in order to predict point by point extension along the crack front based upon increment
of external actions.

1.1 Three dimensional modeling of crack growth

One of the demanding tasks for 3D LEFM is to take into account non linearities created by the
deformation of the crack front and simulations of 3D crack growth remains a significant challenge.

A viable method for this purpose is the perturbation approach, initiated after the seminal works
of Bueckner [21] and Rice [116, 117] on weight function theory. An abundant literature has been
devoted since then in order to provide, for different crack configurations embedded in linear elastic
infinite medium, the local variation of the SIFs along the crack front resulting from some small,
but otherwise arbitrary coplanar perturbation of the crack front. A non exhaustive list of authors
that worked in the perturbation approach field includes Bower and Ortiz [19], Favier et al. [37],
Gao and Rice [43, 44, 45], Lazarus [78, 79], Lazarus and Leblond [76, 77], Leblond and Mouchrif
[81], Leblond et al. [85], Salvadori and Fantoni [129], Willis [152].
Weight function theory has been employed by several authors in order to study configurational
stability problems of cracks slightly perturbed from their initial configuration.
Crack front instability in mode 1+3, leading the crack surface to deviate from planar configuration,
and crack front to deviate from straight shape, has been theoretically predicted by Leblond et al.
[84], analyzing the influence of fracture toughness fluctuations in [86].
Out of plane perturbations of plane crack were studied by Movchan, Gao and Willis [101], and the
obtained formulae were exploited by Obrezanova, Movchan and Willis [105] in order to assess the
configurational stability of a crack in plane strain conditions quasi-statically growing.

Theoretical analysis, compared with experiments, of crack front rotation and segmentation in
brittle solids under mode 1 + 2 + 3, has been performed by Lazarus et al. [74, 75], starting from
the expansion of the three dimensional SIFs vector [82, 83].

Several numerical techniques exist to treat arbitrary crack paths in a three dimensional context
complicated further by loading or geometric features that induce mixed mode behavior along the
crack front. Finite elements, coupled with adaptative remeshing can be used to predict arbitrary,
mixed-mode, non planar crack evolution [23, 92]. Crack front can be advanced in arbitrary di-
rections and the magnitude of the elongation can be proportioned along the front based on the
distribution of fracture mechanics parameters values or empirical growth laws.
Quarter-point elements have been formulated for LEFM in order to properly take into account
the singularity of the stress-strain field in proximity to the crack front. Since the formulation of
Barsoum [11, 12] and Henshell and Shaw [56], different authors analyzed quarter-point and higher
order singular elements. To quote a few, Bank-Sills et al [6, 7, 8, 9], Freese and Tracey [40], Hibbit
[57], Hussain et al. [58], Ingraffea and Manu [61], Koers [68], and Manu [90, 91].

Each time the crack front is advanced, a new finite element mesh has to be generated around
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the updated front. For multiple cracks the finite element method can greatly increase the computa-
tional cost because of the need of remeshing. Furthermore, remeshing requires to map the internal
variables between different meshes, which decreases accuracy for non linear problems.

Another approach that represents explicitly the crack and can handle non planar crack growth
is the cohesive-zone elements approach, which places special elements governed by a traction-
separation law in order to capture the behavior of the crack front. Tractions stop to be transmitted
by the cohesive elements when the traction-separation function reaches its limit, creating in this
way new traction-free surfaces and extending the crack [67, 108]. Cohesive elements are usually in-
serted at predetermined locations along the expected crack path, being computationally expensive
to place such elements throughout the entire model. The crack tracking therefore results influenced
by the size and locations of the cohesive elements, being the elongations of the crack restricted to
follow the element boundaries.

A different finite element-based simulation technique developed to predict arbitrary shape evo-
lution of 3D cracks subject to quasi-static loading exploits an energy-based growth formulation
that relies on a first order expansion of the energy release rate. Description of the method can be
found in [32] for the case of mode 1 and in [33] for the case of mixed-mode. Such a first order
expansion of the energy release rate uses the Virtual Crack Extension (VCE) technique [55, 110] to
extract the derivative of the energy release rate with respect to the amount of propagation along
the crack front. In order to predict the shape and analyze the stability of an evolving 3D crack
front in brittle fracture, the VCE method has been recently proposed by Hwang et al. in [59] for
3D cracks of arbitrary shapes that propagate under arbitrary loading conditions. It generalizes
the analytical VCE method presented by Lin and Abel [89], which introduced a direct-integration
technique employing a variational theory in the finite element formulation.

Alternative methods to define the crack, in the sense that they do not need a particular mesh
to explicitly represent the crack front, are enrichment techniques, which are based on the decompo-
sition of the solution in the finite element solution, and additional enrichment functions in order to
inform the numerical model of the presence of the crack within the finite elements. Among them,
the eXtended Finite Element Method (XFEM), that makes use of the partition of unity concept
[5]. Discontinuity across crack faces and the appropriate stress fields in the vicinity of the crack
front associated with a physical crack can be represented numerically bu such augmented elements
[15, 97]. The XFEM representation can then be coupled with several techniques such as damage
mechanics, cohesive models, and prescribed-increment methods to simulate growth. Moës et al.
[98] and Gravouil et al. [48] presented a three dimensional implementation of the XFEM with
application to the LEFM.

Finally, a successful technique to model crack propagation for LEFM is the Boundary Ele-
ment Method (BEM) [23]. However, for the case of non linear material, the method is not well
developed.

1.2 Thesis outline

Chapter 2 extends to three dimensional fracture mechanics the variational formulation of the global-
incremental quasi-static fracture propagation problem derived in [122, 125] for 2D LEFM. A maxi-
mum dissipation principle at the crack front during propagation is postulated. Associated flow rule
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and loading/unloading conditions in Karush-Kuhn-Tucker complementarity form descend. Consis-
tency condition leads to the formulation of minimum theorems, which allow the evaluation of crack
front quasi-static velocity driven by the increment of external actions. The starting point is the
asymptotic expansion of the SIFs in powers of the crack front velocity in the normal plane to the
crack front for the three dimensional case [82, 83]. Such an expansion can be put in analogy with
Colonnetti’s decomposition of stresses in plasticity as due to an elastic contribution and to a dis-
torsion [30, 31]. Assuming that the Maximum Energy Release Rate (MERR) criterion models the
onset of crack propagation and the safe equilibrium domain, a condition for the transition between
stable and unstable propagation regimes is formulated in Section 2.5.1. This transition between
stable and unstable propagation regimes is a crucial information for the safety of a structural com-
ponent, assuming that unstable propagation leads to structural collapse. Minimum theorems are
proved in Section 2.5.2 in the range of stable crack growth. They are reminiscent of Ceradini’s
theorems [24] that were proved in incremental small strain plasticity theory and characterize crack
front velocity that solves the global quasi static fracture propagation problem at each instant as
the unique minimizer of linearly constrained quadratic functionals. Uniqueness is a consequence of
the adopted SIFs expansion and can be avoided only by using expansion for branched elongations.
Proof of the minimum theorems is based on the symmetry property (with respect to the usual
bilinear form) of the first-order operator of the SIFs expansion, termed K(1)[·]. Such an operator
relates the variation of the SIFs at a certain location along the crack front, to the first order vari-
ation of the shape of the whole crack front under fixed loading conditions. The physical meaning
of the symmetry property is evident by noting that K(1)[·] is related to the energy release rate
associated to elongation at constant boundary conditions. The symmetry property seems therefore
quite natural if one thinks the energy release rate as the derivative of the energy. Nevertheless, it is
not straightforward to envisage symmetry from definition of linear operator K(1)[·]. The theoretical
framework is tested in Section 2.5.3 on a simple problem, the axialsymmetric example of a circular
crack subject to uniform tensile stress, confirming the potential of the proposed incremental for-
mulation.

Chapter 3 briefly describes the methods of the finite elements (see Section 3.1) and of the
extended finite elements (see Section 3.2) to include a crack in the numerical model and to prop-
erly model the singularity of the LEFM stress-strain field at the crack front. A series of techniques
exploited by the fracture mechanics community to compute the SIFs is then presented in Section 3.3.

Chapter 4 arises from the need to restate the variational formulation derived in Chapter 2
in terms of weight functions. Indeed, formulation presented in Chapter 2 is complete, but the form
of the third term of the SIFs expansion K(1)[·] is so involved that it obstructs the way toward the
formulation of effective crack tracking algorithms.

The weight function theory for three dimensional elastic crack analysis received great attention
after the work of Rice [116, 117]. Several applications have been considered since then, particularly
in the context of configurational stability, crack path prediction, stress intensity factors expansions,
perturbation approaches. In all cases, a specific hypothesis has been made on the variation of crack
shape, in order to formulate the problem in terms of Cauchy principal value. Focusing on planar
cracks that propagate in their own plane, in Section 4.1 such hypothesis is further investigated and
consequences discussed. The limit to the boundary process does not lead to a Cauchy principal
value interpretation of integrals involved, and the more general concept of finite part of Hadamard
is invoked. While likely making the picture less simple, the obtained final formalism leads to an
easy proof of the symmetry property for operator K(1)[·] and envisages an effective formulation
of crack tracking algorithms provided that an accurate approximation of weight functions can be
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given. A general method to approximate weight functions for finite bodies in all cases for which
they are not available in closed form is described in Section 4.3. It is based on the definition of crack
face weight function itself and allows an implicit in time 3D crack tracking algorithm described in
detail in Chapter 5.

Such an implicit, Newton-Raphson based, crack tracking algorithm is endowed with a vari-
ational formulation within each iteration. Moving again from the analogy between rigid-plasticity
and LEFM, a return mapping algorithm is formulated owing to the convexity of the MERR safe
equilibrium domain. An elastic trial is set as usual by the increment of the external actions: owing
to the linearity of the elastic problem, the evaluation of the trial state in terms of SIFs is trivial.
The Griffith condition is tested for the computed SIFs and, if violated, a Newton-Raphson scheme
is triggered off. At each iteration of the Newton-Raphson scheme a constrained minimum prob-
lem can be solved, which provides a new estimation of the crack front location. The constraint
is computationally handled by means of one of the several available techniques for constrained
optimization: the penalty method algorithm. The eventuality of only partial elongation of the
crack front is thus captured. At such a new crack front, updated SIFs can be evaluated from the
global problem. The Griffith condition is tested for the updated SIFs and, if violated, the iteration
process is continued up to convergence. A remarkable difference between plasticity and fracture is
that at each iteration the geometry of the crack front, and thus of the global problem, changes.
The crack tracking framework is tested on the simple problem of a circular crack subject to an
axial symmetric load (see Section 5.2) and to an eccentric load (see Section 5.3).

Moving from the map of velocities of crack elongation along the crack front provided by func-
tionals of Ceradini’s type described in Chapter 2, algorithms for crack advancing of the explicit
type were formulated, which were driven by the increment of the external actions and allowed the
step-wise approximation of crack length increment at the crack front. In their simplest formulation,
those algorithms do not enforce the Griffith condition step by step and may lead to large errors
in the estimation of both the critical load and configuration, measured at the transition between
stable and unstable propagation regimes. The finite difference approach in particular, appears to
be unreliable showing well known deficiencies associated with the selection of accurate and numer-
ically stable finite perturbations, introducing geometric approximations and numerical truncation
errors, thus leading to severe numerical cancellation issues as described in Section 5.2.1.

Finally, Chapter 6 is devoted to describe the germinal model of fracture driven by diffusion
of species in solids, coupling the LEFM problem and the diffusion problem of a neutral species in
the host material. The diffusion model derives from an unpublished work of Salvadori et al. [131],
which has been enhanced in this thesis with the description of fracture growth and the relative
thermodynamics. Diffusing species is split into mobile and immobile, the latter being trapped
by micro-structural defects of the material and not contributing to species transport, considered
therefore purely interstitial. First law of thermodynamics is detailed in Section 6.2.1, while entropy
imbalance is described in Section 6.2.2, assuming that the velocity of crack growth is much higher
than the diffusion velocity, leading to a vanishing entropy release rate. Constitutive equations in
Section 6.3 characterize in a thermodynamic consistent way the interstitial flux by means of Fick-
ian diffusion model, the reaction rate of the trapping process, the Cauchy stress influenced by the
swelling contribution and the plastic behavior of the host material responsible of traps formation.
Substitution of constitutive equations in balance laws detailed in Section 6.1, leads to the governing
equations of Section 6.3.1. Velocity of crack propagation can be still described as the minimum of
the linearly constrained quadratic functionals of Chapter 2, provided that a suitable law describing
the dependence of fracture energy with respect to the concentrations of the interstitial and trapped
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species can be given in the framework of LEFM. Numerical validations of the model have still to
be performed.



Chapter 2

Crack growth as a standard
dissipative system

2.1 Notation

Consider within a three dimensional body Ω ∈ R3 a crack of arbitrary shape as in fig. 2.1, except
that both its surface S and front F are assumed to be of class C∞, at least in the vicinity of F
[82, 83].

x1

x2

x3

S

F
P

O

Figure 2.1: Arbitrarily shaped crack in a three dimensional body Ω ∈ R3. Reference {O, x1, x2, x3}
is the Frenet frame at point O along the crack front F . Dark grey shadow shows the projection of
the crack surface S onto the tangent plane {O, x1, x3} (enlighten in dark grey).

Domain Ω is assumed to be made of an isotropic linear elastic material, with Hooke’s law hold-
ing without limitations of stresses and strains. The boundary ∂Ω is the union of a Dirichlet (Γu)
and a Neumann (Γp) part, with Γu ∩ Γp = ∅.

The material response to the following quasi-static external actions is sought under the assump-
tion of small strains: tractions p(x, t) on Γp, displacements u(x, t) on Γu, bulk forces f(x, t) in Ω.
External actions are all assumed to be proportional, in the sense that they vary only through mul-
tiplication by a time dependent scalar κ(t), termed load factor, that can be conveniently assumed

8
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to be zero at initial time1 t = 0. The SIFs, denoted as usual with K1,K2,K3 and collected in
vector K, determine the stress and strain fields in the crack front vicinity.

Let O denote an arbitrary point on F . Cartesian coordinates x1, x2, x3 are attached to that
point with Ox1 in the tangent plane to S and orthogonal to F , Ox2 perpendicular to S and Ox3

coincident with the tangent to F . Denote with s the curvilinear length of O on F , and with s′ that
of a generic point on that curve. Denote with P a generic point on S. The local geometry of S
will be described with a degree of accuracy such that the distance x2(P ) from P to its projection
onto the tangent plane at O will be specified up to order O(x2

1 +x2
3). This is achieved as in [82, 83]

by prescribing the components C11, C13, C33 of the curvature tensor C of S at point O. The local
geometry of F is then also described with a similar accuracy by prescribing the curvature of its
projection onto the tangent plane at O. One makes the fundamental assumption that the original
crack front belongs to both the old and new crack surfaces, i.e. the crack extension develops con-
tinuously and irreversibly from that original crack front. The old front will be thus denoted with
F(t) and the new with F(τ), with t and τ two instants, the latter subsequent the former. At each
point s′ of F(t), the new tangent plane at τ → t+ is obtained by rotating the one defined at time
t by an angle θ(s′, t) (the kink angle) about the local tangent to F(t). Function θ(s′, t) will be
assumed to be of class C∞ with respect to s′.

Consider thus an arbitrary small deviated elongation of the crack front. Denote with l(s′; t, τ)
the curvilinear length of crack extension in the normal plane at point s′ between F(t) and F(τ) as
in fig. 2.2. It will be assumed of class C∞ with respect to s′. The velocity of the elongation of the
crack at time t, also called crack front quasi-static velocity, will be denoted with:

v(s′, t) = lim
τ→t+

l(s′; t, τ)

τ − t (2.1)

In view of the irreversibility hypothesis v(s′, t) ≥ 0. The value v(s, t) at point O will be assumed
to be non zero. This means that O will be supposed not to be an endpoint of the effectively prop-
agating part of the front.

The global incremental quasi-static fracture propagation problem consists in seeking an expres-
sion of the crack front growth rate v(s′, t) at a generic point s′ along the crack front in the presence
of a variation of external loads, considered the driving force for propagation, for all the three phases
of fracturing process, namely loading without crack growth, stable and unstable propagation.

2.2 SIFs expansion

It is assumed that cracks propagate irreversibly from a given front F(t), whereas the analysis of
crack initiation is not taken into account in the present work. Crack growth is considered to be
continuous in time [25], thus allowing to conveniently use SIFs expansions that were formulated in
[82, 83].

SIFs vector K(s, τ) at the image location of abscissa s after elongation l(s; t, τ) can be expressed
in powers of l(s; t, τ). Assuming that external actions are fixed, the expansion has the form:

K(s, τ) = K∗(s, t) + K(1/2)(s, t)
√
l(s; t, τ) + K(1)[s, t; l(s′; t, τ)] +O(l3/2) (2.2)

Terms K∗,K(1/2) are local factors at point s. Omitting the dependency on s and t for the sake of
readability, they are given componentwise (using the Einstein summation convention) by:

K∗i = Fij(θ)Kj (2.3)

1In what follows “time ” represents any variable which monotonically increases in the physical time and merely or-
der events; the mechanical phenomena to study are time-independent. Accordingly to the the quasi-static assumption
in fact, kinetics effects are a priori assumed to be negligible.
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Figure 2.2: Arbitrary crack with a small kinked and curved extension l(s′; t, τ) indicated in figure as
l(s′) without explicit time dependency. Kink angle is denoted with θ and defined in the normal plane
at the abscissa s along the crack front. The normal plane at the origin is highlighted in grey. Each
kink is surrounded by an unbranched, curvilinear crack path in the normal plane. In agreement with

[2, 82, 83], the elongation in the normal plane is taken to be: y2 = a∗y
3/2
1 +1/2C∗y2

1 +O(y
5/2
1 ) with

axes {y1, y2} denoting the Frenet frame right after the kink.

K
(1/2)
i = Gij(θ)Tj + a∗Hij(θ)Kj (2.4)

Symbol K(1)[·] denotes a non local operator that acts along the whole crack front F(t), whose
expression was provided in [83] moving from the cornerstone work of Rice [117] on weight functions
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theory:

K(1)[s, t; l(s′; t, τ)] =
1

2

[
∂2Ki

∂(
√
l)2

]C∗=0

l(s′)≡l(s)
l(s; t, τ) + C∗Mij(θ)Kj l(s; t, τ)

+ Nij(θ)Kj
∂l

∂s′

∣∣∣∣
s;t,τ

+ −
∫
F
Zij(Ω, s, s′, θ(s), θ(s′))Kj(s

′)(l(s′; t, τ)− l(s; t, τ)) ds′

(2.5)

In equations (2.3), (2.4) and (2.5), the Kjs are the SIFs prior to the crack kinking, T is the
T-stress vector of components Tj and a∗ and C∗ define the curvature of the extension. The
Fijs,Gijs,Hijs,Mijs, and Nijs are functions of the kink angle θ, which are termed universal because

they obey to the autonomy concept; on the contrary the terms
[
∂2Ki
∂(
√
l)2

]C∗=0

l(s′)≡l(s)
and Zijs depend

on the geometry of body Ω. Symbol −
∫
F stands for the Cauchy Principal Value along F .

Functional K(1)[·] can be expressed as the linear combination of three different contributions:

K(1)[s, t; l(s′; t, τ)] = K
(1)
0 (s, t)l(s; t, τ) + K

(1)
1 (s, t)

∂l

∂s′

∣∣∣∣
s;t,τ

+ K
(1)
nl [s, t; l(s′; t, τ)− l(s; t, τ)] (2.6)

where vector K
(1)
0 accounts for the locally linear contribution of l(s; t, τ) to the variation of SIFs at

s, whereas vector K
(1)
1 conveys the influence of the derivative of l(s′; t, τ) with respect to the abscissa

s′ on the crack front. Finally K
(1)
nl is non local and provides the contribution of the fluctuation of

crack advancing at s′ to SIFs at s.

2.3 Rigid-plasticity analogy

2.3.1 Onset of crack propagation and criteria for crack kinking angle evaluation

The mathematical representation of the onset of crack propagation at point s and time t can be
given a general form:

ϕ(K(s, t), θ(s, t)) = ϑ(K(s, t), θ(s, t))− ϑ(KC
1 , θ

C) = 0 (2.7)

in the normal plane of the Frenet reference defined in fig. 2.1. In eq. (2.7) KC
1 is the fracture

toughness and θC = 0 is the propagation angle in a mode 1 experimental test. ϑ(KC
1 , θ

C) connotes
the critical state. For each ϕ, there is a “related magnitude” ϑ which increases monotonically with
the level κ of applied loads and which is supposed to obtain a critical value at the onset of crack
growth [122]. Specific examples for ϑ are:

• Maximum Energy Release Rate (MERR) G incipient crack growth [49, 154]. It assumes as
ϑMERR an extension of the classical Irwin formula, as detailed in eq. (2.11).

• Maximum hoop Tensile Stress (MTS) in the r−1/2 near-tip singular field [36]. It assumes as
ϑMTS the tensile stress perpendicular to any direction θ away from the crack front (the so-
called hoop-stress).Here {r, θ} denotes a local polar coordinate system attached to the crack
front.

• Maximum Shear Stress (MSS) [109]. It assumes as ϑMSS the shear stress.
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• apparent Crack Extension Force (CEF) [141]. It assumes as ϑCEF the J−integral vector
projected onto the crack growth direction.

• Strain Energy Density (SED) criterion [139].

• Maximum K∗1 (MAXK∗1 ) criterion. It assumes as ϑMAXK∗1
the SIF K∗1 expressed in eq. (2.3).

Local Symmetry criterion (LS) [47] is the only exception to the mathematical representation of the
onset of fracture in the general form (2.7).

Among the gallery of instances of crack propagation criteria, there is a part of them, widely
used in the computational fracture mechanics community, namely MTS, MSS, CEF, and SED, that
are represented in the SIFs space K1 −K2 −K3 because they stem from the crack configuration
at the onset of propagation. The remaining part, namely LS, MERR, MAXK∗1 , are grounded on
the stress and strain fields in the propagated configuration as the crack elongation approaches zero
from above. For them, the Amestoy-Leblond space K∗1 −K∗2 −K∗3 is the natural environment.

Cracks cannot advance at time t if

ϕ(K(s, t), θ(s, t)) < 0 (2.8)

The latter inequality defines the safe equilibrium domain. It has to be intended such that it exists
a region around the origin in the SIFs space such that for all θ(s, t) ∈ R it does not exist any vector
K(s, t) for which ϕ(s, t) vanishes, whatever the relationship between the angle of propagation θ(s, t)
and the SIFs might be.

As seen in eq.(2.7) and discussed in [124], the onset of propagation is always related to a
prediction of the kinking angle θ(s, t) in the eventuality of a crack elongation. The safety of a
configuration at time t, no matter how far it is from the critical state, depends on the angle the crack
is going to kink at the time it grows. Historically, any onset of crack propagation has been provided
with a criterion for crack kinking evaluation. With the mere exception of the LS [47], which gives
the kink angle through the equation K∗2 = 0, the two notions of onset of crack propagation and
criteria for crack kinking evaluation correspond one another in the general formulation derived in
Section 2.2 in [124]:

find {κ(t), θ(s, t)} s.t. ϕ(s, t) = 0,
∂ϕ

∂θ

∣∣∣∣
s,t

= 0 (2.9)

where the author shows that Griffith’s criterion is violated in some interval by all crack propagation
criteria except MERR and that the kink angle should come out from the maximality property (2.9).
The onset of propagation (2.7) written as ϕ(κ, α, θ) = 0, implicitly defines a function κ(θ, α) with
α as a given parameter the expresses the mode-mixity. The actual kinking angle θ(s, t) is the one
that, at any given α(s, t), minimizes κ(t). Through the implicit function theorem one has:

dκ

dθ

∣∣∣∣
α

= −∂ϕ
∂θ

(
∂ϕ

∂κ

)−1
∣∣∣∣∣
α

= 0⇒ ∂ϕ

∂θ

∣∣∣∣
α

= 0 (2.10)

whence (2.9).
There are two main “streams” of literature on crack kinking criteria, that correspond to two

different views.
An approach assumes that a crack propagates “as soon as it can”, which means at the lowest values
of external actions that allow the onset of propagation to be reached. In this view: i) formula (2.9)
insures that safety is measured against the worst value of θ(s, t) for the MERR; ii) as already
mentioned, it was shown in [124] that crack propagation criterion different from the MERR must
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be ruled out and attempts of capturing crack growth by means of a propagation criterion different
from the MERR should not be undertaken in the Griffith standpoint of fracture. This strong
statement includes the LS principle at least in mixed mode. In particular, this implies that the
view of kinking K∗2 (s, t−) = 0 by means of LS criterion is incorrect, as it requires a value for κ
higher than the one predicted in (2.9). Assuming that a crack propagates at minimum external
actions implies that the energy stored in the system is minimal as well. This seems to be in the
line of the revisitation of brittle fracture proposed in [39], provided that the onset of propagation is
reached. Moving from energy minimality principle, Chambolle et al. [25] showed that the kinking
never occurs with a propagation which is continuous in time (see Property 4 in [25]). Analyses
made in [124] confirm this statement in the light of formula (2.9).

On the other hand, it seems intuitive to consider a smooth in space and continuous in time crack
evolution, at least after the kink. It has been proved that condition K∗2 (s, t) = 0 is mandatory for
any continuous propagation in time2. Therefore, denoting with t the time at which the crack kinks,
a continuous propagation in time after the kink requires K∗2 (s, t+) = 0. Assuming that such a
condition holds also at t− ( and thus a continuous in time propagation at a kink) leads to the view
of LS criterion for crack kinking, which still makes use of MERR as an onset of propagation. This
view is not compatible with formula (2.9), in the sense that the angle of propagation is different and
also that load at which crack elongates is larger than the one required by formula (2.9). Assuming
LS at a kink implies accepting that the energy inserted in the system to propagate the crack is not
the minimal one. i.e. that some energy barriers must be present at a kink.

Linking conditions at t− and K∗2 (s, t+) = 0 is an open, challenging problem in the fracture
mechanics community. The choice made by mother nature has been not understood clearly so far.
In 2D, LS and MERR criterion are so close one another that differences are far below the accuracy
of experimental analysis. The scenario in 3D propagation appears to be different, as envisaged in
Appendix B, so that experimental campaigns might be planned. The present work, which naturally
develops in the framework of continuous propagation at kinks, will not solve the controversy. It is
assumed that the load factor has no requirements apart from being non negative, κ(t) ≥ 0. In other
terms, κ(t) may increase with t, decrease at some point, eventually jump so that the crack proceeds
quasi-statically and continuously in time 3. Starting from K∗2 (s, t+) = 0 a continuous evolution
in time along a smooth crack path may proceed. The crack evolution at any τ > t is stable with
respect to κ(t+) but not with respect to κ(t−) if MERR is assumed at a kink. Of course, in realistic
analysis, the jump κ(t−)− κ(t+) in the load factor is unfeasible. A dynamic evolution is therefore
localized at any crack kinking, similarly to what happens in a snap through experiment. The crack
length at which a quasi-statical evolution may eventually start again corresponds to a time τ > t
at which κ(τ) = κ(t−), if a unique crack evolution takes place.

2.3.2 Maximum Energy Release Rate

When cracks, idealized to small scale yielding, advance energy dissipation is concentrated at the
crack fronts. Whereas in plasticity the choice of a yield function is free and the relevant amount of
dissipation descends, Irwin [62] formula in the Griffith standpoint of fracture restricts the choice of

2See Property 3 in [25], namely: assuming the validity of the Energy Conservation and Stability Criterion, a crack
cannot propagate continuously in space and time in a homogeneous, isotropic material unless it propagates in mode
1. Stability means that at each time t, the total energy, sum of the potential and surface energies, evaluated along
all possible small variations of the crack from its present state, is the smallest one at that state.

3Obviously, an arbitrary behavior of κ(t) may be not “realistic”, in the usual sense of κ being a control parameter
tuned within a laboratory. Yet, the approach is not uncommon in mechanics. Essentially, it is the same assumption
that leads to model snapping and buckling problems, allowing to follow incrementally the equilibrium path after a
peak [118], keeping the system at the onset of propagation (2.7).
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the onset of crack propagation ϕ to the MERR:

ϕ(s, t) =
1

2
(K∗ ·ΛK∗ −GC) (2.11)

where E is the Young modulus, ν is the Poisson’s coefficient and GC is the fracture energy, i.e.
the dissipated energy per unit crack elongation and is a material characteristic. The non vanishing
components of matrix Λ = [Λij ] in eq. (2.11) read:

Λ11 = Λ22 =
1− ν2

E
; Λ33 =

1 + ν

E
(2.12)

for an isotropic material. Note that in eq. (2.11) a factor 1/2 has been included, which will be
beneficia later in the work, particularly in formula (2.26). In eq. (2.11) the expression of the energy
release rate G is referred to an embedded crack in which prevails a plane strain condition in a core
of the crack front. The radius of this core is a function of the distance to the free surface.

Recent investigations [26] revisited the notion of MERR in 2D and proved formula (2.11) also
by means of the l’Hopital theorem [126]. Similar analyses in 3D have not been carried out and the
validity of Irwin’s formula (2.11) for 3D, widely accepted in the fracture mechanics community, is
here assumed.

2.3.3 Phases of the fracturing process

Fracturing processes reveal three distinct phases: loading without crack growth, stable and unstable
propagation. If ϕ(s, t) < 0 at point s and time t, a sufficiently small load increment δκ between
instants t and τ > t exists that does not elongate the crack:

at any t s.t. ϕ(K(s, t), θ) < 0 for all θ it exists δκ = κ(τ)− κ(t) > 0

s.t. δK(s, τ) =
K(s, t)

κ(t)
δκ and ϕ(K(s, t) + δK(s, τ), θ) < 0 for all θ (2.13)

Such an incremental process describes the first phase of the fracturing process, namely loading
without crack growth.

When the onset of crack propagation is reached at a point s and time t, the second phase, when
present, is triggered off: stable crack growth. A further increase of load δκ causes crack elongation
at s. Denoting with:

δK(s, τ) = K(s, τ)−K(s, t+), δK∗(s, τ) = K∗(s, τ)−K∗(s, t+) (2.14)

at time t s.t. ϕ(K(s, t), θ(s, t)) = 0 for at least one θ(s, t), it exists δκ = κ(τ)− κ(t+) > 0 s.t.

δK∗(s, τ) =
K∗(s, t+)

κ(t+)
δκ, δK(s, τ) = δK∗(s, τ) + K(1/2)(s, t)

√
l(s; t, τ) +O(l) (2.15)

Details of eq.(2.15) are discussed in Appendix A. Conceptually, it states that a quasi-static fracture
extension l(s; t, τ) due to external actions requires a contemporary variation δκ of external actions
such that the global equilibrium is guaranteed. It is a reminiscence of Colonnetti’s decomposition
of stresses in plasticity4 [30, 31], as the variation of SIFs is additively decomposed as due to an

4Since plastic deformations play the same role of any deformation effect of inelastic nature, Colonnetti’s approach
allows to consider the solution of the incremental quasi-static elastic-plastic problem as the sum of two elastic solutions:
one due to the increments of the external loads and the other due to the increments of plastic deformations considered
as imposed distorsions. Such an approach leads to the formulation of the elastic-plastic problem in terms of plastic
multipliers solely.
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elastic contribution (δK∗) and to a distorsion (in fracture: crack elongation l(s; t, τ); in plasticity:
plastic strain rate) which reverses itself into SIFs (stresses in plasticity) by means of a stiffness
factor (in fracture: K(1/2), in plasticity: the action of the Z matrix over the plastic part of the
volume).
Eq. (2.15) states also implicitly that the extension l(s; t, τ) cannot be arbitrary along the crack
front. Equilibrium, in the sense that δκ is unique for all points s, requires l(s; t, τ) to assume a
precise shape with respect to s. Such a constraint is provided in plasticity by Ceradini’s functional
which in fact will be extended to fracture in Section 2.5.

The third phase of crack propagation, unstable crack growth, is reached when condition δκ > 0
in eq. (2.15) is no longer required at some point s. A quasi-static crack growth, merely academic,
can be simulated only with a decrease of external actions δκ ≤ 0 to recover the post peak behavior,
as typical in “arc length” techniques for softening materials.

2.3.4 Fracture propagation as a standard dissipative system

Several researchers have formulated the fracture propagation problem within the method of the local
state of thermodynamics [18, 87, 103], eventually exploting its analogy with associated plasticity
[122]. The latter work has been further developed in [125], putting fracture in analogy with a rigid-
plastic model in the sense that any elastic contribution to the elongation, which would eventually
be recovered after unloading, appears to be misplaced. In the Griffith theory [49] and in the light
of Irwin’s formula [62], propagation is governed at time t by the following conditions, reminiscence
of Karush-Kuhn-Tucker conditions of plasticity:

ϕ(K(s, t), θ(s, t)) ≤ 0, v(s, t) ≥ 0, ϕ(K(s, t), θ(s, t))v(s, t) = 0 (2.16)

No propagation is allowed l(s; t, τ) = 0 when ϕ(s, t) < 0 and viceversa. In [18], the crack length is
taken as a global internal variable, and its variation induces a dissipation which satisfies Clausis-
Duhem’s inequality through the introduction of a convex dissipation potential D. Such an idea
extends straightforwardly to three dimensional LEFM simply considering any point s along the
crack front as a locus of possible dissipation. A “safe equilibrium domain” is defined as:

E(s, t) = {{K∗1 (s, t),K∗2 (s, t),K∗3 (s, t)} ∈ R+
0 × R× R | ϕ(K∗(s, t)) < 0} (2.17)

It has a local nature at each point s of the crack front. When K∗(s, t) ∈ E the material surrounding
the point s experiences a purely linear elastic behavior, eventually corresponding to an elastic
unloading. A curve “onset of crack propagation” ∂E as the boundary of the safe equilibrium
domain can be defined at any point s:

∂E(s, t) = {{K∗1 (s, t),K∗2 (s, t),K∗3 (s, t)} ∈ R+
0 × R× R | ϕ(K∗(s, t)) = 0} (2.18)

Vectors K∗(s, t) 6∈ Ē are ruled out. The definitions above are reminiscent to the elastic domain and
to the yield surface in the plasticity theory [53]. They implicitly label the SIFs vector K∗ as an
internal force for the LEFM problem. Consistency condition finally reads:

when ϕ(s, t) = 0, v(s, t) ≥ 0,
∂ϕ

∂t

∣∣∣∣
s,t

≤ 0, v(s, t)
∂ϕ

∂t

∣∣∣∣
s,t

= 0 (2.19)

provided that a time derivative of function ϕ(s, t) can be properly defined.
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2.4 Thermodynamics of fracture

Mechanical dissipation in LEFM is due to the irreversible nature of crack extension, measured in
an incremental setting by the quasi-static crack front velocity vector v(s, t). It is defined in the
Frenet frame at point s of F as the vector, slanted by kinking angle θ(s, t), whose norm is equal to
the quasi-static crack front velocity v(s, t). The power released at location s along the crack front
F(t) during new surface creation in Griffith’s approach to fracture amounts to [115]:

G(s, t)v(s, t) ds dt (2.20)

It was already pointed out in defining the safe equilibrium domain E and the onset of crack prop-
agation ∂E in equations (2.17) and (2.18) that vector K∗(s, t) can be viewed as a thermodynamic
force. The rate of its thermodynamic conjugated variable, a∗(s, t), will be defined by:

K∗(s, t) · ∂a∗

∂t

∣∣∣∣
s,t

= G(s, t)v(s, t) (2.21)

A “maximum dissipation” principle for LEFM is postulated at any point s and termed as D-
principle. It reads: at any crack front point s, for given dissipation rate vector ∂a∗

∂t

∣∣
s,t

that enjoys

(2.21), among all possible SIFs k∗ ∈ Ē, the function

D
(

k∗;
∂a∗

∂t

∣∣∣∣
s,t

)
= k∗ · ∂a∗

∂t

∣∣∣∣
s,t

(2.22)

attains its maximum for the actual SIFs vector K∗:

D
(

K∗;
∂a∗

∂t

∣∣∣∣
s,t

)
= max

k∗∈Ē
D
(

k∗;
∂a∗

∂t

∣∣∣∣
s,t

)
(2.23)

D-principle is the counterpart of the postulate of the maximum plastic work and analogously to
maximum dissipation in plasticity, D-principle implies associative flow rule (normality law):

∂a∗

∂t

∣∣∣∣
s,t

=
∂ϕ

∂K∗

∣∣∣∣
s,t

λ̇(s, t) (2.24)

and loading/unloading conditions in Karush-Kuhn-Tucker complementarity form at any point s
along the crack front:

λ̇(s, t) ≥ 0, ϕ(s, t) ≤ 0, ϕ(s, t)λ̇(s, t) = 0 (2.25)

They hold at any point s along the crack front F(t).
Onset of propagation (2.11) shall be used into normality rule (2.24). In view of the symmetry

of matrix Λ it comes out:
∂a∗

∂t

∣∣∣∣
s,t

= ΛK∗(s, t)λ̇(s, t) (2.26)

It holds eventually:

K∗(s, t) · ∂a∗

∂t

∣∣∣∣
s,t

= K∗(s, t) · ∂ϕ
∂K∗

∣∣∣∣
s,t

λ̇(s, t) = K∗(s, t) ·ΛK∗(s, t)λ̇(s, t) (2.27)

The chain of identities above, in view of complementarity laws (2.25) and of positive definiteness
of Λ, grants that:

K∗ · ∂a∗

∂t

∣∣∣∣
s,t

≥ 0 (2.28)
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that is, thermodynamic restrictions are satisfied by the pair K∗(s, t),a∗(s, t).
Since from identities (2.27) immediately descends

K∗(s, t) · ∂a∗

∂t

∣∣∣∣
s,t

= G(s, t)λ̇(s, t) (2.29)

and in order to prove the equivalence (2.21), it only remains to prove that λ̇(s, t) = ∂l
∂t

∣∣
s,t

. By

means of Karush-Kuhn-Tucker conditions (2.16) one writes at all points s along F(t) such that
ϕ(s, t) = 0:

ϕ(s, t)v(s, t) = 0 = by eq. (2.11)

=
1

2
(G(s, t)v(s, t)−GC v(s, t)) = by eq. (2.21)

=
1

2
(K∗(s, t) · ∂a∗

∂t

∣∣∣∣
s,t

−GC v(s, t)) = by eq. (2.29)

=
1

2
(G(s, t) λ̇(s, t)−GC v(s, t)) =

= ϕ(s, t) λ̇(s, t)− 1

2
GC(v(s, t)− λ̇(s, t)) = by eq. (2.25)

= −1

2
GC(v(s, t)− λ̇(s, t)) =

= 0 (2.30)

and the thesis follows since GC 6= 0.
In conclusion, vector ∂a∗

∂t

∣∣
s,t

is related to the quasi-static crack front velocity vector ∂l
∂t

∣∣
s,t

defined

in the Frenet frame at point s of F(t), by eq.(2.26), namely:

∂a∗

∂t

∣∣∣∣
s,t

= ΛK∗(s, t)v(s, t) (2.31)

The maximality condition (2.23) has the meaning of maximum dissipation, as usual in standard
dissipative systems, during crack propagation and Karush-Kunn-Tucker conditions (2.25), rigor-
ously derived from (2.23), are one and the same with inequalities (2.16), which were suggested by
the physics of the problem.

In thermodynamics, restrictions drive the formulation of appropriate constitutive theory usually
after the specification of free energies. Thermodynamic constraint (2.28) has a sound thermody-
namic origin that quite naturally leads to equation (2.31), thus providing a link between ∂a∗

∂t

∣∣
s,t

and K∗ at all points s ∈ F(t).

2.5 Minimum theorems

2.5.1 A stability condition

Assume that the front propagates continuously in time and that the elongation in the normal plane
at location s amounts to l(s; t, τ). Onset of propagation ϕ(s, t∗) is well defined for all t∗ ∈ [t, τ ]
and if the crack front at s elongates continuously in time between t and τ then ϕ(s, t∗) = 0 for all
t∗ ∈ [t, τ ]. The time derivative of function ϕ(s, t) can be properly defined as:

∂ϕ

∂t

∣∣∣∣
s,t

= lim
τ→t+

ϕ(s, τ)− ϕ(s, t)

τ − t (2.32)
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Between instants t and τ the load factor changes as well, being the driving force of the crack
growth. Assume that it changes with sufficient smoothness, so that a velocity of load increment
can be properly defined:

∂κ

∂t

∣∣∣∣
t

= lim
τ→t+

κ(τ)− κ(t)

τ − t (2.33)

Stable crack growth requires an increase of the external loads to elongate the fracture, i.e.

∂κ

∂t

∣∣∣∣
t

> 0 (2.34)

In view of definition (2.11) for ϕ, and of expansion (2.2), one writes:

∂ϕ

∂t

∣∣∣∣
s,t

=
∂ϕ

∂K∗
·
(
∂K∗

∂κ

∣∣∣∣
s,t

∂κ

∂t

∣∣∣∣
t

+ K(1)[s, t; v(s′, t)]

)
ϕ=0
=

=
GC
κ(t)

∂κ

∂t

∣∣∣∣
t

+ ΛK∗(s, t) ·K(1)[s, t; v(s′, t)] (2.35)

In eq. (2.35) the linearity of operator K(1)[·] has been used to replace l(s′; t, τ) with v(s′, t).
In Colonnetti’s framework, ∂K∗

∂κ

∣∣
s,t

∂κ
∂t

∣∣
t

is a mere elastic contribution to the time derivative of

the SIFs vector due to the change of external loads, and K(1)[s, t; v(s′, t)] corresponds to the crack
elongation rate v(s′, t) considered as an inelastic distorsion. Consistency condition:

∂ϕ

∂t

∣∣∣∣
s,t

v(s, t) = 0 (2.36)

holds at all points s such that ϕ(s, t) = 0. Taking advantage of eq. (2.36), one writes it as:

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

v(s, t) + ΛK∗(s, t) ·K(1)[s, t; v(s′, t)]v(s, t) = 0 (2.37)

Since GC and κ(t) are positive scalars, the condition (2.34) for stable crack growth sets the following
requirements to operator K(1)[s, t; v(s′, t)]:

ΛK∗(s, t) ·K(1)[s, t; v(s′, t)] < 0 if v(s′, t) > 0 (2.38a)

ΛK∗(s, t) ·K(1)[s, t; v(s′, t)] = 0 if and only if v(s′, t) = 0 (2.38b)

at all s ∈ F(t)|ϕ=0. When condition (2.38a) is not met at point s, an unstable propagation may
take place in a neighborhood of s. Accordingly, eq.(2.38a) is the (local) condition for the transition
to the unstable phase at a point s.

2.5.2 Variational formulation

Symmetry property

Consider the affine operator N [·] defined as:

N [v] =
∂ϕ

∂K∗
· K̇∗(s, t) +

∂ϕ

∂K∗
·K(1)[s, t; v(s′, t)] (2.39)

where K̇∗(s, t) = ∂K∗

∂κ

∣∣
s,t

∂κ
∂t

∣∣
t
. The associated problem find v > 0 s.t. N [v] = 0 is equivalent to

consistency condition (2.19). From theorems of variational calculus, in order to give a variational
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formulation in a “restricted sense” (see [144]) to the nonlinear problem N [v] = 0, it is necessary
that the Gateaux derivative of N , defined by virtue of α ∈ R:

N ′v[w] =
dN [v + αw]

dα

∣∣∣∣
α=0

=
∂ϕ

∂K∗
·K(1)[s, t;w(s′, t)] (2.40)

is symmetric with respect to the usual bilinear form, namely:∫
F(t)

N ′v[w(s′, t)]z(s, t) ds =

∫
F(t)

N ′v[z(s
′, t)]w(s, t) ds (2.41)

By noting that ϕ has been defined as the maximum energy release rate criterion in eq. (2.11), it
turns out that N ′v[w] is precisely the energy release rate associated to elongation rate w at constant
boundary conditions, the term ∂ϕ

∂K∗ · K̇∗ in definition (2.39) being the variation of energy due to
the variation of the external loads κ(t).

It is not straightforward to envisage symmetry for N ′v from definition (2.5) of operator
K(1)[s, t; v(s′, t)], although this property seems quite natural if one thinks the energy release rate
as the derivative of the energy. On the contrary, term by term unsymmetry is apparent and one is
led to erroneously conclude that a variational formulation for problem N [v] = 0 cannot be given.
To prove symmetry for operator N ′v one must follow a different path of reasoning, based on the
physical meaning of the operator itself.

∆(s)
s

s′′

Figure 2.3: Finite propagation length ∆(s). The shadowed area represents the crack surface before
elongation.

Consider a finite propagation length ∆(s; t, τ) at a point s of the crack front (see figure 2.3),
given by the sum of two contributions:

∆(s) = Aφ(s) +Bψ(s) (2.42)

where time dependency has been omitted for the sake of readiness. In eq. (2.42) A and B are two
positive parameters and φ(s) and ψ(s) are formally two fixed and assigned non negative functions
expressing the elongation of the front in the normal plane.

The total (elastic) energy of body Ω, denoted henceforth by W , is a function of the geometry,
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namely of the advancing of the crack front which is uniquely defined by parameters A and B. Then
W = W (A,B) and apart from higher order terms one has:

∂W (A,B)

∂A
= −

∫
F
G(A,B, s)φ(s)ds′′ (2.43)

In eq.(2.43) term G(A,B, s) is the energy release rate which is function of the location of the crack
front (A and B), but also of the position s along the crack front. Furthermore, if ds refers to the
front before the elongation ∆(s) and ds′′ to the final position of the front, it turns out:

ds′′ = ds(1 + γ∆(s)) (2.44)

where γ is a local corrective factor that depends upon the curvature of F , see figure 2.4.

Figure 2.4: A zoom of figure 2.3 allows to highlight the crack front length increment ds′′.

Second order terms in A and B arise during propagation, as the normal at point s changes
direction at s′′. Propagation in the normal plane modifies to:

φ(s)n(s) · n(s′′) = φ(s) + second order terms (2.45)

For all these reasons, eq. (2.43) can be written as:

∂W (A,B)

∂A
= −

∫
F
G(A,B, s)φ(s)[1 + γ(Aφ(s) +Bψ(s))]ds (2.46)

from which:

∂2W (A,B)

∂B∂A
= −

∫
F

∂G(A,B, s)

∂B
φ(s)[1 + γ(Aφ(s) +Bψ(s))]ds−

∫
F
G(A,B, s)φ(s)γψ(s)ds (2.47)

Setting A = B = 0 the latter becomes:

∂2W

∂B∂A

∣∣∣∣
A=B=0

= −
∫
F

∂G(A,B, s)

∂B

∣∣∣∣
A=B=0

φ(s)ds−
∫
F
G(0, 0, s)φ(s)γψ(s)ds (2.48)

Analogously one has:

∂W (A,B)

∂B
= −

∫
F
G(A,B, s)ψ(s)[1 + γ(Aφ(s) +Bψ(s))]ds (2.49)
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and setting A = B = 0 one has:

∂2W

∂A∂B

∣∣∣∣
A=B=0

= −
∫
F

∂G(A,B, s)

∂A

∣∣∣∣
A=B=0

ψ(s)ds−
∫
F
G(0, 0, s)ψ(s)γφ(s)ds (2.50)

Comparing eqs. (2.48) and (2.50) one states:∫
F

∂G(s)

∂A
ψ(s)ds =

∫
F

∂G(s)

∂B
φ(s)ds (2.51)

Define infinitesimal increments of propagation length l1(s) = δA · φ(s), l2(s) = δB · ψ(s) and

the corresponding infinitesimal variations of the energy release rate δ1G(s) = ∂G(s)
∂A δA, δ2G(s) =

∂G(s)
∂B δB. It holds: ∫

F
δ1G(s) · l2(s)ds = δAδB

∫
F

∂G(s)

∂A
ψ(s)ds (2.52)

and ∫
F
δ2G(s) · l1(s)ds = δAδB

∫
F

∂G(s)

∂B
φ(s)ds (2.53)

Owing to eq.(2.51) one concludes:∫
F
δ1G(s)l2(s)ds =

∫
F
δ2G(s)l1(s)ds (2.54)

As it was pointed out that N ′v[w] is precisely the energy release rate associated to elongation rate
w, eq.(2.54) is nothing but the proof of symmetry property (2.41).

Variational statements

Consider the geometrical configuration at time t, namely a domain Ω that includes the fracture
surface S(t) with its front F(t), in equilibrium at external actions κ(t). Take an instant τ > t and
assume that at time τ a new equilibrated configuration S(τ), F(τ) is achievable at κ(τ) > κ(t). The
ultimate goal of any LEFM crack propagation model stands in estimating the unknown fields at
the new equilibrium configuration, namely the displacements u(x, t) and the new geometry, that is
identified by the elongation in the normal plane l(s; t, τ). The problem of finding a new configuration
can be set in rate form. Given the state of stress and the history of crack propagation at time t, one
seeks for the crack propagation rate v(s, t) in the normal plane due to a given variation of external
actions ∂κ

∂t

∣∣
t
. Such a problem can be solved locally at crack front locations and it is independent

upon the rate of the displacement field. Eq. (2.37) derived from consistency condition, solves the
rate form problem for v(s, t). In view of symmetry property (2.41), a variational formulation for
eq. (2.37) can be written, whereby v(s, t) is obtained as the minimum of a constrained quadratic
functional, provided that the crack growth is stable. To ensure stability, in view of (2.38a), the
Gateaux derivative (2.40) of operator N [·] has to be co-negative definite. Since N ′v[w] is linear in
w, the stability condition is equivalent to:

N ′v[w]w(s, t) < 0 ∀w(s, t) ≥ 0, s ∈ F(t) (2.55)

In [127] two variational statements are given, that are reminiscent of Ceradini’s theorem [24] for
plasticity. They extend to three dimensional problems the variational formulation for the global
incremental quasi-static linear elastic fracture propagation problem presented in [125] for the two-
dimensional case.
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Proposition 1 Under hypothesis (2.55), the crack front velocity v(s, t) that solves the global quasi-
static fracture propagation problem at time t minimizes the functional:

χ[w(s, t)] = −1

2

∫
F(t)|ϕ=0

N ′v[w(s′, t)]w(s, t) ds−
∫
F(t)|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

w(s, t) ds (2.56)

under the constraint w(s, t) ≥ 0 ∀s ∈ F(t)|ϕ=0.

In this proof, dependency of velocities upon s and t is not made explicit to favor readabil-
ity. To prove the theorem, denote with w = v + δv. It holds:

χ[w]− χ[v] = −1

2

∫
F|ϕ=0

(N ′v[v]δv +N ′v[δv]v +N ′v[δv]δv) ds−
∫
F|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

δv ds (2.57)

Symmetry and linearity of operator N ′v[·] allow writing:

χ[w]− χ[v] = −
∫
F|ϕ=0

(
N ′v[v] +

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

)
δv ds− 1

2

∫
F|ϕ=0

N ′v[δv]δv ds

= −
∫
F|ϕ=0

∂ϕ

∂t
(w − v) ds− 1

2

∫
F|ϕ=0

N ′v[δv]δv ds

= −
∫
F|ϕ=0

∂ϕ

∂t
w ds+

∫
F|ϕ=0

∂ϕ

∂t
v ds− 1

2

∫
F|ϕ=0

N ′[δv]δv ds ≥ 0 (2.58)

the first term is non negative , since ∂ϕ
∂t ≤ 0 in view of consistency and of the constraint w ≥ 0.

The second term vanishes in view of Karush-Kuhn-Tucker conditions (2.16). Finally, the last term
is non negative under the stable crack growth assumption (2.55). The assert is thus proved.

Proposition 2 Under hypothesis (2.55), the crack front velocity v(s, t) that solves the global quasi-
static fracture propagation problem at time t minimizes the functional:

ω[w(s, t)] = −1

2

∫
F(t)|ϕ=0

N ′v[w(s′, t)]w(s, t) ds (2.59)

under the constraint

N ′v[w(s′, t)] +
GC
κ(t)

∂κ

∂t

∣∣∣∣
t

≤ 0 ∀s′ ∈ F(t)|ϕ=0 (2.60)

As for the proof of Proposition 1, dependencies of velocities upon s and t is not made ex-
plicit to favor readability. To prove the theorem, denote again with w = v + δv. In view of
symmetry property (2.41), one writes:

ω[w]− ω[v] = −
∫
F|ϕ=0

N ′v[v]δv ds− 1

2

∫
F|ϕ=0

N ′v[δv]δv ds (2.61)

After adding and subtracting the amount∫
F|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

v ds,
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the following algebraic passages can be straightforwardly derived:

ω[w]− ω[v] = −1

2

∫
F|ϕ=0

N ′v[δv]δv ds+

∫
F|ϕ=0

(
N ′v[v] +

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

)
v ds

−
∫
F|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

v ds−
∫
F|ϕ=0

N ′v[v]w ds

= −1

2

∫
F|ϕ=0

N ′v[δv]δv ds+

∫
F|ϕ=0

∂ϕ

∂t
v ds−

∫
F|ϕ=0

(
N ′v[w] +

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

)
v ds ≥ 0

(2.62)

in view of symmetry of operator N ′v. The first term is non negative under the stable crack growth
assumption (2.55). The second term vanishes in view of Karush-Kuhn-Tucker conditions. The last
term is non negative, since v ≥ 0 and in view of constraint (2.60). The assert is thus proved.

2.5.3 Benchmark

Consider a penny shape crack with radius a(t) > aimp > 0 embedded in a continuum body, subject
to an internal pressure p(r, t) that opens the crack merely acting on a concentric circle of radius
aimp (see figure 2.5).

y

Figure 2.5: Penny shape crack of variable radius a(t) in an unbounded linear elastic medium, subject
to a uniform tensile stress p(r, t) = −p(r, t)n on a constant circular area of radius aimp depicted
in grey. n stands for the outer normal, so that p opens the crack.

Pressure p(r, t) has the following mathematical expression:

p(r, t) = κ(t)H(aimp − r) (2.63)

κ(t) being the load factor, as usual, and H(x) the Heaviside step function, namely:

H(x) =

{
1 if x ≥ 0
0 if x < 0

(2.64)

In such mode 1 condition, the crack evolution in space is smooth, without kinking. The SIFs
vector has a single non vanishing component, independent on abscissa s along the crack front, that
amounts to [65]:

K1(a(t)) =
2

π

1√
a(t)

∫ a(t)

0

r p(r, t)

(a(t)2 − r2)1/2
dr (2.65)
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whence, in view of (2.63):

K1(a(t)) = 2
κ(t)

π

a(t)−
√
a2(t)− a2

imp√
a(t)

(2.66)

Closed form solution (2.66) can be exploited in order to benchmark the variational framework
developed in section 2.5.2.

If at instant τ > t the load factor κ(τ) reaches a propagation threshold so that K1 = KC
1 ,

the onset of crack propagation is reached. Further increase of external actions allows fracture
propagation and radius a(t) becomes a(t) + da(t, τ). As already stressed, axial-symmetric crack
growth conditions make the amount da(t, τ) independent on the abscissa s along along the crack
front. Eq.(2.35) reduces to:

∂ϕ

∂t

∣∣∣∣
t

=
GC
κ(t)

∂κ

∂t

∣∣∣∣
t

+
∂ϕ

∂K∗
·K(1)

0 (t) ȧ(t) (2.67)

where, in view of eq. (2.1),

ȧ(t) = lim
τ→t+

da(t, τ)

τ − t
The closed form for scalar K

(1)
0 , meaning the non vanishing component of vector K

(1)
0 , can be

derived from the series expansion of eq. (2.66) in terms of a(t):

K1(a(t) + da(t, τ)) = K1(a(t))− k(t)

πa(t)
√
a(t)

a(t)2 + a2
imp − a(t)

√
a(t)2 − a2

imp√
a(t)2 − a2

imp

da(t, τ)

+ O(da2(t, τ)) (2.68)

According to definition (2.6), operator K(1)[s, t; v(s, t)] = K
(1)
0 (t)ȧ(t) and stability condition (2.38a)

is satisfied. The crack growth is therefore stable, as expected again.
Functional (2.56) holds:

χ[ȧ(t)] = −1

2

∫
F(t)|ϕ=0

∂ϕ

∂K∗
·K(1)

0 (t) ȧ2(t) ds−
∫
F(t)|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

ȧ(t) ds (2.69)

under the unilateral constraint ȧ(t) ≥ 0. Consider a positive parameter α and a positive elongation
rate ḃ(t), so that the configuration ȧ(t) + α ḃ(t) ≥ 0 is in the set of admissible configurations for
functional (2.56). Optimality implies:

χ[ȧ(t) + α ḃ(t)] ≥ χ[ȧ(t)] (2.70)

or equivalently
d

dα
χ[ȧ(t) + α ḃ(t)]

∣∣∣∣
α=0

≥ 0 (2.71)

Crack front F(t)|ϕ=0 can be split into two parts. In the former, say F1(t), ȧ(t) is strictly positive.
The complementary, say F2(t), is the part of F(t)|ϕ=0 with vanishing velocity ȧ(t) = 0. Along F1(t)
the usual Euler-Lagrange equation χ′[ȧ(t)] = 0 holds, whereas along F2(t) the inequality χ′[ȧ(t)] ≥ 0
has to be satisfied. Accordingly, at all s ∈ F(t)|ϕ=0 the Karush-Kuhn-Tucker conditions hold:

ȧ(t) ≥ 0, χ′[ȧ(t)] ≥ 0, χ′[ȧ(t)]ȧ(t) = 0 (2.72)
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In view of closed form (2.68), one has:

χ[ȧ(t)] = −1− ν2

E
ȧ(t)

[
q[a(t)]ȧ(t) + 2

r[a(t)]

κ(t)

∂κ

∂t

∣∣∣∣
t

]
(2.73)

with:

q[a(t)] =

∫ 2πa(t)

0
K1(a(t)) ·K(1)

0 (t) ds

=
4κ2(t)

(
a(t)−

√
a2(t)− a2

imp

)(
a2(t) + a2

imp − a(t)
√
a2(t)− a2

imp

)
π
√
a4(t)− a2(t)a2

imp

r[a(t)] =

∫ 2πa(t)

0
K2

1 (a(t)) ds =
8κ2(t)

π

(
a(t)−

√
a2(t)− a2

imp

)2

(2.74)

Along F1(t) the minimizer of functional (2.73) must satisfy the Euler-Lagrange equation:

−2
1− ν2

E

[
q[a(t)]ȧ(t) +

r[a(t)]

κ(t)

∂κ

∂t

∣∣∣∣
t

]
= 0 (2.75)

By “time” integration one gets:

log
κ(t)

κ0
=

1

2
log

a(t)

a0
+ log

a(t) +
√
a2(t)− a2

imp

a0 +
√
a2

0 − a2
imp

(2.76)

having set a(0) = a0 and κ(0) = κ0. Eq. (2.76) expresses the critical load factor corresponding to
the evolution of radius a(t) along F1(t). Due to the axial-symmetry of the problem, either F1(t)
coincides with the whole circular crack front or is empty. In the latter case ȧ(t) = 0 and the
inequality:

−2
1− ν2

E

[
q[a(t)]ȧ(t) +

r[a(t)]

κ(t)

∂κ

∂t

∣∣∣∣
t

]
≥ 0 (2.77)

is satisfied only by ∂κ
∂t

∣∣
t
≤ 0.

For example, setting K1(a0) = KC
1 and a0 = aimp, from eq. (2.68) one has:

κ0 =
π

2

KC
1√
a0

(2.78)

from which the load factor as a function of the radius follows:

κ(t) = KC
1 π
√
a(t)

a(t) +
√
a2(t)− a2

imp

2 a2
imp

(2.79)

Eq. (2.79) can be inverted in terms of a(t):

a(t) =
1

48 ε κ2(t)KC
1

2

[
ε2

π2/3
+ π2εKC

1
4

+ π2/3KC
1

4
(

384κ4(t) a2
imp + π4KC

1
4
)]

(2.80)

with

ε =
√

3KC
1

4
(

576π4κ4(t)KC
1

4
a2
imp

+ 1536κ6(t) a3
imp

(√
3
√

432κ4(t) a2
imp + π4KC

1
4

+ 36κ2(t) aimp

)
+ π8KC

1
8
)

(2.81)

Curves (2.79) and (2.80) are plotted in fig. 2.6 in the case aimp = 1/2 and KC
1 = 1.
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Figure 2.6: Curves (2.79) and (2.80) in the case aimp = 1/2 and KC
1 = 1. They confirm the stable

nature of propagation.

2.6 Appendix A: On the mixed mode propagation

Consider an instant t∗ belonging to the time interval ]t, τ ] in which the crack front elongates steadily
at point s. During stable crack growth, propagation is meant to be a sequence of equilibrium states.
At each load κ(t∗) a geometry configuration l(s; t, t∗) corresponds which eventually evolves quasi-
statically, keeping the SIFs at the onset of crack propagation K∗(s, t∗) ∈ ∂E. In time interval ]t, τ ]
one has at point s:

ϕ(K∗(s, t∗))− ϕ(K∗(s, t)) =
1

2
Λ11(K∗1

2(s, t∗)−K∗1 2(s, t) +K∗2
2(s, t∗)−K∗2 2(s, t))

+
1

2
Λ33(K∗3

2(s, t∗)−K∗3 2(s, t)) = 0 t∗ ∈]t, τ ] (2.82)

in view of the MERR onset of propagation (2.11), where Λ11 and Λ33 are the components of matrix
Λ of eq. (2.12). If the crack path in the normal plane at any s ∈ F is taken to be smooth in the
time interval ]t, τ ], in other words along a curve at least of class C1, then ∀t∗ ∈]t, τ ] the kinking
angle θ(s, t∗) = 0 and K∗(t∗) = K(t∗) for being F = I in expansion (2.3), with I denoting the
identity matrix. If furthermore one selects the Local Symmetry [47] as a kinking angle criterion,
then K∗2 = 0 and therefore:

ϕ(K∗(s, t∗))− ϕ(K∗(s, t)) =
1

2
Λ11(K∗1 (s, t∗) +K∗1 (s, t))(K∗1 (s, t∗)−K∗1 (s, t))

+
1

2
Λ33(K∗3 (s, t∗) +K∗3 (s, t))(K∗3 (s, t∗)−K∗3 (s, t)) = 0 t∗ ∈]t, τ ]

(2.83)

Using SIFs expansions (2.2) and (2.6) one has:

K∗1 (s, t∗)−K∗1 (s, t) = e1 ·
{

K∗(s, t)
κ(t∗)

κ(t)
+ K(1/2)(s, t)

κ(t∗)

κ(t)

√
l(s; t, t∗)

+ K
(1)
0 (s, t)

κ(t∗)

κ(t)
l(s; t, t∗) + K

(1)
1 (s, t)

κ(t∗)

κ(t)

∂l

∂s′

∣∣∣∣
s;t,t∗

+ K
(1)
nl [s, t; l(s′; t, t∗)− l(s; t, t∗)]κ(t∗)

κ(t)
−K∗(s, t)

}
+ o(l)

= e1 ·
{

K∗(s, t)
δκ

κ(t)
+ K(1/2)(s, t)

√
l(s; t, t∗) + K

(1)
0 (s, t)l(s; t, t∗)

+ K
(1)
1 (s, t)

∂l

∂s′

∣∣∣∣
s;t,t∗

+ K
(1)
nl [s, t; l(s′; t, t∗)− l(s, t, t∗)]

}
+ o(δk · l)

(2.84)
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where e1 denotes the unit vector in direction 1 and δκ = κ(t∗)− κ(t). Analogously:

K∗3 (s, t∗)−K∗3 (s, t) = e3 ·
{

K∗(s, t)
δκ

κ(t)
+ K(1/2)(s, t)

√
l(s; t, t∗) + K

(1)
0 (s, t)l(s; t, t∗)

+ K
(1)
1 (s, t)

∂l

∂s′

∣∣∣∣
s;t,t∗

+ K
(1)
nl [s, t; l(s′; t, t∗)− l(s, t, t∗)]

}
+ o(δk · l)

(2.85)

where e3 denotes the unit vector in direction 3. Referring to definition of the quasi-static velocity
v(s, t) eq. (2.1) and of the velocity of the load increment eq. (2.33), one has for t∗ → t+:

0 = (Λ11K
∗
1 (s, t)e1 + Λ33K

∗
3 (s, t)e3) ·K(1/2)(s, t)

√
v(s, t)

√
t∗ − t

+ (Λ11K
∗
1 (s, t)e1 + Λ33K

∗
3 (s, t)e3) ·

{
K∗(s, t)

κ(t)

∂κ

∂t

∣∣∣∣
t

+ K
(1)
0 (s, t)v(s, t)

+ K
(1)
1 (s, t)

∂v

∂s′

∣∣∣∣
s,t

+ K
(1)
nl [s, t; v(s′, t)− v(s, t)]

}
(t∗ − t) + o(t∗ − t) (2.86)

whence the conditions:
∂ϕ

∂K∗
·K(1/2)(s, t) = 0 (2.87)

∂ϕ

∂K∗
·
{

K∗(s, t)

κ(t)

∂κ

∂t

∣∣∣∣
t

+ K
(1)
0 (s, t)v(s, t) + K

(1)
1 (s, t)

∂v

∂s′

∣∣∣∣
s,t

+ K
(1)
nl [s, t; v(s′, t)− v(s, t)]

}
= 0

(2.88)
at K∗2 = 0. Equations (2.87) and (2.88) appear to be mandatory requirements for mixed mode
crack propagation. Furthermore, the hypothesis of validity of LS as the criterion for crack kinking
implies that parameter a∗ in eq. (2.4) vanishes at time t. This proposition is easily verified: all
functions Gij vanish at θ = 0 in eq. (2.4) that reduces in this case to:

K
(1/2)
i = a∗Hij |θ=0Kj (2.89)

for all instants t∗ > t. For being K∗2 = K2 = 0, expansion (2.4) implies K
(1/2)
2 = a∗H21|θ=0K1 = 0.

As H21|θ=0 = 3/4, the geometrical restriction a∗ = 0 comes out for all instants t∗ > t. As a∗ at
time t is defined in the Frenet frame “right after the kink” and as in the limit t∗ → t the Frenet
frame {O, y1, y2} at time t∗ converges to the one at time t, so does a∗. One concludes therefore that
a∗ = 0 at time t as well. The proof of vanishing a∗ at time t stems merely on the criterion of LS.
Eq. (2.87) has been proved making use of the MERR onset of propagation. Onset and criterion
convey separate outcomes. Typically, is not possible to obtain a∗ = 0 via the Griffith approach, in
view of the fact that (2.87) holds for all a∗ if θ = 0. On the other hand it has been shown that the
crack front velocity at the kink must be zero, which cannot be proved by the LS criterion.

If a non smooth propagation after the kink is allowed, F 6= I and it is not possible to use
expansion (2.2) with respect to the values “before the kink” at time t.

2.7 Appendix B: MERR and LS

MERR onset of propagation uses as magnitude ϑ of eq. (2.7) the energy released during crack
advance at any point along the crack front. Such a magnitude is related to stress intensity factors
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after a kink via Irwin’s formula, recently revisited at a kink by several authors [26, 60] in two
dimensions, whence the onset of propagation reads:

ϕ(s, t) =
1

2
(K∗(s, t) ·ΛK∗(s, t)−GC) (2.90)

It seems extremely desirable, although quite involved, an extension of [26] to the three dimen-
sional case. As its formal derivation in the presence of kinking seems not to be available, the validity
of Irwin’s formula for 3D, widely accepted in the fracture mechanics community, is here assumed.

LS and MERR share the same onset of propagation. They differ on the criteria for kinking
angle prediction. The kink angle predicted by the MERR descends from the general form (2.9). It
reads:

∂ϕ

∂θ
= Λ11

(
K∗1

∂K∗1
∂θ

+K∗2
∂K∗2
∂θ

)
+ Λ33K

∗
3

∂K∗3
∂θ

= 0 (2.91)

where dependency on s and t has not been made explicit and, as usual, Λ11 and Λ33 are components
of matrix Λ of eq. (2.12). Matrix F has been defined in terms of the ratio m = θ/π in [82, 83] as :

F11(m) = 4.1m20 + 1.63m18 − 4.059m16 + 2.996m14 − 0.0925m12 − 2.88312m10 + 5.0779m8 +

+

(
π2

9
− 11π4

72
+

119π6

15360

)
m6 +

(
π2 − 5π4

128

)
m4 − 3π2m2

8
+ 1

F12(m) = 4.56m19 + 4.21m17 − 6.915m15 + 4.0216m13 + 1.5793m11 − 7.32433m9 + 12.313906m7 +

+

(
−2π − 133π3

180
+

59π5

1280

)
m5 +

(
10π

3
+
π3

16

)
m3 − 3πm

2

F21(m) = −1.32m19 − 3.95m17 + 4.684m15 − 2.07m13 − 1.534m11 + 4.44112m9 − 6.176023m7 +

+

(
−2π

3
+

13π3

30
− 59π5

3840

)
m5 −

(
4π

3
+
π3

48

)
m3 +

πm

2

F22(m) = 12.5m20 + 0.25m18 − 7.591m16 + 7.28m14 − 1.8804m12 − 4.78511m10 + 10.58254m8 +

+

(
−32

15
− 4π2

9
− 1159π4

7200
+

119π6

15360

)
m6 +

(
8

3
+

29π2

18
− 5π4

128

)
m4 −

(
4 +

3π2

8

)
m2 + 1

F33(m) =

(
1−m
1 +m

)m/2
F13(m) = F31(m) = F32(m) = F23(m) = 0

It is straightforward to show that at K1 6= 0 eq. (2.91) is equivalent to:[
(F11 + α2F12)

(
∂F11

∂θ
+ α2

∂F21

∂θ

)
+ (F21 + α2F22)

(
∂F21

∂θ
+ α2

∂F22

∂θ

)]
+

1

1− ν α
2
3

∂F33

∂θ
= 0

(2.92)
where α2 = K2/K1 and α3 = K3/K1. For a given material (i.e. a given Poisson ratio) at any
couple α2, α3 the corresponding kink angle θMERR solves eq. (2.92). At K1 = 0 angle θMERR is
plot as a function of ratio α32 = K3/K2 and of Poisson ratio ν in fig. 2.7.

LS criterion is the only notable exception to the mathematical representation (2.7). It provides
the kink angle θLS through the equation K∗2 = 0:

F21 + α2F22 = 0 (2.93)
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where α2 = K2/K1. For any α2 eq. (2.93) provides the kink angle θLS which turns out to be
independent on the mode 3 stress intensity factor.

Whereas thus in 2D the two angles θMERR and θLS differ from very small amounts [124], in 3D
the scenario changes completely as it can be readily seen in fig. 2.8.

0.5 1.0 1.5 2.0
Α32

"0.4

"0.3

"0.2

"0.1

0.0

m α32

m

ν = 0.25
ν = 0.5

ν = 0

Figure 2.7: Kink angle θMERR = mπ as a function of the ratio α32 = K3/K2 at K1 = 0 for three
different values of the Poisson coefficient ν.



CHAPTER 2. CRACK GROWTH AS A STANDARD DISSIPATIVE SYSTEM 30

α2

α3

m

α2

α3

m

Figure 2.8: Plot of the kink angle θMERR = mπ as a function of the ratios α2 = K2/K1 and
α3 = K3/K1. At K2 = 0 (mode 1+3) the kinking angle vanishes. At K3 = 0 the plane case is
recovered as well as the well known curve θ versus α2; it is here highlighted with a thick black curve.
θMERR and θLS differ from very small amounts in the plane case. Accordingly, a visualization of θLS
cannot be distinguished from θMERR and thus the thick curve recovers θLS as well. Noteworthy, θLS
is independent upon α3. It is then easy to envisage the surface plot of angle θLS as the cylindrical
envelope of the thick curve along axis α3. The higher the mode 3 contribution α3 the higher the
difference in the angle of propagation between LS and MERR. This evidence is clear in the bottom
figure, whose axes are not in scale.



Chapter 3

Numerical approximation of SIFs

Determination of accurate SIFs for mixed-mode loading in complex three dimensional configurations
is of fundamental importance in computational linear elastic fracture mechanics.
Many finite element based techniques have been developed and used for representing a crack and
consequently compute fracture mechanics parameters. Such techniques can be divided into two
main categories: geometrical representations and non geometrical representations.

The first category exploits modeling techniques to explicitly represent the surfaces and the front
of the crack.
The second category, on the contrary, exploits constitutive relations or kinematics methods to
inform the numerical model of the presence of the crack. In the present Chapter the conventional
Finite Element Method, belonging to the first category, and the eXtended Finite Element Method,
belonging to the second category, are considered.

In LEFM, square-root singular stress-strain fields exist along the edge of an embedded crack.
To deal with this numerical difficulty, quarter-point elements are employed within classical Finite
Element Method, and asymptotic near-tip fields enhance the displacement field within the eXtended
Finite Element Method. This two techniques are described in the following, together with some of
the existing methods employed in the fracture mechanics community to compute SIFs, namely the
displacement correlation technique, the modified crack closure integral, the virtual crack extension,
and the J-integral.

3.1 Finite Element Method

The Finite Element Method (FEM) is now established as a standard tool to use for the detailed
determination of stresses in engineering structures and components. The singular crack front stress
and strain fields predicted by the LEFM theory cannot be represented by the polynomial basis
functions used for most conventional elements [27]. Henshell and Shaw [56] and Barsoum [11] de-
veloped simultaneously and independently the quarter-point elements, which constitute a significant
advancement in the FEM for LEFM. They showed that using standard quadratic isoparametric
elements and moving the elements’ mid-side node to the position that corresponds to one quarter
of the way from the crack tip to the far end of the element, the crack front displacement, stress, and
strain fields can be properly modeled. Such a milestone procedure introduces a singularity between
the element parametric coordinate space and Cartesian space. Henshell and Shaw [56] described a
quadrilateral quarter-point element, and Barsoum [11] suggested to collapse one edge of the element
at the crack tip. Such two types of plane elements are depicted in figure 3.2-a and b, respectively.
In the following Sections, 1D, 2D, and 3D quarter-points elements are briefly described. Cubic

31
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order singular elements are also investigated, in order to analyze the behavior of the 3/2 order
term, identified henceforth with Ξ1, of the crack opening expansion in powers of the distance to
the crack front. Such a term constitutes in fact a fundamental ingredient of first order expansion
of the SIFs described in Chapter 4 and consequently of the crack tracking algorithm described in
Chapter 5. Its accurate approximation is extremely valuable in order to correctly investigate the
propagation path of fractures within the variational formulation described below.

3.1.1 1D quarter-point elements

The effect of moving the midside node of a quadratic element to the quarter-point position, is
described for the case of a one dimensional element, for which the algebra is simpler than for the
two- and three-dimensional elements.

a) b)

Figure 3.1: 1D quarter-point element: a) parametric coordinate ξ b) Cartesian coordinate x1.

Fig 3.1-a shows the parametric coordinate ξ of the element, while figure 3.1-b the Cartesian
coordinate x1, where the location of the center node is controlled by the value of the parameter α
and the crack tip is located at x1 = 0.

The displacement u at any point within the element is determined by interpolating the nodal
displacements ui, using standard Lagrange second order shape functions ψi:

u =
3∑
i=1

ψi(ξ)ui =
1

2
ξ(ξ−1)u1 +(1−ξ2)u2 +

1

2
ξ(ξ+1)u3 = u2 +

1

2
(u3−u1)ξ+

(
1

2
(u1 + u3)− u2

)
ξ2

(3.1)
According to the isoparametric formulation, the same shape functions are exploited to interpolate
the geometry of the element:

x1 =
3∑
i=1

ψi(ξ)x1i = α b+
1

2
b ξ + b

(
1

2
− α

)
ξ2

where b is the length of the element in the Cartesian space. If the center node is located at the
mid-side point of the element, i.e. α = 1

2 and ξ = 2x1
b − 1, eq. (3.1) reads:

u = u1 + (−3u1 + 4u2 − u3)
x1

b
+ 2(u1 − 2u2 + u3)

x2
1

b2
(3.2)

Differentiating quadratic expression (3.2) with respect to x1, one obtains the expected linear ex-
pression in x1 for the strain ε in the element:

ε =
du

dx1
= (−3u1 + 4u2 − u3)

1

b
+ 4(u1 − 2u2 + u3)

x1

b2

The stress field is also linear in x1, being linearly related to ε according to the linear elastic condition.

If the middle node is moved to the quarter-point position, for which α = 1
4 and ξ = 2

√
b x1
b − 1, eq.
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(3.1) reads:

u = u1 + (−3u1 + 4u2 − u3)

√
b x1

b
+ 2(u1 − 2u2 + u3)

x1

b
(3.3)

The square root variation in x1 of u in eq. (3.3) is the leading term in LEFM expression for the
near crack tip displacement. Consequently, the strain field contains the singular term proportional

to x
−1/2
1 :

ε =
du

dx1
=

(
−3

2
u1 + 2u2 −

1

2
u3

)
1√
b x1

+ 2(u1 − 2u2 + u3)
1

b
(3.4)

3.1.2 2D quarter-point elements

Referring to the element of figure 3.2-a, eq. (3.4) demonstrates that the quarter-point element
exhibits the desired strain (and stress) singularities along the quarter-point element edges, namely
edges 1− 5− 2 and 1− 8− 4 in figure 3.2-a.

a) b) c)

Figure 3.2: a)Quadrilateral 2D quarter-point element [56] b)Collapsed 2D quarter-point element
[11]. Nodes 1, 4 and 8 are constrained to move together c) Natural triangular quarter-point element
[40].

However, this is not necessarily the case for all rays through the elements emanating from the crack
tip. Barsoum [12] showed that for the collapsed triangular form, the proper singular expression
is obtained along all rays emanating from the crack tip, provided that the side node on the edge
opposite to the crack tip (node 6 in figure 3.2-b) is placed at the mid point between the two corner
nodes (nodes 2 and 3 of figure 3.2-b).

Denoting with r the distance from the crack tip, Freese and Tracey [40] showed that the r−1/2

singularity holds along paths of constant parametric coordinate η (see figure 3.3). When the
opposite side node is mid-way between the corner nodes, lines of constant η map into straight
rays emanating from the crack tip. When such a node is moved from the center position, lines of
constant η map into quadratic curves in the Cartesian space and the r−1/2 singularity holds along
these curves, but not along straight rays.

Freese and Tracey [40] demonstrated that the so called natural triangle quarter-point element
(see figure 3.2-c) reproduces the r−1/2 singularity along all rays emanating from the crack tip
regardless the position of the node opposite the crack front.
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Figure 3.3: a)Parametric coordinates ξ and η of a quadrilateral element

Manu [91] showed that the collapsed 9-noded quarter-point element represented in figure 3.4
produces the square root behavior along all rays provided that the far side node 6 is mid way
between the far corner nodes 2 and 3 and that the central node 9 is also moved to the quarter-point
position.

Figure 3.4: 9-noded quarter-point triangular element [91]

The quadrilateral quarter-point element shown in figure 3.2-a has been used less frequently in
practice than the triangular version and this can be partially explained by the fact that fewer of
such elements can be conveniently placed around the crack tip and consequently the circumferential
variation of the stress and displacement fields about a crack tip may be less accurately represented
than in the triangular case. A note by Hibbitt [57] claimed that the strain energy of the quadrilateral
quarter-point element of figure 3.2-a was unbounded, but Ying [156] and Bank-Sills and Bortman
[6] proved that this assertion is not true. In [6], Bank-Sills and Bortman demonstrated that this
element has a square root singularity along all rays emanating from the crack tip, but only if the
element has a rectangular shape. Bank-Sills and Einav [7] showed that the singular stress region
is slightly larger for nine-noded quadrilateral elements, provided that the central node is suitably
positioned at a location on the diagonal between the crack tip and the far corner.

3.1.3 3D quarter-point elements

Three-dimensional quarter-point elements can be created by extruding the 2D forms along the
crack front. Barsoum [11] discussed the use of a collapsed 20-noded brick element as the natural
extension of the collapsed 8-noded quadrilateral element, considering straight-sided elements were
all three element faces are rectangles, as in figure 3.5-a.

Hussain et al. [58], Manu [90], and Koers [68] considered collapsed 20-noded elements with
curved crack fronts, see figure 3.5-b. Manu [90] gave constraints on node positioning that must be
observed to insure the proper square root singularity on all rays emanating from the crack front.
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a) b) c)

Figure 3.5: 3-dimensional 20-noded collapsed quarter-point element for straight crack fronts, figure
a), and for curved crack fronts, figure b). Figure c) depicts 3-dimensional 15-noded quarter-point
natural element.

Referring to notation of figure 3.5-b the constraints that have to be enforced read:

x1 = x4 = x12, x17 = x20, x5 = x8 = x16,
x10 = (x2 + x3)/2, x14 = (x6 + x7)/2, x9 = (x1 + x2)/4,
x11 = (x1 + x3)/4, x13 = (x5 + x6)/4, x15 = (x5 + x7)/4,

x18 = (−x1 + x2 − x5 + x6 + 2x17)/2, x19 = (−x1 + x3 − x5 + x7 + 2x17)/2
(3.5)

Similar conditions hold for the y and z coordinates of the nodes. The 15-noded natural wedge
element represented in figure 3.5-c is of pratical interest, where placement rules similar to those in
eq (3.5) have to be observed in order to show that the determinant of the Jacobian mapping matrix
is singular along the crack front. Koers [68] showed that if a 20-noded element is further collapsed
to a pyramid (see figure 3.6), a square root singularity is found along all rays emanating from the
collapsed node.

Bank-Sills [8] and Bank-Sills and Sherman [9] showed that in the hexahedral crack-front element
for a straight crack front, the square root singularity is reproduced on all rays emanating from the
crack front in each cross section perpendicular to the front if the nodes of such an element are placed
so that the element forms a rectangular parallelepiped. For circular crack front, they showed that
the square root behavior is observed in all planes perpendicular to the crack front provided that
the element edges on and parallel to the crack front are curved to form an arc of a circle.

The trapezoidal, straight-sided version of this element exhibits square root singularity only on
the element faces, not on all cross sections. Similarly, for the elliptical crack fronts, if the side faces
form hyperbolic surfaces locally normal to the front, then a square root singularity is observed on
all hyperbolic surfaces perpendicular to the crack front.

As intuition suggests, if the size of the crack front elements is small compared to the crack front
curvature, the difference in geometry between the circular and elliptical/hyperbolic elements and
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the trapezoidal approximation is small. The use of the trapezoidal elements is reasonable for the
more general case where an analytical description of the crack front shape is not available.

Figure 3.6: 20-noded brick element collapsed to a pyramid [68]

3.1.4 1D cubic order singular elements

The quarter-point singular mapping can be applied to cubic order isoparametric elements with
Lagrangian shape functions.

a) b)

Figure 3.7: 1D cubic order element: a) parametric coordinate ξ b) Cartesian coordinate x1.

The expression for the displacement in a 1D element as the linear combination of shape functions
ψi(ξ) and nodal unknowns ui results:

u =
4∑
i=1

ψi(ξ)ui =
1

16
(−1 + ξ + 9ξ2 − 9ξ3)u1 +

9

16
(1− 3ξ − ξ2 + 3ξ3)u2 +

+
9

16
(1 + 3ξ − ξ2 − 2ξ3)u3 +

1

16
(−1− ξ + 9ξ2 + 9ξ3)u4 (3.6)

If the locations of middle nodes are parametrized by α and β (see figure 3.7-b), the expression that
interpolates geometry within the element is:

x1 =
4∑
i=1

ψi(ξ)x1i =
9α b

16
(1− 3ξ − ξ2 + 3ξ3) +

+
9β l

16
(1 + 3ξ − ξ2 − 3ξ3) +

b

16
(−1− ξ + 9 ξ2 + 9ξ3)
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If α = 1
9 and β = 4

9 , such that ξ = 2
√
b x1
b − 1, displacement field gains a term proportional to x

3/2
1

with respect to the quadratic elements case and eq. (3.6) becomes:

u = u1 +

(
−11

2
u1 + 9u2 −

9

2
u3 + u4

) √
b x1

b
+

+ 9

(
u1 −

5

2
u2 + 2u3 −

1

2
u4

)
x1

b
+

9

2
(−u1 + 3u2 − 3u3 + u4)

x1

√
b x1

b2

Consequently, the strain field gains a term proportional to x
1/2
1 and has the following expression:

ε =
du

dx1
=

1

2

(
−11

2
u1 + 9u2 −

9

2
u3 + u4

)
1√
b x1

+

+ 9

(
u1 −

5

2
u2 + 2u3 −

1

2
u4

)
1

b
+

27

4
(−u1 + 3u2 − 3u3 + u4)

x1

b
√
b x1

The near crack tip strain field admits the following series expansion in powers of x1:

ε =
B1√
x1

+
+∞∑
i=1

Bi x
(i−1)/2
1 (3.7)

and additional terms in expansion (3.7) can be obtained using elements with higher order basis
functions.

3.1.5 2D cubic order singular elements

Consider the parametric and Cartesian description of a cubic 10-noded triangular element shown
in figure 3.8.

a) b)

Figure 3.8: 10-noded two dimensional element: a) parametric coordinates b) Cartesian coordinates.

The corresponding nodal coordinates are given in table 3.1.
In order to demonstrate that element depicted in figure 3.8-b is capable of representing a radial

displacement variation of the form:

u(r) =
3∑
i=0

ai r
i/2 (3.8)
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Node ξ η x y

1 0 0 0 0

2 1 0 b -α b

3 0 1 b α b

4 1/3 0 b/9 -α b/9

5 2/3 0 4 b/9 -α 4 b/9

6 2/3 1/3 b -α b/3

7 1/3 2/3 b α b/3

8 0 2/3 4 b/9 α 4b/9

9 0 1/3 b/9 α b/9

10 1/3 1/3 4 b/9 0

Table 3.1: Parametric and Cartesian coordinates of 10-noded two dimensional triangular element

the Cartesian realization of the element is chosen to be symmetric about the x axis. This simplifies
subsequent expressions without losing the generality of the results. The shape functions for this
element are:

ψ1 = 1− 11

2
ξ − 11

2
η + 9 ξ2 + 18 ξ η + 9 η2 − 9

2
ξ3 − 27

2
ξ2 η − 27

2
ξ η2 − 9

2
η3,

ψ2 = ξ − 9

2
ξ2 +

9

2
ξ3,

ψ3 = η − 9

2
η2 +

9

2
η3,

ψ4 = 9 ξ − 45

2
ξ2 − 45

2
ξ η +

27

2
ξ3 + 27 ξ2 η +

27

2
ξ η2,

ψ5 = −9

2
ξ + 18 ξ2 +

9

2
ξ η − 27

2
ξ3 − 27

2
ξ2 η,

ψ6 = −9

2
ξ η +

27

2
ξ2 η,

ψ7 = −9

2
ξ η +

27

2
ξ η2,

ψ8 = −9

2
η +

9

2
ξ η + 18 η2 − 27

2
ξ η2 − 27

2
η3,

ψ9 = 9 η − 45

2
ξ η − 45

2
η2 +

27

2
ξ2 η + 27 ξ η2 +

27

2
η3,

ψ10 = 27(ξ η − ξ2 η − ξ η2) (3.9)

Consider for example a ray starting at node 1 and extending along the bottom of the element where
λ = 0 and θ = tan−1(−α). The distance r can be expressed as:

r =
√
x2 + y2 (3.10)

with

x =

10∑
i=1

ψi(ξ, η)xi,

y =
10∑
i=1

ψi(ξ, η) yi (3.11)
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Substituting ξ = λ and η = 0 into eq. (3.11) along with the x and y nodal coordinates from table
3.1, yields expressions for x and y in terms of λ. Eq. (3.10) becomes:

r = λ2 b
√

1 + α2

whence

λ =

√
r

b
√

1 + α2
(3.12)

The general expression for the interpolated displacement u in the element:

u =

10∑
i=1

ψi(ξ, η) ui

becomes

u(λ) =

10∑
i=1

ψi(λ, 0) ui (3.13)

along the ray under consideration. Substitution of eq. (3.12) into (3.13), and evaluation of the
resulting shape functions (3.9) gives:

u(r) = u1 +
1

2

√
r

b
√

1 + α2
(−22 u1 + 2 u2 + 18 u4 − 9 u5) +

+
1

2

r

b
√

1 + α2
(18 u1 − 9u2 − 45 u4 + 36 u5) +

+
1

2

(
r

b
√

1 + α2

)3/2

(−9 u1 + 9 u2 + 27 u4 − 27 u5)

The same procedure can be adopted to demonstrate the behavior of displacement field of type
(3.8) for each ray emanating from the crack tip. Similar results hold for non-symmetric geometries
of the element with respect to the x axis, but the resulting expressions for u(r) become more
complicated.

3.1.6 3D cubic order singular elements

A three dimensional triangular prism shaped cubic order element is represented in figure 3.9. The
element has 30 nodes, as it implements cubic order displacement variations within triangular cross
sections and quadratic order displacement variations along the axis of the element. Four of the
nodes on quadrilateral face away from the crack front are constrained and statically condensed
in order to make the element compatible with contiguous quadratic order hexahedral elements.
Parametric and Cartesian coordinates of such an element are detailed in table 3.2. Referring to
figure 3.9-a the element is comprised of three “layers” of 10-nodes in a triangular arrangement. The
shape functions for any triangular layer are [133]:
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a) b)

Figure 3.9: 30-noded three dimensional element: a) parametric coordinates b) Cartesian coordinates.

L1 = 1− 11

2
(ξ − η) + 9(ξ2 + η2) + 18ξη − 9

2
(ξ3 + η3)− 27

2
(ξ2η + ξη2),

L2 = ξ − 9

2
(ξ2 + ξ3),

L3 = η − 9

2
(η2 + η3),

L4 = 9ξ − 45

2
(ξ2 + ξη) +

27

2
(ξ3 + ξη2) + 27ξ2η,

L5 =
9

2
(−ξ + ξη) + 18ξ2 − 27

2
(ξ3 + ξ2η),

L6 = −9

2
ξη +

27

2
ξ2η,

L7 = −9

2
ξη +

27

2
ξη2,

L8 =
9

2
(−η + ξη) + 18η2 − 27

2
(ξη2 + η3),

L9 = 9η − 45

2
(ξη + η2) +

27

2
(ξ2η + η3) + 27ξη2,

L10 = 27(ξη − ξ2η − ξη2)

The triangular shape functions are multiplied by quadratic Lagrange polynomials to obtain the 3D
shape functions:

ψi =
1

2
Li(ζ

2 − ζ), ψi+10 = Li(1− ζ2), ψi+20 =
1

2
Li(ζ

2 + ζ), i = 1, ..., 10

To make the element compatible with conventional quadratic order elements, the following rela-
tionships between the displacements u of nodes in figure 3.9-a and displacements ū of nodes in
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Node ξ η ζ x y z

1 0 0 -1 0 0 0

2 1 0 -1 b -1/2 a 0

3 0 1 -1 b 1/2 a 0

4 1/3 0 -1 1/9 b -1/18 a 0

5 2/3 0 -1 4/9 b -2/9 a 0

6 2/3 1/3 -1 b 0 0

7 1/3 2/3 -1 4/9 b 2/9 a 0

8 0 2/3 -1 1/9 b 1/18 a 0

9 0 1/3 -1 4/9 b 0 0

10 1/3 1/3 -1 0 0 1/2 c

11 0 0 0 b -1/2 a 1/2 c

12 1 0 0 b 1/2 a 1/2 c

13 0 1 0 1/9 b -1/18 a 1/2 c

14 1/3 0 0 4/9 b -2/9 a 1/2 c

15 2/3 0 0 4/9 b 2/9 a 1/2 c

16 2/3 1/3 0 1/9 b 1/18 a 1/2 c

17 1/3 2/3 0 4/9 b 0 1/2 c

18 0 2/3 0 0 0 c

19 0 1/3 0 b -1/2 a c

20 1/3 1/3 0 b 1/2 a c

21 0 0 1 1/9 b -1/18 a c

22 1 0 1 4/9 b -2/9 a c

23 0 1 1 b 0 c

24 1/3 0 1 4/9 b 2/9 a c

25 2/3 0 1 a/9 b 1/18 a c

26 2/3 1/3 1 4/9 b 0 c

27 1/3 2/3 1 - - -

28 0 2/3 1 - - -

29 0 1/3 1 - - -

30 1/3 1/3 1 - - -

Table 3.2: Parametric and Cartesian coordinates of 30-noded three dimensional element of figure
3.9

figure 3.9-b, are written:

u1 = ū1, u2 = ū2, u3 = ū3, u4 = ū4,
u5 = ū5, u8 = ū7, u9 = ū8, u10 = ū9,

u11 = ū10, u12 = ū11, u13 = ū12, u14 = ū13,
u15 = ū14, u18 = ū15, u19 = ū16, u20 = ū17,
u21 = ū18, u22 = ū19, u23 = ū20, u24 = ū21,
u25 = ū22, u28 = ū24, u29 = ū25, u30 = ū26,
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u6 =
2

9
ū2 −

1

9
ū3 +

8

9
ū6,

u7 = −1

9
ū2 +

2

9
ū3 +

8

9
ū6,

u16 =
2

9
(ū2 + ū3 + ū19 + ū20) +

4

9
(ū6 + ū23) +

2

3
ū11 +

1

3
ū12,

u17 =
2

9
(ū2 + ū3 + ū19 + ū20) +

4

9
(ū6 + ū23) +

1

3
ū11 +

2

3
ū12,

u26 =
2

9
ū19 −

1

9
ū20 +

8

9
ū23,

u27 = −1

9
ū19 +

2

9
ū20 +

8

9
ū23

Numerical computation of the 3/2 order term of the crack opening and sliding expansion
Geometrical description of a crack accounts for two boundaries S+, S− which model the lips of the
crack (see figure 3.10).

a) Geometry b) Static

Figure 3.10: Definitions

At each “time” t, two one-to-one applications u+, u− between the reference surface S and S+,
S− are set, such that:

∀x+(t) ∈ S+ ∃! x ∈ S : u+(t) = x+(t)− x

∀x−(t) ∈ S− ∃! x ∈ S : u−(t) = x−(t)− x

with the property that at initial time t = 0:

u+(0) = u−(0) = 0

The displacement discontinuity w(x, t), also referred as “relative opening and sliding”, is defined
as:

w(x, t) = u+(t)− u−(t) (3.14)

On both S+, S− outwards normals, say n+, n− are well defined. The hypothesis of small displace-
ments implies:

n+ = −n−
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In each point x of the crack surface S, the normal component of crack opening defined as in eq.
(3.14) at time t, indicated with w(x, t), admits an expansion in the normal plane in terms of the
distance to the crack front r [54]:

w(x, t) =
+∞∑
n=0

Ξn(s, t) rn
√
r (3.15)

where s indicates as usual the curvilinear abscissa along the crack front F .
3D cubic order singular elements depicted in figure 3.9 have been implemented in a finite element

code in order to test the accuracy in the computation of the Ξ1(s, t) term defined in eq. (3.15).
Consider the benchmark of a circular crack with radius a = 10 in an infinite domain ( such an

approximation has been obtained in the finite element framework embedding the circular crack in a
cylindrical domain with radius 10 times greater than a and height 20 times greater than a), subject
to uniform tractions applied over the full crack faces with magnitude equal to the load factor κ,
chosen with a unit value, as in figure 3.11.

Figure 3.11: Penny shape crack of radius a(t) in an infinite linear elastic homogeneous domain
subject to uniform tractions κ.

Analytical solution of the crack opening w(x, t) for the problem at hand reads [54]:

w(x, t) =
4(1− ν)

µπ
κ
√
a2(t)− (a(t)− r(x, t))2 (3.16)

whence

Ξ0(t) =
4κ
√

2 a(t)(1− ν)

µπ
, Ξ1(t) = −κ

√
2(1− ν)√
a(t)µπ

(3.17)

where ν is the Poisson’s ratio and µ is the shear modulus of the bulk material. Considering
fictitious values for material parameters, namely Young’s modulus E = 100 and ν = 0.3, graph
3.12 represents the obtained results for w(x, t), where FEmin, FEmax, and FEmean refer to
the minimum, to the maximum, and to the average value, respectively, obtained along the crack
front in the finite element analysis.

Assume that the crack opening w is:

w(x, t) = a1

√
r

b
+ a2

r

b
+ a3

r

b

√
r

b
(3.18)
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Figure 3.12: Crack opening w(x, t) with respect to the distance from the crack front r. Continuous
and dashed lines refer to the analytical values for Ξ0 and Ξ1 (3.17). Symbols refer to the finite
element analysis results, exploiting cubic order 3D elements represented in figure 3.9.

where b is the crack front element size (see figure 3.9-b), equal to 1/3 in this finite element analysis.
Evaluating (3.18) at the two side nodes and one corner node location, the following system is
obtained: 

1/3 1/9 1/27
2/3 4/9 8/27
1 1 1




a1

a2

a3

 =


w1

w2

w3


which gives coefficients:

FEmin FEmax FEmean

a1 5.65E − 05 6.02E − 05 5.84E − 05

a2 2.90E − 06 −1.25E − 06 7.87E − 07

a3 −1.45E − 06 −1.03E − 07 −7.97E − 07

and correspondent percentage errors on values of Ξ0 and Ξ1 with respect to the analytical values
(3.17):

%(Analytical − FEmin) %(Analytical − FEmax) %(Analytical − FEmean)

Ξ0 5.61 −0.59 2.39

Ξ1 −30.38 90.80 28.49

Even if all the values of the crack opening w computed with the FEM are within a small percent-
age of error (5%) with respect to the analytical solution (3.16), and the Ξ0 values determined from
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fitting the FE displacements show similar level of accuracy, the errors in the Ξ1 values are almost
one order of magnitude greater. In addition, values of Ξ1 result much more sensitive with respect
to the values of Ξ0 to small variations in the FE displacements, being orders of magnitude smaller
than Ξ0. The near crack front crack opening behavior is dominated by the square root term Ξ0, as
proved in figure 3.12. Consequently it appears that extracting high quality Ξ1 terms is not possible
exploiting displacements from the crack front elements only, at least for models where the ratio
between the crack front elements size and the crack radius b/a is of order 1/10 (in the presented
analysis b/a = 1/30). Larger crack front elements might increase the significance of the 3/2 term,
but the quality of the computed SIFs would likely decrease.

Pursuing the idea to not exploit crack front elements only, consider the component uy of theo-
retical near front displacement field expressed as the Williams expansion [66]:

uy =
+∞∑
n=1

rn/2

2µ
an

[(
3− 4ν − n

2
− (−1)n

)
sin

nθ

2
− n

2
sin
(n

2
− 2
)
θ

]
(3.19)

where {r, θ} are, as usual, the local polar coordinates in each point along the crack front. Matching
eq.(3.19) and (3.15) for the 1/2 and 3/2 terms, one obtains:

uy(n = 1, θ = π) =
r1/2

2µ
a1(4− 4 ν) = Ξ0 r

1/2

uy(n = 3, θ = π) =
r3/2

2µ
a3(−4 + 4 ν) = Ξ1 r

3/2

whence

Ξ0 = a1
2(1− ν)

µ
, Ξ1 = a3

2(ν − 1)

µ

Extracting displacements from the crack front cubic-order singular wedge elements and two rings
of brick elements surrounding the crack front, and deriving coefficients a1 and a3 of eq. (3.19) using
a least square fit, one obtains:

%(Analytical − FEmin) %(Analytical − FEmax) %(Analytical − FEmean)

Ξ0 1.42 2.39 2.01

Ξ1 18.40 1.29 2.58

Numerical approximation of the 3/2 order coefficient Ξ1 of the crack opening expansion (3.15)
reaches a percentage difference with respect to the analytical solution (3.17) less then 3% for the
mean value. The same procedure using standard quarter-point wedge elements represented in figure
3.5 leads to the following results:

%(Analytical − FEmin) %(Analytical − FEmax) %(Analytical − FEmean)

Ξ0 5.61 −0.59 2.39

Ξ1 −10.21 3.49 7.67

3.2 eXtended Finite Element Method

The use of singular elements described in Section 3.1 forces to reconstruct a new finite element mesh
each time a crack is propagated in order to match the geometry of the discontinuity. The eXtended
Finite Element Method (XFEM) avoids such remeshing operations enhancing the displacement field
by means of additional degrees of freedom which are added to the existing nodes of the finite element
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mesh. A crack can therefore be extended during the simulation at any time and in any direction by
adding new degrees of freedom leaving the number of nodes and elements within the mesh unaltered,
as well as their mutual connectivity. The method exploits a property of the standard finite element
shape functions that has been acknowledged in the seminal paper of Babus̆ka and Melenk [5],
in conjunction with a discontinuous mode and the near-tip asymptotic fields incorporated at the
element level presented by Moës et al. [97]. The method is briefly described in the following Sections
for a 2D crack. Specifically, the case of an internal line across which the displacement filed may be
discontinuous is considered. Moës et al. [98] applied the method for fractures in three-dimensional
specimens.

3.2.1 Problem formulation

Consider the domain Ω ∈ R2 bounded by Γ ≡ ∂Ω. The boundary Γ is composed by Γu , Γp, and
S, such that Γ = Γu + Γp + S. The domain is crossed by the discontinuity S and the two resulting
part of the domain are denoted by Ω+ and Ω− as depicted in figure 3.13. Prescribed displacements
ū are imposed on Γu while tractions p̄ are imposed on Γp. The crack surface S is assumed to be
traction-free.

Figure 3.13: A domain Ω is crossed by a discontinuity S that divides the domain in two parts
denoted with Ω+ and Ω−, respectively.

The equilibrium equations and boundary conditions are:

div [σ ] + f = 0 in Ω

σ n = p̄ on Γp (3.20a)

Since the discontinuity S can be considered as an internal boundary, the following traction-free
conditions can be added to equations (3.20a):

σ n = 0 on S+

σ n = 0 on S− (3.20b)

where σ is the Cauchy stress, f is the body force vector per unit volume and n is the outward
normal pointing into Ω+, see figure 3.13. In the hypothesis of small strains and displacements, the
kinematics equations consist of the strain displacement relation:

ε = ε(u) = ∇su (3.20c)

where ∇s is the symmetric part of the gradient operator, and the boundary condition:

u = ū on Γu (3.20d)
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The constitutive equation is given by the Hooke’s law:

σ = C : ε (3.20e)

where C is the Hooke tensor.

Weak form
In order to write the weak form of the problem formulation (3.20), the space of admissible displace-
ment fields is defined by:

U = {v ∈ V : v = ū on Γu, v discontinuous on S} (3.21)

where the space V is related to the regularity of the solution. It suffices to point out here that it
allows for discontinuous functions across the crack line. The test function space is similarly defined
as :

U0 = {δu ∈ V : δu = 0 on Γu, δu discontinuous on S} (3.22)

The weak form of the equilibrium equations is given by:∫
Ω
σ : ε(δu) dΩ =

∫
Ω

f · δu dΩ +

∫
Γp

p̄ · δu dΓ ∀δu ∈ U0 (3.23)

By means of the constitutive relation (3.20e) and the kinematics constraints in the weak form, the
problem is to find u ∈ U such that:∫

Ω
ε(u) : C : ε(δu) dΩ =

∫
Ω

f · δu dΩ +

∫
Γp

p̄ · δu dΓ ∀δu ∈ U0 (3.24)

It is shown in [15] that eq. (3.24) is equivalent to strong form (3.20a), if one includes the traction-
free conditions (3.20b) on the two crack faces.

Enrichment of the displacement field
Incorporating the displacement jump in the analytical displacement field before performing the
spatial discretization of the model, makes the discontinuity truly a part of the boundary value
problem and avoids mesh dependent solutions. A way to introduce a discontinuity in a continuous
and smooth displacement field is presented by Belytschko and Black [15] and consists in adding
a second displacement field multiplied by a step function to the existing displacement field. Fur-
thermore, as described by Moës et al. [97], the near-tip asymptotic fields are incorporated in the
displacement field in order to properly take into account the presence of a crack tip in the LEFM
framework. The total displacements field u consists of a continuous regular field û and two addi-
tional continuous displacements fields ŭ and ũ multiplied by the step function and by the near-tip
asymptotic fields, respectively:

u(x, t) = û(x, t) +HS(x) ŭ(x, t) + F(x) ũ(x, t) (3.25)

HS is a function which is constant on either side of the discontinuity:

HS =

{
H+ if x ∈ Ω+

H− if x ∈ Ω−
(3.26)

The magnitude of the displacement jump h is equal to the magnitude of the additional field ŭ
exactly at the discontinuity:

h = H+ −H− (3.27)
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Jump function H+ H− h

Heaviside 1 0 1
Symmetric 1/2 -1/2 1
Unit Symmetric 1 -1 2

Table 3.3: An overview of different step functions HS that can be used to create a jump in the
displacement field.

An overview of possible step functions is given in table 3.3.
Matrix F in eq.(3.25) contains the asymptotic near-tip fields defined as:

{Fl(r, θ)} =

{√
rsin

(
θ

2

)
,
√
rcos

(
θ

2

)
,
√
rsin

(
θ

2

)
sin(θ),

√
rcos

(
θ

2

)
sin(θ)

}
(3.28)

where {r, θ} are the local polar coordinates at the crack tip. Note that the first function in (3.28),
namely

√
rsin (θ/2), is discontinuous across the crack faces whereas the last three functions are

continuous. The strain field is found by taking the derivative of the displacement field (3.25) with
respect to the position in the body x:

ε(x, t) = ∇sû(x, t) +HS∇sŭ(x, t) +∇s(F(x)ũ(x, t)) x 6∈ S (3.29)

Assuming zero body forces, weak form (3.23) becomes:∫
Ω
σ : ∇sû dΩ +

∫
Ω
HS σ : ∇sŭ dΩ +

∫
Ω
σ : ∇s(Fũ) dΩ =∫

Γp
p̄ · û dΓ +

∫
Γp
HS p̄ · ŭ dΓ +

∫
Γp

p̄ · Fũ dΓ (3.30)

where the first term on the left hand side of equation (3.30) describes the internal forces in the body
due to the regular displacement field, whereas the second and the third term represent the internal
forces due to the additional displacement fields. The right hand side of the equation contains terms
related to prescribed tractions imposed on the external boundary of the domain.

3.2.2 Finite element formulation

As usual in the finite element formulation, the domain Ω is divided into a number of elements with
finite volume ω, which are supported by nodes as depicted in figure 3.14.

It was shown in [5] that when a field f(x, t) is not continuous, it can be still discretized using
the finite element shape functions ψi(x) in combination with an enhanced basis function exploiting
the partition of unity property of the finite element shape functions, namely:

f(x, t) =

nnod∑
i=1

ψi(x)

ai(t) +

m∑
j=1

γj(x) bij(t)

 (3.31)

where nnod is the number of the mesh nodes, ai(t) are the regular degrees of freedom, γj(x) is an
enhanced basis with m orthogonal terms and bij(t) are the additional nodal degrees of freedom that
support the enhanced basis functions. Shape function associated with node i is equal to 1 in node
i and 0 in all other nodes; additionally the set of shape functions possesses the already mentioned
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Figure 3.14: Subdivision of the domain Ω into finite elements supported by nnod nodes. Element I
is a regular element with integration volume ω. Element II is crossed by a discontinuity, which can
be considered as an internal boundary Sω. The integration domain is split into two parts: ω+ and
ω−. Element III contains the crack tip.

partition of unity property, which implies that the sum of all shape functions in an arbitrary point
x of the domain is equal to 1:

nnod∑
i=1

ψi(x) = 1 ∀x ∈ Ω

The part of the domain for which the magnitude of the shape function of node i is non zero is
called the support of the node. In the case of standard isoparametric shape functions, the support
of a node is identical to the compact set of elements attached to that node. Number m of enhanced
basis functions may be different for each node i in the model. However, in order to avoid linear
dependency, the enhanced basis γj and the shape functions ψi may not originate from the same
span of functions.

In this case of a single discontinuity in LEFM framework, the discrete displacement field uh

becomes:

uh(x, t) =

nnod∑
i=1

ψi(x)

(
ai(t) +HS (x)bi(t) +

4∑
l=1

Fl(x) cli(t)

)
(3.32)

where ai(t) are the regular degrees of freedom, while bi(t) and cli(t) are the additional degrees of
freedom of node i. Alternatively, the discrete displacement field uh in (3.32) can be cast in the
following matrix form for a single element:

uh = N a +HSN b + N F c (3.33)

where matrix N contains the shape functions for all the nodes that support this element, and a,b
and c are the vectors of the regular and additional degrees of freedom.

The strain field in matrix form, obtained by differentiating the discrete displacement field (3.33)
with respect to x, reads:

εh = B a +HS B b + G c x 6∈ S (3.34)



CHAPTER 3. NUMERICAL APPROXIMATION OF SIFS 50

where:

B = ∇sN
G = ∇s(N F) (3.35)

Admissible test functions δu can be decomposed in a regular and additional fields as the actual
displacement field (3.25):

δu(x) = δû +HS δŭ + Fδũ

According to discretization (3.33):

δûh = N δa; δŭh = N δb; F δũh = N F δc;

∇sδûh = B δa; ∇sδŭh = B δb; ∇s(F δũh) = G δc; (3.36)

Inserting these relations into equilibrium equation (3.30), yields the discetized equilibrium equation
in weak form for a single element:∫

ω
(B δa)Tσ dω +

∫
ω
HS (B δb)Tσ dω +

∫
ω
(G δc)Tσ dω =∫

γp
(N δa)T p̄ dγ +

∫
γp
HS(N δb)T p̄ dγ +

∫
γp

(N Fδc)T p̄ dγ (3.37)

where γp is the Neumann elemental boundary. By taking one of the admissible variations δa, δb,
and δc at the time, the weak form of the equilibrium can be separated into three sets of equations:∫

ω
BTσ dω =

∫
γp

NT p̄ dγ∫
ω
HSBTσ dω =

∫
γp
HSNT p̄ dγ∫

ω
GT σ dω =

∫
γp

(N F)T p̄ dγ (3.38)

The first equation is related to the regular degrees of freedom of the element, which is identical to
the equilibrium equation for an element without a discontinuity. As a result, it is possible to add a
discontinuity to an element during the calculations by adding the additional equilibrium relations
and the corresponding degrees of freedom b or c.

Assume a linear elastic and rate independent constitutive relation for the material1, namely:

σ = Cε = C(B a +HS B b + G c) (3.39)

Differentiating system (3.38) with respect to the displacement variables a, b, and c, in the small
strain formulation only the stress field in the bulk material σ is a function of the discrete displace-
ment terms, according to:

∂σ

∂a
= CB,

∂σ

∂b
= HS CB,

∂σ

∂c
= CG (3.40)

1This is not a limitation of the formulation and in general any material law can be used to model the behavior of
the bulk material.
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Using relations (3.40), the system of equations (3.38) reads: K̃aa K̃ab K̃ac

K̃ba K̃bb K̃bc

K̃ca K̃cb K̃cc

 a
b
c

 =

 f exta

f extb

f extc

 (3.41)

where the terms in the elemental stiffness matrix are:

K̃aa =

∫
ω

BTCB dω

K̃ab = K̃ba =

∫
ω
HS BTCB dω

K̃bb =

∫
ω
HS HS BTCB dω

K̃ac = K̃T
ca =

∫
ω

BTCG dω

K̃bc = K̃T
cb =

∫
ω
HSBTCG dω

K̃cc =

∫
ω

GTCG dω (3.42)

Note that if the tangent matrix C is symmetric, symmetry of the submatrices K̃aa, K̃ab, K̃bb, K̃ac,
K̃bc and K̃cc is preserved. Consequently, the total stiffness matrix also remains symmetric. Finally,
the expression of the elemental external forces is:

f exta =

∫
γp

NT p̄ dγ

f extb =

∫
γp
HSNT p̄ dγ

f extc =

∫
γp

(N F)T p̄ dγ (3.43)

Governing equations (3.42) and (3.43) have been derived in the most general way and can be im-
plemented in any kind of continuum element as long as the underlying shape functions obey the
partition of unity property. The partition of unity also has the desirable feature that the finite
element equations retain the sparsity properties of the original mesh.

Implementation aspects
The XFEM treats the crack as a completely separate geometric entity and the only interaction
with the mesh occurs in the selection of the enriched nodes and the quadrature of the weak form.
In the following, criteria for selecting the enriched nodes for an arbitrary mesh and crack geometry
are given. In terms of enrichment with the jump function HS , the following convention is adopted:
a node is enriched if its support is cut by the crack into two disjoint pieces. In fact, when the
support of a node is not crossed by the discontinuity, the enhancement function is constant and
belong to the same span of functions as the finite element shape functions. This is in violation with
the requirement of the partition of unity method that the shape function and the enhanced base
must be linear independent [5].

In the general case where the crack tip doesn’t coincide with an element edge, the nodes whose
support contains the crack tip are enriched with the near tip asymptotic functions {Fl(x)} (3.28).
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Figure 3.15: 2D crack (bold line) in a uniform mesh. The circled black nodes are enriched by the
jump function HS , while the squared white nodes are enriched by the crack tip functions. Grey
elements contains additional terms in the stiffness matrix.

Different kinds of enrichment are represented in figure 3.15. Therefore any node whose support
is intersected by the crack is enriched by a discontinuous function, either of type HS or of type
{Fl(x)} such that the displacement is allowed to be discontinuous along the full extent of the crack.
Sets of nodes enriched with the {Fl(x)} functions can be enlarged in order to include all nodes
within a characteristic distance from the associated crack tip, in which region the asymptotic near
tip fields are assumed to dominate the solution. In this regard, one can distinguish between a topo-
logical and a geometrical enrichment. In the topological enrichment only the nodes whose support
is touching the crack tip are enriched. As a matter of fact, the topological enrichment is active
over an area which vanishes to zero as the mesh size goes to zero. In the geometrical enrichment
instead, all nodes located within a given distance to the crack tip are enriched, leading to higher
order of convergence between exact (σ,u) and approximate (σh,uh) fields.

For what regards the numerical integration of the weak form (3.30), for elements cut by the
crack and enriched with the jump function HS , a modification of the element quadrature routine
is necessary in order to accurately assemble the contribution to the weak from on both sides of
the discontinuity where the integrated field is continuous. As the crack is allowed to be arbitrarily
oriented in an element, the use of standard Gauss quadrature may not adequately integrate the
discontinuous field. For elements cut by the crack, the element domain ω is defined as the sum of
a set of subpolygons ωs whose boundaries align with the crack geometry, see figure 3.16:

ω =
∑
s

ωs

Such subpolygons are only necessary for integration purposes, no additional degrees of freedom
are associated with their construction.

3.3 Numerical approximation of SIFs

As already stressed, extraction of accurate SIFs K = {K1,K2,K3} from the finite element results
is of primary relevance in LEFM for evaluation of displacement, stress, and strain fields in the
near crack front region. Techniques for extracting SIFs can be divided into two categories: direct
approaches, which directly relate the SIFs with results of the finite element analysis, and energetic



CHAPTER 3. NUMERICAL APPROXIMATION OF SIFS 53

Figure 3.16: Numerical integration scheme of quadrilateral elements crossed by the crack (bold
line). Sample points are denoted with +. The element on the left is split into a sub-element with
five vertices and one with three vertices. The first part is triangulated into five parts, denoted by
dashed lines. Each triangle can be integrated using a standard 1 point Gauss integration scheme.
The element on the right is split into two quadrilateral sub-elements and each of them can be
integrated with a standard 2× 2 Gauss integration scheme.

approaches, generally more accurate than the direct ones, for which computation of the energy
release rate is demanded. In the following, four different techniques to compute SIFs are described:
displacement correlation technique, which has to be classified as a direct approach, and virtual
crack extension method, modified crack closure integral and J-integral (and the relative interaction
integral version), which on the contrary have to be classified as energetic approaches. Some of them
rely on William’s solution [150] for stress and displacement fields in the vicinity of each point along
the crack front, that, referring to a local Frenet frame {x1, x2, x3} and a polar coordinate system
{r, θ} as the ones in figure 3.17, have the form:

σ11

σ22

σ12

σ13

σ23

 =
1√
2π r

K1 cos
θ

2



(
1− sin θ

2 sin 3θ
2

)(
1 + sin θ

2 sin 3θ
2

)
sin θ

2 cos 3θ
2

0
0



+
1√
2π r

K2


− sin θ

2

(
2 + cos θ2 cos 3θ

2

)
sin θ

2 cos θ2 cos 3θ
2

cos θ2
(
1− sin θ

2 sin 3θ
2

)
0
0

+
1√
2π r

K3


0
0
0

− sin θ
2

cos θ2

 (3.44)

and

σ33 =

{
ν(σ11 + σ22) plane strain

0 plane stress


u1

u2

u3

 =
K1

µ

√
r

2π

1

4


(2k − 1) cos θ2 − cos 3θ

2

(2k + 1) sin θ
2 − sin3θ

2
0

+
K2

µ

√
r

2π

1

4


(2k + 3) sin θ

2 + sin 3θ
2

−(2k − 3) cos θ2 − cos 3θ
2

0

+

+
K3

µ

√
2 r

π


0
0

sin θ
2

 (3.45)

where µ is the shear modulus and k = 3 − 4ν for plane strain and k = (3 − ν)/(1 + ν) for plane
stress, being ν the Poisson’s ratio.
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Figure 3.17: Local Frenet frame {x1, x2, x3} and polar coordinate system {r, θ} in each point along
the crack front F of a three dimensional crack.

3.3.1 Displacement correlation technique

Displacement correlation technique is one of the simplest method used to extract SIFs from finite
element results [27]. It relies on the form of the theoretical asymptotic displacement field u =
{u1; u2; u3} (3.45). Referring to the two dimensional representation of figure 3.18-a, the finite
element displacements for one point in the mesh, that usually is selected to be a node on the
crack face, are substituted directly into the analytical expression (3.45), after subtracting the
displacements of the crack tip, obtaining the following expression for SIFs:

K1 =
2µ
√

2π(u2(B)− u2(A))√
r(B)(k + 1)

K2 =
2µ
√

2π(u1(B)− u1(A))√
r(B)(k + 1)

K3 =
µ
√
π(u3(B)− u3(A))√

2r(B)

a) b)

Figure 3.18: Displacement correlation technique: correlation points location for a non singular
element (a), and for quarter-point element (b).

Despite its simplicity and inherent separation of SIFs, accuracy of the displacement correlation
technique depends on the choice of the correlation point B which needs to be selected in the zone
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where the K fields dominate and for this purpose highly refined meshes are usually required around
the crack front.

For the 2D case, using the quarter-point crack tip elements described in Section 3.1.2, the finite
element crack opening displacement along the crack face deriving from the quarter-point element
interpolation (3.3) are (see figure 3.18-b):

uupper2 − ulower2 = [ 4(u2(B)− u2(D)) + u2(E)− u2(C) ]

√
r

b
+

+ [ 4(u2(B)− u2(D)) + 2(u2(C)− u2(E)) ]
r

b

uupper1 − ulower1 = [ 4(u1(B)− u1(D)) + u1(E)− u1(C) ]

√
r

b
+

+ [ 4(u1(B)− u1(D)) + 2(u1(C)− u1(E)) ]
r

b

The square root term of the finite element crack opening displacement has then to be substituted
into the analytical crack tip displacement field (3.45) to yield:

K1 =
µ
√

2π√
b(k + 1)

[ 4(u2(B)− u2(D)) + u2(E)− u2(C)]

K2 =
µ
√

2π√
b(k + 1)

[ 4(u1(B)− u1(D)) + u1(E)− u1(C)]

Similar expressions are given by Ingraffea and Manu [61] for 3D configurations.

3.3.2 Modified crack closure integral technique

The modified crack closure integral was originally proposed by Rybicki and Kanninen for the 2D
case [113] exploiting Irwin’s crack closure integral that relates the energy release rate to the crack
tip stress and displacement fields for a small crack increment ∆l (see figure 3.19-a). Irwin’s crack
closure integral means that if a crack extends by a small amount ∆l, the energy absorbed in the
process is equal to the work required to close the crack to its original length:

G1 = lim
∆l→0

1

2∆l

∫ ∆l

0
σ22(r = x1, θ = 0)u2(r = ∆l − x1, θ = π) dr

G2 = lim
∆l→0

1

2∆l

∫ ∆l

0
σ12(r = x1, θ = 0)u1(r = ∆l − x1, θ = π) dr

(3.46)

Finite element equations can be used to relate the crack tip stress to the internal finite element forces
near the crack tip, so that eq. (3.46) can be expressed in terms of nodal forces and displacements.
Linear displacement finite elements are used in the case discussed by Rybicki and Kanninen [113]
for which the expression for the energy release rate G is very simple. Referring to notation used
in figure 3.19-b, one analysis can be performed to compute the internal nodal force at the crack
tip f2(C). The crack is then extended and a second analysis yields nodal displacements u(C) and
u(D) reducing eq. (3.46) to:

G1 =
1

2∆l
f2(C)(u2(C)− u2(D)), G2 =

1

2∆l
f1(C)(u1(C)− u1(D))
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a) b) c)

Figure 3.19: a) Crack closure integral notation. Local mesh configuration exploited in the modi-
fied crack closure integral technique: first analysis before elongation (b), and second analysis after
elongation (c).

Nevertheless, if ∆l is sufficiently small, displacements at nodes C and D in figure 3.19-c can be
approximated by those at nodes A and B of figure 3.19-b avoiding the necessity of a second finite
elements analysis, leading to the following expression for the energy release rate:

G1 =
1

2∆l
f2(C)(u2(A)− u2(B)), G2 =

1

2∆l
f1(C)(u1(A)− u1(B))

SIFs can then be computed from Irwin’s formula [62]:

K1 =
√
G1E, K2 =

√
G2E (3.47a)

for plane stress and

K1 =

√
G1E

(1− ν2)
, K2 =

√
G2E

(1− ν2)
(3.47b)

for plane strain case.
The modified crack closure integral procedure has been extended for the higher order element

case. Its formulation for quarter-point elements [111] leads to the expression of the crack tip
displacement and stress fields in terms of second order polynomials that are consistent with the
quarter-point behavior. Referring to the notation of figure 3.20, the resulting expression for G after
integration of eq. (3.46) reads:

G1 =
1

2∆l
[(c11f2(E) + c12f2(F ) + c13f2(G))(u2(C)− u2(D)) +

+ (c21f2(E) + c22f2(F ) + c23f2(G))(u2(A)− u2(B))]

G2 =
1

2∆l
[(c11f1(E) + c12f1(F ) + c13f1(G))(u1(C)− u1(D)) +

+ (c21f1(E) + c22f1(F ) + c23f1(G))(u1(A)− u1(B))]
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with

c11 =
33π

2
− 52, c12 = 17− 21π

4
, c13 =

21π

2
− 32,

c21 = 14− 33π

8
, c22 =

21π

16
− 7

2
, c23 = 8− 21π

8

Figure 3.20: Local mesh configuration used for the modified crack closure integral technique for the
case of 2D quarter-point elements

Formulas for a number of additional element types are presented in [112]. For the same mesh,
the modified crack closure integral technique provides more accurate SIFs than the displacement
correlation one, but less accurate than the J-integral approach described in Section 3.3.4, requiring
displacements and nodal forces only. The presence of crack face tractions requires additional terms
with respect to those in eq (3.46).

3.3.3 Virtual crack extension technique

The Virtual Crack Extension (VCE) method was proposed by Parks [110] and Hellen [55] as an
energy approach that computes the rate of change of the total potential energy of a system for
a small (virtual) extension of the crack that is equal to the energy release rate in the LEFM
framework. In the absence of body forces, the total potential energy Π of a finite element system is

Π =
1

2
uT K̃u− uT f (3.48)

where u, K̃ and f are the nodal displacement vector, the stiffness matrix and the applied nodal force
vector, respectively. The energy release rate for a small (virtual) crack extension δl in a direction
normal to the original crack front is related to the change in the potential energy by the following
integral along the crack front F :

−δΠ =

∫
F
G(s) δl(s) ds = −1

2
uT δK̃u + uT δf (3.49)

where δK̃ and δf are the variations of the stiffness matrix and load vector, respectively, due to
the virtual crack front advance δl(s). As originally proposed, the virtual crack extension method
provides only a total energy release rate G, without separation for the three modes of fractures.
Decomposition of displacement field as described in the next Section 3.3.4 can overcome this short-
coming.

The VCE method proposed by Hwang et al. in [59] provides the integral form of stiffness deriva-
tives for 3D finite elements in order to compute δK̃ in eq. (3.49), avoiding the need to specify a finite
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length for crack extension to simulate a VCE. Such an approach allows to overcome the drawbacks
of geometric approximations and numerical truncation errors deriving from a finite perturbation
of the finite element meshes in order to approximate the stiffness derivative by subtracting two
stiffness matrices. With the subtraction of two stiffness matrices, the difference of the stiffness
divided by the finite crack increment should converge to the stiffness derivative as the increment
approaches zero, but the change of the mesh configuration can affect the solution accuracy. This is
due to the fact that if the perturbations are too large relative to the finite element mesh, the dif-
ference approximation is inaccurate, while if the perturbations are too small, numerical truncation
errors may become significant.

Different types of virtual crack extensions are feasible in order to compute the energy release
rate along the crack front. Among them, Bank-Sills [10] showed that a crack extension δl(s) that
varies linearly with crack curvilinear abscissa s leads to the most accurate results. The VCE method
provides a tool to obtain accurate numerical results for energy release rate and its derivatives, thus
for the second variations of the potential energy. In the form presented in [59], it allows to take
into account the interactions between virtual crack extensions at different positions along the crack
front in case of overlapping areas perturbed at adjacent positions, and the influence of the local
curvature of the curved crack front.

3.3.4 J-integral

The J-integral is a well known fracture mechanics parameter [20, 114]. The J-integral is equivalent
to the energy release rate G under linear elastic material assumption, and in its original formulation
it relates G of a two-dimensional body to a contour integral.

Figure 3.21: 2D J-integral: notation

Referring to the Frenet frame at the crack tip, where, as usual, x1 axis is tangential to the crack
and the x2 axis is perpendicular to the crack as in figure 3.21, the J-integral is defined as:

J = lim
Γ̄→0

∫
Γ̄
W̄ n1 − σij

∂ui
∂x1

nj dΓ (3.50)

where W̄ = 1
2σij εij is the strain energy density, σ is the Cauchy stress tensor, n is the unit outward

normal to the contour Γ̄ and u is, as usual, the displacement vector. Summation convention is
exploited over identical indices. In the case of elastic material behavior in the absence of body forces
inside the integration area, and of tractions on the crack surface, the contour integral (3.50) is proved
to be path-independent. Additional terms are required in eq. (3.50) to prove path-independency
in the presence of body forces or crack face tractions. Early use of the J-integral within FEM
focused on a direct evaluation of eq. (3.50) along a contour in the finite element mesh, usually
selected to pass trough element Gauss integration points, where stresses are expected to be most
accurately evaluated. Unfortunately, such an implementation rarely exhibits path independence of
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the integral and ad hoc procedures must be adopted to obtain an objective value for J . Furthermore,
the limiting definition (3.50) of the contour Γ̄ requires extensive mesh refinement near the crack
tip to obtain meaningful numerical results. Li et al. [88] showed how the contour J-integral can
be transformed to an equivalent area integral, which has been show to be objective with respect to
the domain of integration and to be naturally suited for finite element models. The area form of
the integral (3.50) reads:

J̄ =

∫
Ā

[
σij

∂ui
∂x1
− W̄ δ1j

]
∂q

∂xj
dA (3.51)

where δij is the Kronecher delta and q is a weighting function defined over the domain Ā of
integration that can be physically thought as the displacement field due to a virtual crack extension.

Function q is defined by prescribing nodal values that are interpolated over elements in the
domain using standard shape functions ψi:

q =
∑
i

ψi qi,
∂q

∂xj
=
∑
i

∂ψi
∂xj

qi

Domain of integration Ā can be either an annular region that surrounds the crack tip, or the inner
contour of such annular region can be shrunk to the crack tip. The q function should have a unit
value on the inner contour of the domain Ā and a zero value on the outer contour. A linear spatial
variation is usually assumed between the two contours.

The J-integral as defined in eq. (3.50) provides the total energy release rate G for the crack
under consideration, namely:

J̄ = G =


1−ν2
E (K2

1 +K2
2 ) plane strain

1
E (K2

1 +K2
2 ) plane stress

An effective technique for separating the SIFs of different fracture modes was introduced by Ishikawa
[63] and independently by Bui [22]. Separation of modes is allowed by a decomposition of the near
crack-tip displacement fields into a symmetric uI and a skew-symmetric uII part with respect to
the x1 axis. Considering the notation of figure 3.21, one has:

u = uI + uII =
1

2

{
u1 + ū1

u2 − ū2

}
+

1

2

{
u1 − ū1

u2 + ū2

}
(3.52)

with ū(x1, x2) = u(x1,−x2). A similar decomposition can be used for the stress field:

σ = σI + σII =
1

2

[
σ11 + σ̄11 σ12 − σ̄12

σ12 − σ̄12 σ22 + σ̄22

]
+

1

2

[
σ11 − σ̄11 σ12 + σ̄12

σ12 + σ̄12 σ22 − σ̄22

]
(3.53)

Exploiting decomposition of displacement and stress fields (3.52) and (3.53), the mode-separated
J-integral values can be computed from eq. (3.51):

G1 = J̄1 = J̄(uI), G2 = J̄2 = J̄(uII) (3.54)

and SIFs arise from eq. (3.47). Modal decomposition (3.54) can be simply implemented in a mesh
that is symmetric about the crack plane in the domain of evaluation Ā, but such a condition is
not necessary and interpolation can be used to find displacements and stresses for non symmetric
meshes.
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For what regards the three dimensional case, a local value of the J-integral, at each point s
along the crack front F is given by:

J(s) = lim
Γ̄→0

∫
Γ̄
W̄ n1 − σij

∂ui
∂x1

nj dΓ (3.55)

where Γ̄ lies in the plane orthogonal to the crack front and all quantities are expressed in the local
Frenet frame depicted in figure 3.22. Unlike the global path independence of the 2D version eq.
(3.50), eq. (3.55) is path independent only in a local sense as Γ̄ → 0 [99]. As in the 2D case, eq.
(3.55) shows difficulties in being directly evaluated in a finite element context, because of the need
to define a path Γ̄ that passes through integration points. Consequently, the 3D J-integral (3.55)
can be transformed into a volume integral, introducing a weighting function q [104].

Figure 3.22: 3D J-integral: notation.

Referring to figure 3.22, for an elastic, homogeneous material, under quasi-static, isothermal
loading, with no body forces within the contour and traction-free crack faces, the J-integral reads
[147]:

J̄ =

∫
V

[
σij

∂ui
∂x1
− W̄ δ1j

]
∂q

∂xj
dV (3.56)

Eq. (3.56) assumes that the crack front curvature is negligible within the domain of integration V
and if this hypothesis is not realistic for the case at hand, an additional volume integral appears in
(3.56).
The scalar weight function q varies smoothly within V . A simple form for q assigns it a smooth
variation from zero on surfaces A1, A2 and A3 of figure 3.22 to a value of 1 on the crack front F . All
material over which the q-function and its derivative are non-zero must be included in the volume
integral (3.56).
As for the 2D case, the q-function can be interpreted as virtual displacement of a material point due
to the virtual extension of the crack front. Nikishkov and Atluri [104] presented different candidates
for the q-function for quadratic order elements and Bank-Sills and Sherman [9] analyzed three of
them in details. In particular they showed that a linear variation of q(s) along the crack front
leads to most accurate results than the functions naturally derived from the use of quadratic order
shape functions. Eq. (3.56) is the total energy release rate over the domain of integration V for
the virtual crack extension q. An approximate local value J(sb) can be obtained by normalizing
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the integral with respect to the area of the virtual crack extension:

J(sb) ≈
∫ sc
sa
J(s) q(s) ds∫ sc
sa
q(s) ds

(3.57)

where sa, sb, and sc are the curvilinear abscissas of points a, b, and c of figure 3.22, respectively.
Analogously to what done for the 2D case, a modal decomposition of displacement field leads to:

u = uI + uII + uIII =
1

2


u1 + ū1

u2 − ū2

u3 + ū3

+
1

2


u1 − ū1

u2 + ū2

0

+
1

2


0
0

u3 − ū3


with ū(x1, x2, x3) = u(x1,−x2, x3), and the corresponding decomposition of the stress field is:

σ = σI + σII + σIII =
1

2



σ11 + σ̄11

σ22 + σ̄22

σ33 + σ̄33

σ12 − σ̄12

σ23 − σ̄23

σ31 − σ̄31


+

1

2



σ11 − σ̄11

σ22 − σ̄22

0
σ12 + σ̄12

0
0


+

1

2



0
0

σ33 − σ̄33

0
σ23 + σ̄23

σ31 + σ̄31


M-Integral

In the present Section, the domain form of the M-Integral, or Interaction Integral, is presented
[138, 155], as a technique for extracting SIFs from numerical results as accurate as the J-Integral,
but providing directly separated K1,K2 and K3 values.

Consider two states of a cracked body: state (1), indicated with (σ
(1)
ij , ε

(1)
ij , u

(1)
i ), that corre-

sponds to the present state, and state (2), indicated with (σ
(2)
ij , ε

(2)
ij , u

(2)
i ), that is an auxiliary state

which is chosen as the asymptotic fields either for mode 1, or mode 2, or mode 3. Exploiting
additive decomposition of displacement, stress and strain fields valid in linear analysis, one has:

ui = u
(1)
i + u

(2)
i , σij = σ

(1)
ij + σ

(2)
ij , εij = ε

(1)
ij + ε

(2)
ij

The J-integral (3.56) for the sum of the two states is:

J̄ (1+2) =

∫
V

[
σ

(1)
ij

∂u
(1)
i

∂x1
+ σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
+ σ

(2)
ij

∂u
(2)
i

∂x1
+

− W̄ (1)δ1j − W̄ (2)δ1j − W̄ (1,2)δ1j

] ∂q
∂xj

dV

where the interaction strain energy is: W̄ (1,2) = σ
(1)
ij ε

(2)
ij = σ

(2)
ij ε

(1)
ij assuming that the same consti-

tutive tensor couples state (1) and state (2) stress and state (1) and state (2) strain. Rearranging
terms gives:

J̄ (1+2) = J̄ (1) + J̄ (2) + M̄ (1,2) (3.58)

where J̄ (1) equals eq. (3.56) for state (1), J̄ (2) equals eq. (3.56) for state (2), and M̄ (1,2) is the
interaction integral for states (1) and (2) that reads:

M̄ (1,2) =

∫
V

[
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
− W̄ (1,2)δ1j

]
∂q

∂xj
dV (3.59)
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According to (3.57) a pointwise value of the interaction integral at location sb, see figure 3.22, along
a 3D crack front is:

M̄ (1,2)(sb) =
M̄ (1,2)(s)∫ sc
sa
q(s) ds

The additive decomposition of SIFs:

K1 = K
(1)
1 +K

(2)
1 , K2 = K

(1)
2 +K

(2)
2 , K3 = K

(1)
3 +K

(2)
3

and Irwin’s formula [62]:
G = Λ11(K2

1 +K2
2 ) + Λ33K

2
3

with components of matrix Λ expressed in eq. (2.12), leads to:

J̄ (1+2) = Λ11(K
(1)2
1 +K

(1)2
2 ) + Λ33K

(1)2
3 + Λ11(K

(2)2
1 +K

(2)2
2 ) + Λ33K

(2)2
3 +

+ 2 Λ11K
(1)
1 K

(2)
1 + 2 Λ11K

(1)
2 K

(2)
2 + 2 Λ33K

(1)
3 K

(2)
3 (3.60)

Equating eq. (3.58) with eq. (3.60) leads to the following relationship:

M̄ (1,2) = 2 Λ11(K
(1)
1 K

(2)
1 +K

(1)
2 K

(2)
2 ) + 2 Λ33K

(1)
3 K

(2)
3 (3.61)

From the two definitions of the interaction integral (3.59) and (3.61) one has:∫
V

[
σ

(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1
− W̄ (1,2)δ1j

]
∂q

∂xj
dV = 2 Λ11 (K

(1)
1 K

(2)
1 +K

(1)
2 K

(2)
2 ) + 2 Λ33K

(1)
3 K

(2)
3

Making the judicious choice of auxiliary state (2) as the pure mode 1 (state (2a)), or pure mode
2 (state (2b)) or pure mode 3 (state (2c)) asymptotic fields, namely:

K1 K2 K3

2a 1.0 0.0 0.0

2b 0.0 1.0 0.0

2c 0.0 0.0 1.0

and state (1) as the solution of finite element analysis, leads to the following linear system:
2Λ11 0 0

0 2Λ11 0
0 0 2Λ33




K
(1)
1

K
(1)
2

K
(1)
3

 =


M̄ (1,2a)

M̄ (1,2b)

M̄ (1,2c)


which provides the values of the SIFs.



Chapter 4

Weight function theory

In this Chapter the weight function theory for three-dimensional LEFM is briefly reviewed and
some results regarding the first order variation of the SIFs reformulated. The main reason for these
derivations, presented for the first time in [129], resides in the fact that, although the variational
formulation detailed in Chapter 2 is complete, the form (2.6) of operator K(1)[·] is so involved that
an effective implementation of crack tracking strategies may reveal not straightforward. Further-
more, having at hand the symmetric operator K(1)[·] and being merely capable to express it as the
sum (2.6) of unsymmetric factors is quite disappointing and compel to seek for alternative forms.
The two evidences above inspire the present formulation.

Introduction of the weight function theory is ascribable to Bueckner in 1970 [21] for two dimen-
sional elastic crack analysis and it is a milestone in fracture mechanics. Weight function theory for
the three dimensional counterpart was introduced by Rice in 1985 [116]. In [116], Rice pointed out
the relation between three-dimensional weight function concepts and the determination of mode 1
SIFs along crack fronts whose locations are slightly perturbed from some simple reference geometry
in an unbounded domain and quasi-static crack growth conditions. In particular Rice applied the
method to half plane cracks with slightly wavy front subjected to mode 1 loading. The work was
extended afterwards by Gao and Rice [43] to the case of mode 2 and mode 3 loading and to internal
circular cracks [44] and external circular cracks [45]. Weight function theory for three dimensional
elastic crack analysis was exhaustively discussed by Rice in the cornerstone work of 1989 [117],
where weight functions approach provided fundamental theoretical results as well as numerical es-
timations. Since then, it has been used largely in three dimensional elastic crack analyses, in the
context of configurational stability, crack growth and trapping prediction, SIFs expansion, pertur-
bation approaches, interactions with dislocations and other defects.

Weight functions are displacements solutions of the linear elastic fracture mechanics bound-
ary value problem in a distributional sense. Nine components hij(P, s) provide the mode i SIF at
location s along the crack front induced by a unit Dirac delta body force in direction j located at
an arbitrary point P of the body, with i = 1, 2, 3 and j = 1, 2, 3 . As such, the work-like product
of an arbitrary set of body forces with the weight functions gives the crack front SIFs induced by
those forces. With the aim to agree with mode number designation for the SIFs, index 1, attributed
to weight functions and related quantities, indicates the direction orthogonal to the crack plane,
index 2 indicates the direction orthogonal to the crack front F and oriented in the same direction
of propagation, and index 3 indicates the direction tangent to F and oriented as the curvilinear
abscissa s along F .

The present work simplifies the picture, dealing only with cracks that lie in a plane x, z. For

63
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its purposes the knowledge of weight functions hij is not mandatory. Referring to the cornerstone
work of Rice of 1989 [117], it suffices to know their jump across the crack at point P ∈ S(t) of
application of the load, that is the so called crack face weight function kij (shortened henceforth in
CFWF), defined thus by:

kij(P, s) = lim
ε→0+

[hij(P + ε ey, s)− hij(P − ε ey, s)] (4.1)

ey being the unit vector of axis y. CFWFs, collected in matrix K = [kij ], are endowed with
analogous properties of hij . In particular, for a crack of arbitrary shape with surface S(t) and front
F(t) pressurized by tractions t at point P = (x, z) as depicted in figure 4.1, the SIFs along the
crack front can be evaluated by integral:

Ki(s, t) =

∫
S(t)

kij(P, s) tj(P ) dx dz (4.2)

Figure 4.1: A plane crack of arbitrary shape is pressurized by tractions ty at point P: notation

Formula (4.2) acts as definition of CFWF kij(P, s) as the i-th SIF at point s of the crack front
F(t) resulting from the application of a pair of opposite unit point forces equal to ± ej on the upper
(+) and lower (−) crack surfaces at point P .

Consider that, under fixed loading conditions, the crack front is extended normal to itself [117]
by a smooth variation δl(s), treated as infinitesimal, where the time dependency will be omitted
henceforth for the sake of readability. Then, the variation δw of the displacement jump w(x, z)
across the crack faces (i.e. the opening and sliding relative displacement) reads:

δw(x, z) = 2

∫
F(t)

K(P, s)ΛK(s)δl(s)ds (4.3)

to the first order in δl(s). where components of matrix Λ are defined in eq. (2.12) for an isotropic
material. A similar formula holds for an arbitrary anisotropic medium, but the matrix Λ is then
no longer diagonal.
Outcomes (4.2) and (4.3) can be attributed to Rice [117] (see formulas (5) and (6) of the celebrated
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paper).
Consider two locations s and s′ along the crack front F . Place on S a point P by moving into

the crack zone a small perpendicular distance ρ from s as depicted in figure 4.2.

Figure 4.2: Distances: ρ from point P on crack surface S(t) and its projection s to the crack front
F(t); D(P, s′) from point P and a point s′ along F(t), and D(s, s′) from s to s′. When ρ → 0,
D(P, s′)→ D(s, s′).

The ratio:
K(P, s′)√

ρ
(4.4)

has a well defined limit as ρ→ 0. A representation formula for the CFWFs holds (see for instance
Lazarus [79]):

K(P, s′) =

√
2ρ

π
√
π

1

D2(P, s′)
WS(P, s′) (4.5)

where D(P, s′) stands for the distance between point P and location s′ along the crack front (see
figure 4.2). Since tensile and shear problems are uncoupled for a planar crack in an infinite body,
components of matrix WS = [WSij ] are such that:

WS12 = WS13 = WS21 = WS31 = 0 (4.6)

whatever the shape of the crack front. Such a property reflects on CFWFs in view of property
(4.5).

Consider the well-defined limit [83]:

WF (s, s′) = lim
ρ→0

WS(P, s′) (4.7)

Components WFij (s, s′) of matrix WF (s, s′) are termed fundamental kernels (shortened in FKs).
They depend on the crack front shape. The CFWFs are positively homogeneous of degree −3/2
meaning that if all distances are multiplied by some positive factor α, the CFWFs are multiplied
by α−3/2. Eqs. (4.5) and (4.7) implie that FKs are positively homogeneous of degree 0:

WF (αs, αs′) = WF (s, s′) ∀α > 0 (4.8)
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Considering two problems, one with point forces equal to ± ei exerted on the crack faces at a
distance ρ from s, and one with point forces equal to ± ej exerted on the crack faces at a distance
ρ′ from s′, applying Betti’s theorem, and using formulas (4.3) and (4.7), the following “symmetry”
property arises for fundamental kernels and isotropic materials:

ΛWF (s, s′)Λ−T = WF (s′, s) (4.9)

Leblond and coworkers [82, 83] have shown that the limit of WF when s′ → s is universal, in
the sense that WF (s, s) does not depend on the geometry. It depends on the behavior of weight
functions when the point of application of the load tends towards the point of observation of the
SIF, which is a local property independent on the far geometry. This limit has values:

lims′→sW
F
11(s, s′) = 1,

lims′→sW
F
22(s, s′) = 2−3ν

2−ν ,

lims′→sW
F
33(s, s′) = 2+ν

2−ν ,

lims′→sW
F
23(s, s′) = 0

(4.10)

Fundamental kernels WF (s, s′) for particular crack front shapes
FKs are known in closed form only for some particular crack front geometries and they will be
detailed below for the case of circular and half plane cracks, as accurately reviewed by Lazarus in
[79]:
- Circular cracks

for internal circular cracks with Γu = ∅, loaded
by remote stresses, the values of non zero compo-
nents of FKs are [44, 65]:

WF11(φ0, φ1) = 1

WF22(φ0, φ1) = 2cos(φ0−φ1)−3ν
2−ν

WF33(φ0, φ1) = 2(1−ν)cos(φ0−φ1)+3ν
2−ν

WF23(φ0, φ1) = 1
1−νW

F
32(φ1, φ0) = 2sin(θ0−θ1)

2−ν



CHAPTER 4. WEIGHT FUNCTION THEORY 67

for external circular cracks loaded by remote
stresses, only the component WF11 is known for
several cases of remote boundary conditions [45,
117]:
- remote points are clamped (vanishing displace-
ments and rotations)

WF11(φ0, φ1) = 1

- remote points are allowed to move in the di-
rection orthogonal to the crack plane, but cannot
rotate

WF11(φ0, φ1) = 1 + 4 sin2

(
φ0 − φ1

2

)
- remote points can rotate, but cannot move in
the direction orthogonal to the crack plane

WF11(φ0, φ1) = 1+24 sin2

(
φ0 − φ1

2

)
cos(φ0−φ1)

- remote points are constrained against any mo-
tion (vanishing force and momentum)

WF11(φ0, φ1) = 1+4 sin2

(
φ0 − φ1

2

)
[1+6 cos(φ0−φ1)]

- Half plane cracks
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for half plane cracks with Γu = ∅ loaded by remote
stresses (fig. a), or line traction (fig. b), or surface
traction (fig c) the values of non zero components
of FKs are: 

WF11(z1, z0) = 1

WF22(z1, z0) = 2−3ν
2−ν

WF33(z1, z0) = 2+ν
2−ν

WF23(z1, z0) = 0

The simple case of half plane crack has been ex-
tended to the case of the tunnel crack in order
to introduce a length scale into the model, which
is in fact missing for the half plane crack case
(see Leblond and Mouchrif work for mode 1 [81],
and Lazarus and Leblond works for shear loading
[76, 77]).

4.1 First order variation of the SIFs

Consider that an arbitrary three dimensional crack advances quasi-statically, under constant load-
ing, by δl(s) within its plane in the direction perpendicular to its front. The complex form (2.6) of
operator K(1)[·] originates from a fundamental hypothesis about weight functions theory that was
made in the seminal paper of Rice [117]. In setting up the formalism for calculating variations in
the SIFs along a crack front to the first order accuracy in the advance δl(s), a location along the
crack front (say s1) has been assumed to be steady, i.e. (δl(s1) = 0). Focusing on planar cracks
that propagate in their own plane so that kink angle θ(s) vanishes for all points along the crack
front (as for delamination for instance), from expansion (2.2) one has:

δK1(s) = K
(1)
1 [s; δl(s′)] (4.11)

that relates the variation of SIF at location s to the first order variation δl(s′) of the whole
crack front F under fixed loading conditions. The non locality of formula (4.11) is due to long
range elastic interactions.

In such pure mode 1 conditions, quantities wy for the crack opening displacement, WS11 and WF11

will be simply denoted henceforth as w,WS and WF , respectively, in order to lighten the notation.
Consider a point (x1, z1) at distance ρ1 from s1. From equations (2.12), (4.3) and (4.5), one can
derive:

δw(x1, z1) = 2Λ11

√
2ρ1

π
√
π

∫
F(t)

WS((x1, z1), s)

D2((x1, z1), s)
K1(s) δl(s) ds (4.12)
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Diving both sides of eq. (4.12) by
√
ρ1 and letting ρ1 → 0 one has [37, 117]:

δK1(s1) =
1

2π
−
∫
F

WF (s1, s)

D2(s1, s)
K1(s) δl(s) ds (4.13)

Condition δl(s1) = 0 ensures the existence of the principal value integral along the crack front −
∫
F

in eq. (4.13). Eq. (4.13) is exactly the same as eq. (2.5) (see [83]) with:

1

2π

WF (s1, s)

D2(s1, s)
= Z(Ω, s1, s, θ(s1), θ(s))

in the special case of a planar crack with a coplanar extension and δl(s1) = 0. For completeness, it
is shown the extension of eq. (4.13) to the case of mixed mode, due to Favier et al. [37], namely:

δK(s1) = N(θ) K(s1)
∂δl

∂s′

∣∣∣∣
s1

+
1

2π
−
∫
F

WF (s1, s)

D2(s1, s)
K(s) δl(s) ds (4.14)

where matrix N(θ) is the matrix defined in expansion (2.5), that in the case of vanishing kink angle
reads:

N(0) =
2

2− ν

 0 0 0
0 0 −1
0 1− ν 0

 (4.15)

The drawbacks of hypothesis δl(s1) = 0 have been circumvented by means of two different
strategies (accurately reviewed by Lazarus in [79] in the general case of mixed mode propagation).
The first one [117] consists of decomposing an arbitrary elongation of the crack front δl(s) into two
parts:
- a translatory motion of displacement vector δl(s1) e2(s1), where e2 is the axis of the local Frenet
frame orthogonal to F and oriented in the direction of propagation. This motion brings the point
s1 to its correct final position leaving the crack front shape unchanged. The corresponding normal
advance δl∗(s) is given, to the first order in δl(s), by:

δl∗(s) = δl(s1) e2(s1) · e2(s) (4.16)

The associated variation of SIF K1(s) will be denoted by δ∗K1(s).
- a motion with normal advance δl(s)− δl∗(s) which vanishes at s1. δK1(s1) is therefore given by
eq. (4.13).
The sum of the two motions leads to the final expression of the first order variation of the SIF in
δl(s):

δK1(s1) = δ∗K1(s1) +
1

2π
−
∫
F

WF (s1, s)

D2(s1, s)
K1(s)[δl(s)− δl∗(s)]ds (4.17)

Provided that the quantity δ∗K1(s1) can be computed, eq. (4.17) allows to update the SIF from the
initial values of the SIF and of the FK. For example, δ∗K1(s1) vanishes if the translatory motion
δl(s1) e2(s1) do not change the problem, as in the case of a crack far from any boundary, so that
the body can be assumed to be infinite submitted to remote stress loading.

The second strategy consists in decomposing the normal advance into a uniform advance δl(s1)
and the advance δl(s) − δl(s1) for which eq. (4.13) can be used. This procedure leads to the
following final expression:

δK1(s1) = [δK1(s1)]δl(s)≡δl(s1) +
1

2π
−
∫
F

WF (s1, s)

D2(s1, s)
K1(s)[δl(s)− δl(s1)] ds (4.18)
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provided that [δK1(s1)]δl(s)≡δl(s1) can be computed, as for instance for circular, straight half-plane
or tunnel cracks where the uniform advance δl(s) ≡ δl(s1) does not change the geometry of the
problem.
The two approaches just described give complete generality to the formalism for calculating vari-
ations in the SIFs along a crack front, at the price of the purposely introduced assumption of
infinite domain. When finite domain and associated boundary conditions have to be considered,
the increase of the SIFs due to an additional motion pertaining to the two strategies described
above may be of the same order of the one due to the change in the shape of the crack front. In
[129], a different approach is pursued and the hypothesis of steady location, and consequently the
ones introduced at a later stage to circumvent the resulting limitations, are removed in full. In this
case the limit to the boundary process does not lead to a Cauchy principal value interpretation of
integrals involved anymore, and the general concept of finite part of Hadamard is invoked. With
the aim of intelligibility, the general path of reasoning of this new approach is firstly illustrated
for the straightforward case of a semi infinite plane crack loaded by a pair of equal and opposite
normal forces applied on the crack surfaces at a distance a from the crack front. The procedure is
then detailed and further extended to the case of generic plane cracks under mode 1 loading.

4.1.1 Semi infinite plane crack

Consider the semi infinite plane crack loaded by unit point forces ty(P ) applied on the crack surfaces
at a distance a from the crack front as depicted in figure 4.3.

ty

   P

Figure 4.3: Semi infinite plane crack loaded by a pair of equal and opposite normal forces ty(P )
applied to the crack surfaces at point P at a distance a from the crack front. Field point Q is defined
at coordinates {x, 0, z} whereas Q′ is the orthogonal projection of point Q onto the crack front.

Such a mode 1 loading problem has been solved analytically [65, 140]. The opening w(Q) at
point Q(x, z) for any x < 0 reads:

w(Q; a) = 2
1− ν
µ

ty
π2

1√
(x+ a)2 + z2

arctan

[
2
√
a|x|√

(x+ a)2 + z2

]
(4.19)

where ν is the Poisson’s coefficient and µ is the shear modulus of the material. w(Q; a) admits the
following expansion about the crack front for x < 0:

w(Q; a) =
(1− ν)ty
π2µ

[
4
√
a

(a2 + z2)

√
|x| − 8a3/2

3 (a2 + z2)2 |x|3/2
]

+O(|x| 52 ) (4.20)
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which is a truncation of the classical expansion [54] in the normal plane:

w(Q; a) =
∞∑
n=0

Ξn(z, a)|x|n
√
|x| (4.21)

The outline of the opening is plot in figure 4.4. Owing to the well known relationship:

Ξ0(z, a) =
1− ν
µ

4√
2π

K1(z) (4.22)

the first order term in expansion (4.20) leads to the identity

K1(z) =

√
2

π
√
π

√
a

a2 + z2
ty (4.23)
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Figure 4.4: a) Upper half of the opened semi infinite plane crack under mode 1 point force loading
acting at a = 4, z = 0. As expected, opening is not bounded under the point load. b) K1(z) along
the crack front.

The crack remains plane during its propagation, even if the shape of its front will change from
the straight initial configuration. Nevertheless this scenario will not be considered here, taking
into account only an “unrealistic” but uniform propagation of the front in order to extend Rice’s
approach in the simplest case. On the contrary, interest is focused on a z-independent propagation
of the whole crack front as if the distance a becomes a + δl(z) for all abscissae z along the crack
front. In view of the z-independency, the crack front elongation δl(z) will be denoted simply as
δl henceforth in this example. Bearing in mind that the amount x + a remains unchanged at any
point Q, it is straightforward to show that

δw(Q; a) = w(Q; a+ δl)− w(Q; a) = 2
1− ν
µ

ty
π2

a− x
(x+ a)2 + z2

1√
a|x|

δl + o(δl) (4.24)

at any x < 0.
By means of the crack-face weight function

k11((x, z), s′) =

√
2|x|

π
√
π

1

x2 + (s′ − z)2
(4.25)

which is available for the straightforward crack front shape at hand - see [117] formula (36), outcome
(4.24) is obtained from integral (4.3):

δw(Q; a) =
1− ν
µ

∫ +∞

−∞
k11((x, z), s′) K1(s′) δl(s′) ds′ (4.26)
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to the first order in δl. The term Ξ0(z, a) was used by Rice in formula (61) of [117] to express the
first order variation

δw(Q; a) = 4
1− ν
µ

1√
2π

√
|x| δK1(z)

under the assumption that δl(Q′) = 0, with Q′ orthogonal projection of point Q along the crack
front - see figure 4.3. Such an assumption, that is not inborn in the integral formulation (4.26),
cannot be pursued in the present example however, as distance |x| from the crack front becomes
|x|+ δl and linear terms in δl come into play from the higher order terms of the expansion (4.21):

w(Q; a+ δl) =
∞∑
n=0

Ξn(z, a+ δl)(|x|+ δl)n
√
|x|+ δl (4.27)

=

∞∑
n=0

n∑
k=0

(
n
k

)
|x|n−kδlk

(
Ξn(z, a) +

∂Ξn
∂a

∣∣∣∣
a

δl

)(√
|x| −

√
|x|

2x
δl

)
+ o(δl)

whence:

δw(Q; a) =
√
|x|
{
−Ξ0(z, a)

2x
+
∂Ξ0

∂a

∣∣∣∣
a

+
3

2
Ξ1(z, a)

}
δl + (4.28)

|x|
√
|x|
{
∂Ξ1

∂a

∣∣∣∣
a

+
∞∑
n=2

[
−Ξn(z, a)

( |x|n−1

2x
+ n|x|n−2

)
+
∂Ξn
∂a

∣∣∣∣
a

|x|n−1

]}
δl + o(δl)

By comparing the latter with (4.26), after dividing both sides by
√
|x| and taking the limit x→ 0−,

it comes out:

∂Ξ0

∂a

∣∣∣∣
a

(z, a) = lim
x→0−

[
Ξ0(z, a)

2x
− 3

2
Ξ1(z, a) +

1− ν
µ

1√
|x|

∫ +∞

−∞
k11((x, z), s′) K1(s′)ds′

]
(4.29)

i.e., in view of (4.22), (4.25):

δK1(z) =

{
lim
x→0−

[
K1(z)

2x
+

√
2π

4

∫ +∞

−∞

k11((x, z), s′)√
|x|

K1(s′)ds′

]
− µ

1− ν

√
2π

4

3

2
Ξ1(z, a)

}
δl

(4.30)

According to representation formula (4.5) and limit (4.7), the FK WF (z, s′) has the form [79]:

WF (z, s′) = π

√
π

2
D2(z, s′) lim

x→0−

k11((x, z), s′)√
|x|

(4.31)

where D(z, s′) denotes the cartesian distance between locations z and s′ along the crack front.
WF (z, s′) is known to be finite in general and in particular for the semi infinite plane crack under
mode 1 loading because of (4.25). Furthermore, one has:

lim
x→0−

∫ +∞

−∞

k11((x, z), s′)√
|x|

K1(s′) ds′ = (4.32)

√
2

π
√
π

∫ +∞

−∞

WF (z, s′)

D2(z, s′)

(
K1(s′)−K1(z)− ∂K1

∂s′

∣∣∣∣
z

(s′ − z)
)

ds′ +

K1(z) lim
x→0−

∫ +∞

−∞

k11((x, z), s′)√
|x|

ds′ +
∂K1

∂s′

∣∣∣∣
z

lim
x→0−

∫ +∞

−∞

k11((x, z), s′)√
|x|

(s′ − z)ds′
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In view of (4.25) one has for the case at hand:∫ +∞

−∞

k11((x, z), s′)√
|x|

ds′ = −
√

2√
π

1

x
,

∫ +∞

−∞

k11((x, z), s′)√
|x|

(s′ − z)ds′ = 0

and (4.30) turns out to be:

δK1(z) =

[
1

2π

∫ +∞

−∞

WF (s′, z)

D2(s′, z)

(
K1(s′)−K1(z)− ∂K1

∂s′

∣∣∣∣
z

(s′ − z)
)

ds′ − µ

1− ν
3
√

2π

8
Ξ1(z, a)

]
δl

(4.33)

Direct substitution provides:

δK1(z) =
ty√
2a

1

π
√
π

z2 − 3a2

(a2 + z2)2
δl (4.34)

that confirms the outcome derived directly from (4.23). In the easy case of semi infinite plane crack
under mode 1 loadings, equations (4.30) and (4.33) extend, in the sense that the steady location
hypothesis has been removed, Rice’s formula (63) in [117], namely:

δK1(z) =
1

2π
−
∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′) δl(s′) ds′ (4.35)

Outcome (4.30) can be formulated in terms of the finite part of Hadamard. Such an interpre-
tation shows the intimate nature of the limit process established in [117] in the general case, i.e.
when the hypothesis of steady location has not made recourse to.

To this aim, the finite part of Hadamard is firstly defined as follows. Let ε0 > 0, ε → I(ε)
denote a complex-valued function which is continuous in ]0, ε0] and assume that

I(ε) = I0 + I1 log(ε) +

m∑
j=2

Ij ε
1−j + o(1); ε→ 0 (4.36)

where Ij ∈ C. Then I0 is called the Hadamard’s finite part of I(ε). In dealing with integrals, the

finite part I0 of a usually divergent integral
∫ +∞
−∞ f(t) dt is denoted by the symbol =

∫ +∞
−∞ f(t) dt.

Applying the definition above to formula (4.30), it holds:

I(ε) = lim
ε→0+

[∫ z−ε

−∞

WF (z, s′)

D2(z, s′)
K1(s′)ds′ +

∫ +∞

z+ε

WF (z, s′)

D2(z, s′)
K1(s′)ds′

]
= (4.37)∫ +∞

−∞

WF (z, s′)

D2(z, s′)

(
K1(s′)−K1(z)− ∂K1

∂s′

∣∣∣∣
z

(s′ − z)
)

ds′ +

K1(z) lim
ε→0+

[∫ z−ε

−∞

WF (z, s′)

D2(z, s′)
ds′ +

∫ +∞

z+ε

WF (z, s′)

D2(z, s′)
ds′
]

+

∂K1

∂s′

∣∣∣∣
z

lim
ε→0+

[∫ z−ε

−∞

WF (z, s′)

D2(z, s′)
(s′ − z)ds′ +

∫ +∞

z+ε

WF (z, s′)

D2(z, s′)
(s′ − z)ds′

]
=∫ +∞

−∞

WF (z, s′)

D2(z, s′)

(
K1(s′)−K1(z)− ∂K1

∂s′

∣∣∣∣
z

(s′ − z)
)

ds′ + K1(z) lim
ε→0+

2

ε
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Accordingly, eq. (4.33) can be rephrased as:

δK1(z) =
1

2π
=

∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′) δl(s′) ds′ − µ

1− ν
3
√

2π

8
Ξ1(z, a) δl (4.38)

Identifying z with s, eq. (4.38) can be compared with (4.11) and operator K
(1)
1 stated as:

K
(1)
1 [z; δl(z′)] =

1

2π
=

∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′) δl(s′) ds′ − µ

1− ν
3
√

2π

8
Ξ1(z, a)δl (4.39)

Recalling the definition of the Gateaux derivative of the affine operator N [·] detailed in eq.
(2.40), it can be expressed for this case in the form:

N ′v[w] =
1− ν2

E
K1(z)

[
1

2π
=

∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′)w(s′)ds′ − µ

1− ν
3
√

2π

8
Ξ1(z, a)w(z)

]
(4.40)

The obtained final formalism leads to an easy proof of the symmetry property of Gateaux derivative
of N [·] (2.41) that has been demonstrated in Section 2.5.2 relying on the physical meaning of the
operator itself. Eq. (2.41) has the form:∫ +∞

−∞
K1(z)v(z) =

∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′) w(s′)ds′dz = (4.41)∫ +∞

−∞
K1(z)w(z) =

∫ +∞

−∞

WF (z, s′)

D2(z, s′)
K1(s′) v(s′)ds′dz

In a nutshell thus operator N ′v[·] inherits symmetry from the fundamental kernel matrix WF . The
proof of symmetry property (2.41) in the form (4.41) allows to restate variational formulations
presented in [127] and described in Section 2.5.2 in terms of weight functions. Discrete part of
such variational statements leads to an effective numerical scheme for the approximation of the
quasi-static velocity of the crack front.

4.1.2 Arbitrary plane cracks under mode 1 loading

Outcomes (4.30), (4.38) and (4.41), straightforwardly derived for the case of a semi infinite plane
crack, are now extended to generic plane cracks under mode 1 loading. Consider thus a plane crack
configuration, under the assumption that it propagates in its own plane and in pure mode 1 (see
figure 4.5).

Choose two locations s and s′ along the front F at time t. Locate on S(t) a point P by moving
from F(t) into the crack zone a small perpendicular distance ρ from s, and a point Q by moving a
small distance ρ′ from s′. Analogously to eq. (4.21), the opening at point P and time t, denoted
by w(P ; t), admits an expansion [54] in the normal plane in terms of ρ:

w(P ; t) =
∞∑
n=0

Ξn(s) ρn
√
ρ (4.42)

At time t + δt > t the crack front reshapes, moving to curve F(t + δt). At location s along F(t)
an (always positive) infinitesimal elongation δl(s; t, t + δt) > 0, indicated henceforth simply with
δl(s), takes place in the normal plane. The opening at point P and time t + δt changes, and will
be denoted either by w(P ; t + δt) or by w(P ; δl(s)). Expansion (4.27) applies to w(P ; δl(s)), if a
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Figure 4.5: An arbitrary plane crack, under the assumption that it evolves merely in its own plane
and in pure mode 1: notation.

proper definition of ∂Ξn
∂a

∣∣
a
δl(s) is set, in order to take into account the variation of the crack front

with time, where a is in this case a characteristic length of the crack at time t that locates the
position of F at time t.

The first order variation ∂Ξn
∂a

∣∣
a
δl(s) is here defined, in accordance with [82, 83], in the Gateaux

differential sense for Ξn. To this aim, the δl(s) is assumed to be the product of a given non-negative
function (say η(s) > 0) by a small positive real parameter α. The following notation will be used:

∂Ξn
∂a

∣∣∣∣
a

δl(s) =
∂Ξn
∂α

(s, α η(s))

∣∣∣∣
α=0

α (4.43)

The parameter α can be thought of as some kinematic time and the function η(s) as the corre-
sponding rate of propagation of the crack front. Equation (4.28) can be extended in the following
terms:

δw(P ; a) =
√
ρ

{
Ξ0(s)

2ρ
+
∂Ξ0

∂a

∣∣∣∣
a

+
3

2
Ξ1(s)

}
δl(s) + ρ

√
ρ h(s; ρ;F) δl(s) + o(δl) (4.44)

with h(s; ρ;F) bounded at ρ→ 0+.
One may make the influence of the crack front F at time t on Ξn(s) explicitly in writing

Ξn(s,F(t)). After the elongation by δl(s), at time t+ δt > t, the normal plane at abscissa s can be
different from the one before the elongation at time t. This difference impacts on Ξn(s,F(t+ δt))
and ultimately on w(P ; a + δl). The perpendicular to the new crack front at location s no longer
passes trough point P , but misses it by a distance (ρ + δl(s))δφ measured parallel to F(t + δt)
where δφ = d[δl(s)]/da δs. This effect, as noted already by Rice in [117], may be included in the
analysis, recognizing that δw(P ; a) should be strictly replaced by its value plus (ρ+ δl(s))δφ times
the gradient of δw in the direction parallel to F(t + δt). However, that modification gives a term
of order ρ

√
ρ δφ, that can be included in h(s; ρ;F)δl(s) in equation (4.44).
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In view of equation (4.22) that still holds, equation (4.44) becomes:

δw(P ; a) =
√
ρ

{
1− ν
µ

4√
2π

[
K1(s)

2ρ
+
∂K1

∂a

∣∣∣∣
a

]
+

3

2
Ξ1(s)

}
δl(s)

+ ρ
√
ρ h(s; ρ;F) δl(s) + o(δl) (4.45)

with ∂K1
∂a

∣∣∣
a

defined analogously to ∂Ξn
∂a

∣∣
a

in (4.43). After dividing both sides by
√
ρ and taking the

limit ρ→ 0+, one has from (4.26) and (4.45):

δK1(s) = lim
ρ→0+

[
−K1(s)

2ρ
δl(s) +

√
2π

4

∫
F(t)

k11((x, z), s′)√
ρ

K1(s′) δl(s′) ds′

]

− µ

1− ν
3
√

2π

8
Ξ1(s) δl(s) (4.46)

where k11((x,z),s′)√
ρ has a well defined limit as ρ→ 0+ as already stressed. By means of representation

formula (4.5), the former equation reads

δK1(s) = lim
ρ→0+

[
−K1(s)

2ρ
δl(s) +

1

2π

∫
F(t)

WS(P, s′) K1(s′) δl(s′)

D2(P, s′)
ds′

]

− µ

1− ν
3
√

2π

8
Ξ1(s) δl(s) (4.47)

that extends Rice’s formula (63) in [117] to the case at hand.

Denoting with
Υ(ρ, s; s′) = WS(P, s′)K1(s′) δl(s′)

equation (4.47) holds:

δK1(s) =
1

2π
lim
ρ→0+

∫
F(t)

Υ(ρ, s; s′)−Υ(ρ, s; s)− ∂Υ
∂s′

∣∣
s

(s′ − s)
D2(P, s′)

ds′

+ lim
ρ→0+

[
1

2π
WS(P, s)

∫
F(t)

1

D2(P, s′)
ds′ − 1

2ρ

]
K1(s)δl(s)

+ lim
ρ→0+

1

2π

∂Υ

∂s′

∣∣∣∣
s

∫
F(t)

s′ − s
D2(P, s′)

ds′ − µ

1− ν
3
√

2π

8
Ξ1(s)δl(s) (4.48)

As it will be proven in appendix A, the following asymptotics hold:∫
F(t)

1

D2(P, s′)
ds′ =

π

ρ
− cπ+ =

∫
F(t)

1

D2(s, s′)
ds′ + o(ρ) (4.49)

∫
F(t)

s′ − s
D2(P, s′)

ds′ = −
∫
F(t)

s′ − s
D2(s, s′)

ds′ + o(ρ) (4.50)

where c is the local curvature of the crack front at point s. Furthermore, WS will be taken
sufficiently smooth with respect to ρ to be expanded in Taylor series as:

WS(P, s) = WF (s, s) +
∂WS

∂ρ

∣∣∣∣
s,s

ρ+ o(ρ) = 1 +
∂WS

∂ρ

∣∣∣∣
s,s

ρ+ o(ρ) (4.51)
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in view of property (4.10). As a consequence, singularities cancel out and one finally has

δK1(s) =
1

2π

∫
F(t)

Υ(0, s; s′)−Υ(0, s; s)− ∂Υ
∂s′

∣∣
s

(s′ − s)
D2(s, s′)

ds′

+
1

2π

∂Υ

∂s′

∣∣∣∣
s

−
∫
F(t)

s′ − s
D2(s, s′)

ds′

+

[
1

2π
=

∫
F(t)

1

D2(s, s′)
ds′ − c

2
+

1

2

∂WS

∂ρ

∣∣∣∣
s,s

]
K1(s)δl(s) (4.52)

− µ

1− ν
3
√

2π

8
Ξ1(s) δl(s)

It seems of interest to investigate if formula (4.52) may be given a significance in terms of finite
part of Hadamard as for equation (4.38). In view of the outcome:

=

∫
F(t)

Υ(0, s; s′)

D2(s, s′)
ds′ =

∫
F(t)

Υ(0, s; s′)−Υ(0, s; s)− ∂Υ
∂s′

∣∣
s

(s′ − s)
D2(s, s′)

ds′

+ Υ(0, s; s) =

∫
F(t)

1

D2(s, s′)
ds′ +

∂Υ

∂s′

∣∣∣∣
s

−
∫
F(t)

s′ − s
D2(s, s′)

ds′

it holds

δK1(s) =
1

2π
=

∫
F(t)

WF (s, s′)K1(s′) δl(s′)

D2(s, s′)
ds′ +

[
1

2

∂WS

∂ρ

∣∣∣∣
s,s

− c

2

]
K1(s) δl(s) (4.53)

− µ

1− ν
3
√

2π

8
Ξ1(s) δl(s)

Formula (4.53) identifies four alternative basic constituents of operator K
(1)
1 [·], besides the SIFs

of course, with respect to the operator Z of eq. (2.5) detailed in [83]. Such constituents are: the

non universal FK WF , the derivative ∂WS
∂ρ , the geometrical term c, and the 3/2 order term Ξ1 of

the crack opening expansion (4.42).
In this regard, several open issues need to be dealt with. The estimation of Ξ1 requires high order
special elements along the crack front, together with the deployment of effective algorithms for its
identification, as described in Section 3.1.6. Quantities WS are not known for general configurations
of cracks, particularly in finite bodies, in which they depend on the definition of Dirichlet and

Neumann boundary conditions. Intuition suggests that ∂WS
∂ρ

∣∣∣
s,s

has a universal character, but such

a feature has not been proved yet.
In the general case of plane cracks under pure mode 1 loading, symmetry property (2.41) of

operator N ′v[·] can be written in terms of weight functions. Gateaux derivative of operator N [·]
(2.40) holds:

N ′v[w] =
1− ν2

E
K1(s)

[
1

2π
=

∫
F(t)

WF (s, s′)K1(s′)w(s′)

D2(s, s′)
ds′

+

(
1

2

∂WS

∂ρ

∣∣∣∣
s,s

− c

2

)
K1(s)w(s)− µ

1− ν
3
√

2π

8
Ξ1(s)w(s)

]
(4.54)
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and symmetry property (2.41) has the form∫
F(t)

K1(s) v(s) =

∫
F(t)

WF (s, s′)K1(s′)w(s′)

D2(s, s′)
ds′ ds = (4.55)∫

F(t)
K1(s)w(s) =

∫
F(t)

WF (s, s′) K1(s′) v(s′)

D2(s, s′)
ds′ ds

that is a sound extension of property (4.41).

4.2 Internal circular crack

4.2.1 Closed form of the first order variation of K1

In the following benchmark, the closed form of the first order variation of SIF K1 (4.53) is derived
for the case of an internal circular crack.

a) b)

Figure 4.6: a) Penny shape crack of variable radius a(t) in an unbounded linear elastic media,
subject to two point load forces −κ(t)n in its center, where κ(t) stands for the load factor and n
stands for the outer normal, so they open the crack. b) Notation about a circular crack front

Consider a penny shape crack (see figure 4.6) with radius a(t) ≥ a(0) > 0 embedded in a
continuum body, subject to two point-loads of magnitude t = −κ(t)n acting in the centers of the
upper and lower crack surfaces which are directed away from the crack faces, so to open the crack.
At each t, the solution in terms of SIFs can be found in [65] and reads:

K1(a(t)) =
κ(t)

πa(t)

1√
πa(t)

(4.56)

independently on abscissa s along the crack front. The solution

w(ρ) =
1− ν
µ

2

π2

κ

r
arccos

(r
a

)
=

1− ν
µ

κ

π2

√
ρ

a
√
a

(
2
√

2 +
13

3
√

2

ρ

a

)
+ o(ρ3/2) (4.57)
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in terms of the crack opening w can be obtained by the Fourier-Hankel transform, with ρ = a−r > 0
(see figure 4.6). By virtue of (4.42):

Ξ0(a) =
2
√

2

π2

1− ν
µ

κ

a
√
a

Ξ1(a) =
13

3
√

2

1− ν
µ

κ

π2

1

a2
√
a

(4.58)

Assuming an homothetic infinitesimal expansion δa about the center, one notes that r does not
change with δa and gets the counterpart of (4.44) as:

δw = 2
1− ν
µ

1

π2

κ

a

1√
2a− ρ

1√
ρ
δa + o(δa)

=

√
2

π2

1− ν
µ

κ

a
√
a

[
1√
ρ

+
1

4a

√
ρ

]
δa+O(ρ

√
ρ δa) + o(δa) (4.59)

The latter can be recovered via crack-face weight functions from integral (4.3), by taking into
account (4.56) and:

k11((x, z), s′) =

√
ρ(2a− ρ)

π
√
πa

1

D2((x, z), s′)
(4.60)

that is provided in [117]. In view of the outcome (4.56), one immediately obtains for a constant
elongation δa(s) = δa

δK1 = −3

2

κ

πa2

1√
πa
δa (4.61)

The same result can be derived from the procedure described in Section 4.1. As first, it can be
deduced from the limit process (4.48). For a circular crack of radius a it holds:

D2(P, s′) = a2 + r2 − 2 a r cos(φ); D2(s, s′) = 2a2(1− cos(φ)) (4.62)

whence ∫
F(t)

1

D2(P, s′)
ds′ =

∫ π

−π

a

a2 + r2 − 2 a r cos(φ)
dφ =

2 a π

a2 − r2
(4.63)

∫
F(t)

s′ − s
D2(P, s′)

ds′ =

∫ π

−π

a2φ

a2 + r2 − 2 a r cos(φ)
dφ = 0 (4.64)

With regard to the finite part of Hadamard one has:

I(ε) = lim
ε→0+

[∫ −ε
−π

1

D2(s, s′)
ds′ +

∫ π

ε

1

D2(s, s′)
ds′
]

=
2

aε
− ε

6a
+ o(ε) (4.65)

whence

=

∫ π

−π

1

D2(s, s′)
ds′ = 0 (4.66)

Integral (4.49) at ρ→ 0+ reads:∫
F(t)

1

D2(P, s′)
ds′ =

2 a π

2a− ρ
1

ρ
=
π

ρ
+

π

2a
+ o(1) (4.67)
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thus the curvature c = −1/(2a) in view of (4.49) and (4.67). Moreover, as from representation
formula (4.5) and (4.60) the weight function reads

WS(P, s) =

√
2a− ρ

2a
, (4.68)

it also holds:
∂WS

∂ρ

∣∣∣∣
s,s

= − 1

4a
(4.69)

Outcome (4.61) comes out immediately from (4.52) in view of (4.58), (4.64), (4.66), and the identity:∫
F(t)

Υ(0, s; s′)−Υ(0, s; s)− ∂Υ
∂s′

∣∣
s

(s′ − s)
D2(s, s′)

ds′ = 0 (4.70)

Outcome (4.61) can be deduced from the finite part of Hadamard concept as in (4.48), rather
trivially. In view of the axial symmetry of the problem at hand, identity (4.66) implies:

=

∫
F

WF (s, s′)K1(s′) δa(s′)

D2(s, s′)
ds′ = 0 (4.71)

Accordingly, eq. (4.48) reads:

δK1 =

(
1

2

∂WS

∂ρ

∣∣∣∣
s,s

− c

2

)
K1 δa−

µ

1− ν
3
√

2π

8
Ξ1(a) δa (4.72)

=

(
K1

8a
− µ

1− ν
3
√

2π

8
Ξ1(a)

)
δa = −3

2

κ

π a2

1√
π a

δa

as in eq. (4.61).

4.2.2 Incremental formulation

The incremental picture described in Chapter 2 is here rephrased for the circular crack loaded in
an axial symmetric way depicted in figure 4.6-a. According to the closed form solution for the SIF
K1 (4.56), when the load factor κ(a(t)) reaches the threshold:

κ(a(t)) = KC
1 πa(t)

√
πa(t) (4.73)

the onset of crack propagation is reached. A further increase of external actions δκ allows fracture to
propagate. In this axial-symmetric crack growth condition, the radius increment δa is independent
on the abscissa s along the crack front. Operator K(1)[s, t; δa(t)] in eq. (2.6) simplifies for being
scalar and “ local”, i.e. K(1)[s, t; δa(t)] = K(1)δa(t) and expressed in closed form in equation (4.61).
Analogously K∗(s, t) = K1(t). As stability condition (2.38a) is trivially satisfied, the crack growth
is stable, as expected. Functional (2.56) simplifies in a quadratic function that holds:

χ[w(t)] = −1

2

∫
F(t)|ϕ=0

Λ11K1(t)K(1)(t) dsw2(t)−
∫
F(t)|ϕ=0

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

dsw(t) (4.74)

under the unilateral constraint w(t) ≥ 0. In view of the closed form (4.61), functional χ[w(t)]
becomes:

χ[w(t)] = −1− ν2

E

κ2(t)

π3

w(t)

a2(t)

[
− 3

a(t)
w(t) +

4

κ(t)

∂κ

∂t

∣∣∣∣
t

]
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Consider a positive parameter α and a positive elongation rate δb(t), so that the configuration
w(t) = δa(t) + α δb(t) is in the set of admissible configurations for functional (4.74). Optimality
implies that

χ[δa(t) + αδb(t)] ≥ χ[δa(t)]

or equivalently
d

dα
χ[δa(t) + α δb(t)]

∣∣∣∣
α=0

= 0

In the event δa(t) > 0, the Euler-Lagrange equation

χ′[δa(t)] = −1− ν2

E

2

π3

κ2(t)

a2(t)

[
− 3

a(t)
δa(t) +

2

κ(t)

∂κ

∂t

∣∣∣∣
t

]
= 0 (4.75)

holds, whereas the inequality χ′[δa(t)] ≥ 0 has to be generally satisfied. Accordingly, at all s ∈
F(t)|ϕ=0 the Karush-Kuhn-Tucker conditions hold:

δa(t) ≥ 0, χ′[δa(t)] ≥ 0, χ′[δa(t)]δa(t) = 0

By “ time” integration of (4.75) one gets:

log
κ(t)

κ0
=

3

2
log

a(t)

a0
(4.76)

having set a(0) = a0, κ(0) = κ0. The benchmark eq. (4.73) immediately follows from setting

K1(a0) = KC
1 , κ0 = KC

1 π
2a

3/2
0 . Equation (4.76) expresses the critical load factor corresponding to

the evolution of radius a(t). In the event δa(t) = 0, the inequality χ′[δa(t)] ≥ 0 reads:

−1− ν2

E

2

π3

κ2(t)

a2(t)

2

κ(t)

∂κ

∂t

∣∣∣∣
t

≥ 0

and is satisfied only by ∂κ
∂t

∣∣
t
≤ 0, i.e. only by unloading conditions as expected.

4.2.3 Discretization

Let h > 0 be a parameter and let δah be a discrete approximation of the unknown field δa(t). The
approximation δah is taken to belong to a finite dimensional subspace Vh such that:

∀δa, inf
δah∈Vh

‖δa− δah‖ → 0 as h→ 0 (4.77)

Denote with {ψj |j = 1, ...., Nh} a basis of space Vh of finite dimension Nh. The discrete solution is
the linear combination of shape functions ψj(s) and nodal unknowns δaj :

δah(t) =

Nh∑
j=1

ψj(s)δaj (4.78)

where ψj(sj) = 1 and ψi(sj) = 0 if i 6= j. After collecting nodal unknowns δaj in vector δa the
discrete form of functional (4.74) reads:

χ[δa] = −1

2

Nh∑
i=1

Nh∑
j=1

∫
F(t)

N ′F [ψj(s)]ψi(s) ds δai δaj

−
Nh∑
i=1

∫
F(t)

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

ψi(s)ds (4.79)
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with linear operator N ′F [·] defined as (see eq.(4.43)):

N ′F [ψj(s)] =
1− ν2

E
K1(s)

[
1

2π
=

∫
F(t)

WF (s, s′)K1(s′)

D2(s, s′)
ψj(s

′) ds′+

+

(
1

2

∂WS

∂ρ

∣∣∣∣
s,s

− c

2

)
K1(s)ψj(s)−

µ

1− ν
3
√

2π

8
Ξ1(s)ψj(s)

]
(4.80)

The stationary point for χ[δa] is the solution of the linear system

A δa = b (4.81)

with

Aij = −
∫
F(t)

N ′F [ψj(s)]ψi(s) ds (4.82)

bi =

∫
F(t)

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

ψi(s) ds (4.83)

For the penny shape crack at hand the crack front F(t) is a circumference of radius a(t). The
positive integer Nh that defines the dimension of space Vh is here taken as the number of subdivi-
sions of the crack front. Each arc of the subdivision is enclosed by the center angle φ̄ = 2πN−1

h and
has a length h = a(t)φ̄. As usual in the language of approximation method it is termed “ element”.
The element length h seems to be the most suitable choice for the discretization parameter in (4.77).
The implicit assumption of uniform decomposition is a natural consequence of the axial-symmetry
of the problem.

The “ smooth” elongation δa of the crack front normal to itself is approximated via the linear
combination (4.78). Denoting with s = a(t)φ the curvilinear abscissa along the front, shape func-
tions ψj(s) are taken to be linear in φ (see figure 4.7) and once for all it is assumed that 0 ≤ φ ≤ 2π.

Figure 4.7: A plot of shape functions along the crack front F(t). Even tough they are linear in φ
their plot is not straight because of the curvature of the crack front. As the “smooth” elongation
δa of the crack front is normal to itself [117], shape functions increment the radius locally for the
penny shape crack at hand.

The characteristic function Hj [φ] on element j = 1, 2, ..., Nh is a step function that is vanishing
outside element j. It is formally defined as

Hj [φ] =

{
1 if (jm − 1)φ̄ ≤ φ ≤ jm φ̄
0 otherwise
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with jm = jmoduloNh standing for the remainder of the division between integers j and Nh.
Characteristic functions are used to define the support of shape functions ψj(φ). They read:

ψj(φ) =

(
1− j +

φ

φ̄

)
Hj [φ] +

(
1− φ− jφ̄

φ̄

)
Hj+1[φ] j = 1, 2, ..., Nh

By writing jmoduloNh it is ensured that shape function ψNh(φ) is defined partially on the last ele-
ment and partially on the first. The support of each shape function is thus made of two consecutive
elements - see also figure 4.7.

According to eq. (4.80) operator N ′F [·] has local and non local contributions. The former
amounts to:

N
′loc
F [ψj(s)] =

1− ν2

E
K1(s)

[(
1

2

∂WS

∂ρ

∣∣∣∣
s,s

− c

2

)
K1(s)− µ

1− ν
3
√

2π

8
Ξ1(s)

]
ψj(s)

(4.84)

whereas the non-local contribution is the counterpart of eq. (4.80). Taking into account closed
forms (4.56) for the SIF K1, (4.58) for the coefficient Ξ1 of the crack opening expansion and (4.69)
for the derivative of WS with respect to ρ, N

′loc
F [·] holds:

N
′loc
F [ψj(s)] = −1− ν2

E

κ2

(πa)3

3

2a
ψj(s)

Such a local operator provides a sparse contribution to matrix A of linear system (4.81). It is
essentially the so-called mass matrix:

Alocij =
1− ν2

E

κ2

(πa)3

3

2

∫ 2π

0
ψi(φ)ψj(φ) dφ (4.85)

which is vanishing when shape functions do not overlap, namely when supp(ψi) ∩ supp(ψj) = ∅.
The remaining part of operator N ′F [·] leads to the following non local contribution to matrix A.

Anlij = −1− ν2

E

1

2π

∫
F(t)

K1(s)ψi(s) =

∫
F(t)

WF (s, s′)K1(s′)ψj(s
′)

D2(s, s′)
ds′ ds =

= −1− ν2

E

κ2

(πa)3

1

4π

∫
supp(ψi)

ψi(φ) =

∫
supp(ψj)

ψj(φ
′)

1− cos(φ′ − φ)
dφ′ dφ (4.86)

Even for not overlapping shape function supports supp(ψi) ∩ supp(ψj) = ∅, the corresponding
matrix entry Anlij is not vanishing. The system matrix A is thus fully populated, as usual in
the approximation methods based on integral equations as for instance BEM (Boundary Element
Methods) [29]. Nevertheless, when supp(ψi) ∩ supp(ψj) = ∅, the finite part of Hadamard in eq.
(4.86) coincides with a standard Riemann integral and usual Gaussian quadrature rules allow an
effective evaluation of entries Aij . When shape function supports overlap, finite parts of Hadamard
have to be evaluated analytically. This approach is quite standard in BEM (see for instance
[120, 121, 123]) and will be detailed below. Evaluation of given terms (4.83) shows no difficulties
and is obviously local in nature:

bi =
GC
κ(t)

∂κ

∂t

∣∣∣∣
t

a(t)

∫ 2π

0
ψi(φ) dφ (4.87)
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Matrix A and vector b have the following properties:

Aij = Alm ∀ 1 ≤ i, j, l,m ≤ Nh s.t. l − i = m− j (4.88a)

bi = bk ∀ 1 ≤ i, k ≤ Nh (4.88b)

in view of the selected discretization. As a consequence, the system solution is such that

δai = δak ∀ 1 ≤ i, k ≤ Nh

as desirable in view of the axial symmetry of the problem at hand. In order to compare the accuracy
of the solution with the given benchmark, it is useful to restate Aij and bi in the following way:

Aij = −1− ν2

E

κ2

(π a)3
Aij , bi =

GC
κ(t)

∂κ

∂t

∣∣∣∣
t

b̄i (4.89)

where

Aij =
1

4π

∫ 2π

0
ψi(φ) =

∫ 2π

0

ψj(φ
′)

1− cos(φ′ − φ)
dφ′ dφ− 3

2

∫ 2π

0
ψi(φ)ψj(φ) dφ (4.90)

b̄i =

∫ 2π

0
φi(φ) dφ (4.91)

Obviously matrix A and vector b̄ enjoy the properties (4.88a, 4.88b) as well. It comes out imme-
diately

δai = −(A−1b)i
a(t)

κ(t)

∂κ

∂t

∣∣∣∣
t

(4.92)

to be compared with Euler-Lagrange equation (4.75), i.e.

δa = +
2

3

a(t)

κ(t)

∂κ

∂t

∣∣∣∣
t

The scalar −(A−1b)i, which is in fact independent on i, can then be compared with 2/3 in order
to benchmark the accuracy of the proposed variational strategy for the selected example. Table
4.1 collects the results of the benchmark. Evidences show that the rate of convergence1

p = log2
εn
εn+1

with εn = | − (A−1b)i − 2/3|, is clearly linear.
Matrix A shows a distinctive behavior that reflects some mathematical properties of the weight

functions. As illustrated in figures 4.8 and 4.9, the diagonal terms Aii are negative, differently
from all non diagonal entries. In absolute value the diagonal terms are much higher than all other
counterparts, which in fact become closer and closer to zero when the distance between the shape
functions supports increases.

1A sequence xn is said to converge to L with order p if there exists a constant C such that |xn − L| < Cn−p ∀n.
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Nh (A−1b)i Error Convergence
Abs. Rel. (%)

εn = | − (A−1b)i − 2/3| 100 3/2 εn p

8 -0.67142 0.0047618 0.71428 -

16 -0.66900 0.0023350 0.35024 1.02813

32 -0.66783 0.0011609 0.17414 1.00814

64 -0.66725 0.00057939 0.086909 1.00265

128 -0.66696 0.00028950 0.043425 1.00098

256 -0.66681 0.00014471 0.021706 1.00040

Table 4.1: Accuracy of the variational strategy for the selected penny shape example.

Aii

Ai(i+1)

Ai(i−1)

0

−0.2

−0.4

−0.6

0.2

Figure 4.8: The picture visualizes the values of the entries of matrix A in eq. (4.90) for parameter
Nh = 64. The values of a row of A are depicted on the left, and zoomed on the right. Diagonal
terms Aii are negative and much higher in absolute value. The higher the distance between the
supports of the shape functions the closer to zero the value of Aij

0−0.2

−0.4

−0.6

0.2

Aii

Nh = 64
Nh = 128

Nh = 256

Figure 4.9: The picture is a zoom of the values of the entries of matrix A in eq. (4.90) for
parameters Nh = 64, Nh = 128 and Nh = 256.

4.2.4 Finite part of Hadamard evaluation along a circle

The final part of this section is dedicated to elucidate the evaluation of integrals in equation (4.90).
Consider as first the item of coincident supports and take i = j = 1 for the sake of simplicity.
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Apart from factor 1/4π the non local part of matrix A in eq. (4.90) in its expanded form reads:

Anl11 =
1

φ̄2

∫ φ̄

0
φ

[
=

∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′ +

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ

+
1

φ̄2

∫ 2φ̄

φ̄
(2φ̄− φ)

[∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′+ =

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ

with angle φ̄ = 2π/Nh. It comes out:

=

∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′ =

1

φ̄

{
log

[
sin2

(
φ− φ̄

2

)]
− log

[
sin2

(
φ

2

)]}
− cot

(
φ̄− φ

2

)

=

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′ =
1

φ̄

{
log

[
sin2

(
φ− φ̄

2

)]
− log

[
sin2

(
φ− 2φ̄

2

)]}
+ cot

(
φ̄− φ

2

)
From identities above it turns out that the two external integrals in φ:∫ φ̄

0
φ =

∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′ dφ

∫ φ̄

0
φ

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′ dφ

are not well defined separately. Nevertheless, the singularity of the kind 2/(φ − φ̄) is present in
both integrals and cancels out in the sum. Accordingly, integral∫ φ̄

0
φ

[
=

∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′ +

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ

is a well defined Riemann integral in φ. Integral∫ 2φ̄

φ̄
(2φ̄− φ)

[∫ φ̄

0

φ′

1− cos(φ′ − φ)
dφ′+ =

∫ 2φ̄

φ̄

2φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ

shows analogous peculiarities, therefore the analysis of the item of coincident supports is completed.
The item of adjacent supports merely remains. Again for the sake of simplicity take i = 1, j = 2.

Non local part of eq. (4.90) in its expanded form reads:

Anl12 =
1

φ̄2

∫ φ̄

0
φ

[∫ 2φ̄

φ̄

φ′ − φ̄
1− cos(φ′ − φ)

dφ′ +

∫ 3φ̄

2φ̄

3φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ

+
1

φ̄2

∫ 2φ̄

φ̄
(2φ̄− φ)

[
=

∫ 2φ̄

φ̄

φ′ − φ̄
1− cos(φ′ − φ)

dφ′ +

∫ 3φ̄

2φ̄

3φ̄− φ′
1− cos(φ′ − φ)

dφ′

]
dφ
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It comes out:∫ 2φ̄

φ̄

φ′ − φ̄
1− cos(φ′ − φ)

dφ′ =
1

φ̄

{
log

[
sin2

(
φ− 2φ̄

2

)]
− log

[
sin2

(
φ− φ̄

2

)]}
− cot

(
φ̄− φ

2

)

∫ 3φ̄

2φ̄

3φ̄− φ′
1− cos(φ′ − φ)

dφ′ =
1

φ̄

{
log

[
sin2

(
φ− 2φ̄

2

)]
− log

[
sin2

(
φ− 3φ̄

2

)]}
+ cot

(
φ̄− φ

2

)
The outer integral in φ is a well defined Riemann integral in this case. Furthermore, it holds:

=

∫ 2φ̄

φ̄

φ− φ̄
1− cos(φ′ − φ)

dφ′ =

∫ 2φ̄

φ̄

φ− φ̄
1− cos(φ′ − φ)

dφ′

whence the evaluation of Anl12 shows no further issues.

4.3 Weight functions update

Following the same path of reasoning of Rice [117], equation (4.13), or its relatives (4.17) and
(4.18), provides the first order variation of the SIF K1(s1) when the FK WF (s1, s) is known. A
procedure for computing the evolution of WF has to be given in order to provide a δK1 distribution,
associated with infinitesimal elongation δl(s), which can be integrated over a sequence of successive
crack fronts, starting at a simple one, in order to give K1 for a general shape. At this point it
is necessary to introduce the assumption that two points along the crack front, say s1 and s2,
are stationary (i.e. δl(s1) = 0 and δl(s2) = 0), for which the FK WF (s1, s2) is known. In view
of representation formula (4.5), applying two point forces in the y-direction on the crack faces at
point (x2, z2) at a distance ρ2 from s2, the CFWF k11((x2, z2), s) holds:

k11((x2, z2), s) =

√
2 ρ2W

S((x2, z2), s)

D2((x2, z2), s)
(4.93)

In such loadings conditions, SIF K1(s1) becomes k11((x2, z2), s1) in eq.(4.13), namely:

δk11((x2, z2), s1) =
1

2π
−
∫
F

WF (s1, s)

D2(s1, s)
k11((x2, z2), s) δl(s) ds (4.94)

Dividing both sides of eq. (4.94) by
√
ρ2 and letting ρ2 → 0, one can obtain the variation of the

FK WF (s1, s2) to the first order in δl(s), in the case of δl(s1) = δl(s2) = 0:

δWF (s1, s2) =
D2(s2, s1)

2π
−
∫
F

WF (s1, s)W
F (s2, s)

D2(s1, s)D2(s2, s)
δl(s) ds (4.95)

Equation (4.95) provides the first order variation of the FK δWF (s1, s2) when WF (s1, s) and
WF (s2, s) are known along the crack front. In the case of mixed mode, eq. (4.95) is extended by
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Favier et al. [37] to:

δWF (s1, s2) = N(θ)WF (s1, s2)
∂l

∂s′

∣∣∣∣
s1

−WF (s1, s2)N(θ)
∂l

∂s′

∣∣∣∣
s2

+

+
D2(s1, s2)

2π
−
∫
F

WF (s1, s)WF (s2, s)

D2(s1, s)D2(s2, s)
δl(s) ds (4.96)

with N(θ) defined in expansion (2.5).
Focusing once again on the pure mode 1 case, in order to get rid of conditions δl(s1) = δl(s2) = 0,

one has to introduce a motion δl∗∗(s) such that δl∗∗(s1) = δl(s1) and δl∗∗(s2) = δl(s2). Denoting
with δWF∗∗(s1, s2) the corresponding first order variation of the FK, eq. (4.95) becomes:

δWF (s1, s2) = δWF∗∗(s2, s1) +
D2(s1, s2)

2π
−
∫
F

WF (s1, s)W
F (s2, s)

D2(s1, s)D2(s2, s)
[δl(s)− δl∗∗(s)] ds (4.97)

Drawback of such an approach is the necessity to define δl∗∗(s) such that δWF∗∗(s1, s2) can be
computed, and it has not been solved at present in the general case. As remarked in [79], in case of
infinite domains loaded at infinity, it is always possible to find a combination of a translatory motion,
a homothetical expansion and a rotation that brings the two points s1 and s2 from any initial
position to any final position, while leaving the kernel unaffected so that δWF∗∗(s1, s2) = 0. Formulas
(4.13) and (4.95) that express the first order variation of the SIF and of the FK, respectively,
establish the bases of the perturbation approach, briefly described in Chapter 5. The latter has
been applied merely to infinite bodies so far, because of the steady locations assumption. Removing
in full the hypothesis of steady locations, and consequently the ones introduced to circumvent the
resulting limitations, an algorithm to approximate weight functions for all cases for which they are
not available in closed form is needed and is described below.

Formulation of the algorithm is based on the definition of the weight functions itself and allows
estimation of FKs for the general case of finite domains and general crack front shapes. Such
an algorithm is grounded on the classical Finite Element Method (FEM) and does not provide an
analytical expression of the first order variation of the FKs as the counterpart of eq. (4.95), as done
on the contrary in [129], where eq. (4.53) can be considered an extension of Rice’s result eq. (4.13)
for the first order variation of SIFs. In view of equation (4.2), the mode 1 CFWF k11(P, s′) can be
estimated by the application of two point forces t = −δ(P )n in the outward normal direction to
the crack surface, where δ(P ) stands for Dirac delta applied at point P, whose distance from the
crack front point s amounts to ρ. As pointed out by Rice [116], it is convenient to regard these
forces t as being distributed uniformly over a disk of arbitrary small radius centered on P = (x, z).
The corresponding SIF K1(δ(P ); s′) at curvilinear abscissa s′ is therefore:

K1(δ(P ); s′) =

∫
S(t)

k11(P, s′)δ(P ) dx dz =

√
2ρ

π
√
π

1

D2(P, s′)
WS(P, s′) (4.98)

in view of representation formula (4.5). Inserting Taylor series expansion of WS(P, s′) with respect
to ρ:

WS(P, s′) = WF (s, s′) +
∂WS

∂ρ

∣∣∣∣
s,s

ρ+ o(ρ) (4.99)
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into (4.98), the following estimates for the FK WF (s, s′) eventually come out:

WF (s, s′) = K1(δ(P ); s′)
π
√
π√

2ρ
D2(P, s′) + o(1) (4.100a)

WF (s, s′) = K1(δ(P ); s′)
π
√
π√

2ρ
D2(P, s′)− ∂WS

∂ρ

∣∣∣∣
s,s

ρ+ o(ρ) (4.100b)

Eq. (4.100b) is a linear approximation of FK WF (s, s′) in ρ that takes into account the role of the
derivative of WS with respect to ρ.

In order to investigate the accuracy of formulas (4.100a) and (4.100b) a circular crack of unit
radius a(t) = 1 immersed in an unbounded linear elastic isotropic domain has been considered.

Figure 4.10: Penny shape crack with radius a(t) embedded in an infinite body subject to two point
forces with magnitude −δ(P )n at point P at a distance ρ from the crack front F(t), where δ(P ) is
a Dirac delta at point P and n is the outward unit normal, so they open the crack.

Closed forms are available for the crack geometry at hand loaded by two point forces at point
P = (x, z) so to open the crack lips, see figure 4.10. CFWF k11(P, s′), WS(P, s′) are expressed by
formulas (4.60)and (4.68), respectively. FK is therefore

WF (s, s′) = 1 (4.101)

in view of definition (4.7). Thus having at hand the closed form solution for the SIF K1(δ(P ); s′)
along curvilinear abscissa s′ of the crack front (see eq. (4.98)), the right hand side of equations
(4.100) can be easily computed and the FK compared with the analytical solution (4.101). The
outcomes are reported in figure 4.11.

FK WF (s, s′) is a map between a two dimensional space in R, WF : R × R → R. Equations
(4.100) therefore shall be considered in a two-dimensional perspective, without being blurred from
the observation that the crack front is a curve, i.e. a one-dimensional entity. The FK WF (s, s′)
could be approximated via a linear combination of unknowns Wj and standard interpolatory shape
functions ψj(x) with x = {s, s′} ∈ R× R as:

WF (x) ≈
N∑
n=1

Wnψn(x) +
M∑
m=1

Wmψm(x) (4.102)

In the approximation above, Wns are the N nodal unknowns for WF at points for which s′ 6= s. In
view of identities (4.10), in pure mode 1 one has WF (s, s) = 1, and the M nodal unknowns Wm at
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Figure 4.11: A representation of the error in approximating FK WF (s, s′) along a circle of unit
radius loaded in mode 1. The ordinate depicts the relative error in percentage in a logarithmic
scale. Center angle φ is plot between 0 and π, for the sake of symmetry. Continuous lines refer to
approximation (4.100a) and dotted lines to the first order approximation (4.100b). Blue lines refer
to a value of ρ = 0.1, red lines to a value of ρ = 0.05 and green lines to a value of ρ = 0.01.

locations s = s′ may be enforced to take equal to a unit amount. Equations (4.100) are therefore
of the form:

N∑
n=1

Wnψn(x) = f(x)−
M∑
m=1

ψm(x) (4.103)

and they can be numerically approximated in several ways. The easiest is perhaps by collocation,
i.e. collocating eq. (4.103) at the N points xi:

N∑
n=1

Wnψn(xi) = f(xi)−
M∑
m=1

ψm(xi), i = 1, 2, ..., N (4.104)

Collocation approach is easy and small time consuming, but it is influenced from the arbitrary
location of collocation points.

Alternatively, a Galerkin approach can be established as usual, by multiplying with a test
function of the same functional space as the shape functions and performing an integration over
bidimensional domain Q depicted in figure 4.12.

N∑
n=1

∫
Q
ψn(x)ψj(x) ds ds′Wn =

∫
Q
ψj(x)f(x) ds ds′ −

M∑
m=1

∫
Q
ψm(x)ψj(x) ds ds′, j = 1, 2, ..., N

(4.105)

4.3.1 Implementation

The circular crack of unit radius represented in figure 4.10 is the selected model problem. Different
subdivisions of the crack front have been considered; in particular the crack front has been divided
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Figure 4.12: A representation of two dimensional domain Q for the problem (4.103). N points filled
in white are such that s 6= s′ and Wn is unknown ∀n = 1, 2, ..., N , while M points filled in grey are
such that s = s′ and Wm = 1 in view of identity (4.10) ∀m = 1, 2, ...,M .

into 8, 16, 32, 64, and 128 elements.
Standard linear shape functions have been considered for each element i of the 2D domain Q

depicted in figure 4.12. The shape function vector has the form:

ψ(s, s′) ={
(s− s2i)(s

′ − s′4i)
(s1i − s2i)(s′1i − s′4i)

;
(s− s1i)(s

′ − s′4i)
(s2i − s1i)(s′2i − s′4i)

;
(s− s4i)(s

′ − s′2i)
(s3i − s4i)(s′3i − s′2i)

;
(s− s3i)(s

′ − s′1i)
(s4i − s3i)(s′4i − s′1i)

}
(4.106)

where sji and s′ki are the jth abscissa and the kth ordinate of nodes of element i, with 1 ≤ j, k ≤ 4.
For what regards the collocation technique, collocation nodes have been placed at small distances

to the left and to the right of each node, as plotted in figure 4.13-a for the case of 8 elements, since the
nodes of the discretization are locations where the definition of the SIFs is ill-posed for insufficient
smoothness of the discretized crack front. Such a distance has been chosen to be equal to 1/10 of
the element length.

Accordingly to this choice, for the 8 elements case, 16 collocation points are placed along the
circular crack front and making reference to the 2D representation of domain Q of figure 4.12, M = 8
and N = 56. Since collocation nodes do not coincide with element’s vertices, two collocation nodes
correspond to each vertex along the circumference and four collocation nodes xci correspond to each
of the N points xi of 2D domain Q as depicted in figure 4.13-b with i = 1, 2, ..., N and c = 1, 2, 3, 4.
Eq. (4.104) is thus evaluated at each of the four collocation nodes and averaged thereafter, i.e. it
has been implemented in the form:

1

4

4∑
c=1

N∑
n=1

Wnψn(xci ) =
1

4

4∑
c=1

[
f(xci )−

M∑
m=1

ψm(xci )

]
, i = 1, 2, ..., N (4.107)

Approximation of FK WF (x) by means of Galerkin approach, as expressed in eq. (4.105), has
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a) b)

Figure 4.13: a) Circular crack front divided into 8 elements. The corresponding 8 nodes are repre-
sented by black dots. Collocation points are placed at a small distance to the left and to the right of
each node. The resulting 16 collocation nodes are represented with grey dots. b) In the 2D domain
Q, 4 collocation points xci , represented by grey dots, correspond to each node xi represented by the
back dot, with i = 1, 2, ..., N and c = 1, 2, 3, 4.

been implemented exploiting the usual Gaussian quadrature rule in order to perform integrations
over 2D domain Q.

After computing the N coefficients Wn of system (4.103), the fundamental kernel WF (xi) has
been approximated by means of equation (4.102). SIFs K1(δ(P ); s′) at curvilinear abscissa s′ along
the crack front have been evaluated numerically by the software FRANC3D (FRacture ANalysis
Code 3D), developed at Cornell University (Ithaca, NY). It is designed to be used as a companion
to a general Finite Element (FE) package (ABAQUS in this case). The uncracked FE mesh is
created using standard tools available in the FE package, the crack geometry and location are
then prescribed with FRANC3D and the model is remeshed. The analysis is perfomed by the
FE package and the resulting displacements are read back into FRANC3D which computes the
SIFs along the crack front exploiting either the calculation of the M-integral or alternatively the
Displacement Correlation Technique. In FRANC3D, for an accurate SIFs computation, a pattern
or template of elements with controlled sizes and shapes is placed about the crack front. Such a
template takes the form of generalized cylindrical tubes of elements, whose dimension is controlled
by a parameter called template radius (tr), with the crack front serving as the axis of the cylinder,
as plotted in figure 4.14-b. Wedge shaped 15-noded quarter-point elements, as the ones depicted in
figure 3.5-c, are placed immediately adjacent to the crack front forming the first ring of elements
of figure 4.14-b. These elements are surrounded by other two rings of 20-noded brick elements.
Tetrahedral 10-noded elements are used for the bulk of the volume mesh, and pyramidal 13-noded
elements enforce compatibility between bricks and tetrahedral elements.

Referring to the model problem of figure (4.10), a circular crack with unit radius has been
inserted into a cylinder whose dimensions and boundary conditions are reported in figure 4.15-a,
considering a fictitious brittle material with Young’s modulus E = 1, and Poisson’s ratio ν = 0.3.

Figure 4.15-b shows SIFs K1(δ(P ); s′) at point s′ along the crack front, numerically computed
in FRANC3D for three different values of the template radius tr = 0.2, tr = 0.1 and tr = 0.05
and a position of the point forces ρ = 0.3. All of the three curves show a good agreement with the
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a) b)

Figure 4.14: a) Three dimensional representation of the template of elements surrounding the crack
front of the circular crack with unit radius a = 1 in the software FRANC3D b) Cross section of
the template of elements that surround any crack front in FRANC3D, forming a cylindrical tube
of elements with the crack front serving as the axis of the cylinder. Dimensions of such rings is
controlled by the parameter template radius tr.

analytical solution formula (4.60).
According to eq. (4.101), in the case of an internal circular crack loaded in pure mode 1, the

FK WF (s, s′) has to be equal to 1 in all points s’ along the crack front.
Figure 4.16 shows the results obtained from the implementation of the FK approximation al-

gorithm (4.102) described above, exploiting SIFs K1(δ(P ); s′) computed in FRANC3D with three
different values of template radius (tr = 0.2, tr = 0.1 and tr = 0.05). Results are compared with
the solution obtained exploiting the analytical solution for the SIFs K1(δ(P ); s′) formula (4.60).
Figure 4.16 refers to the particular case of an eccentricity of the load ρ = 0.3 and a number of
elements Nh = 32 along F . Behavior of the curves with respect to s′ is exactly the same, whatever
subdivion of the crack front in Nh element is considered.
Figure 4.16-a corresponds to approximation (4.100a), while figure 4.16-b corresponds to the first
order approximation (4.100b). Furthermore collocation technique (4.104) and Galerkin approach
(4.105) reveal equivalent for the FK approximation algorithm, leading to the same results. Both
using approximation (4.100a) and approximation (4.100b), contrarily to what intuition suggests,
smaller template radii do not lead to better approximation of WF , as one can envisage from figure
4.16 where the green curves corresponding to tr = 0.05 provide higher values of the error with
respect to the other two corresponding to the case tr = 0.1 and tr = 0.05. There is no an assured
explanation for this phenomenon, but performed numerical analyses suggest that the reason lies
on the dimension of the elements along the boundary of the cylindrical domain plotted in figure
4.15-a. In other words, the greater the uniformity of elements’ size in the bulk, the better the
approximation of WF (s, s′).

As expected, first order approximation (4.100b), that involves the derivative of WS(P, s′) with
respect to ρ, leads to smaller values of the percentage error on the FK approximation- always less
that 3%- with respect to approximation (4.100a) that exceeds 10% in certain points along F .

In view of definition (4.7), the smaller the value of ρ, the better the WF (s, s′) approximation,
but too small values of ρ can compromise the accuracy in the computation of SIFs in FRANC3D
because of the proximity of the point load to the crack front, as confirmed by figure 4.17, that refers
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Figure 4.15: a) Schematic representation of the cylindrical domain containing the circular crack
of unit radius a = 1, exploited to compute SIFs in FRANC3D, with material parameters E = 1
and ν = 0.3. In order to reach the condition of a crack in an infinite medium the cylinder has a
radius 100 times the crack radius and a height 200 times the crack radius. Boundary conditions
are detailed as well. b) SIFs K1(δ(P ); s′) with respect to the curvilinear abscissa s′ along the
crack front computed in FRANC3D with three different values of the template radius (tr = 0.2
(red dots), tr = 0.1 (blue dots), and tr = 0.05 (green dots)) when two point forces are applied at
a distance ρ = 0.3 from the crack front. The three curves match the analytical solution formula
(4.60) represented by the continuous black curve.

to a value of ρ = 0.1.
Supported by these results, it is planned to extend the formulation of the approximation of the

fundamental kernels also to modes 2 and 3. Finally, the analytical counterpart of the first order
variation of FKs eq. (4.95) is extremely desirable in the case of general crack front shapes in finite
domains, as first order variation of SIFs formula (4.53) is the counterpart of Rice’s result equation
(4.13).
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Figure 4.16: Implementation of the FK WF (s, s′) approximation formulas (4.100) on a circu-
lar crack with unit radius embedded in the linear elastic and homogeneous cylindrical domain
represented in figure 4.15-a. The graphs shows the percentage error on the approximation of
WF (s, s′) along the curvilinear abscissa s’ with respect to the analytical solution for the FK, namely
WF (s, s′) = 1 ∀s′ ∈ F . Three different values of the template radius are considered in the soft-
ware FRANC3D, namely tr = 0.2 (red curves), tr = 0.1 (blue curves) and tr = 0.05 (green curves).
Black curves refer to the use of the analytical solution for K1(δ(P ); s′) eq. (4.60) in the FK ap-
proximation algorithm. The point forces are applied at a distance ρ = 0.3 from the crack front F .
a) Results for approximation (4.100a). b) Results for the first order approximation (4.100b).
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Figure 4.17: a) Percentage error on the FK WF (s, s′) approximation by means of the first order
formula (4.100b) with respect to the analytical solution (4.101). The model problem is a circular
crack with unit radius embedded in the linear elastic and homogeneous cylindrical domain repre-
sented in figure 4.15-a. The point loads δ(P ) are applied at a distance ρ = 0.1 from the crack front
and SIFs K1(δ(P ); s′) are computed in FRANC3D exploiting three different values of the template
radius tr, namely tr = 0.2 (red curves), tr = 0.1 (blue curves), and tr = 0.05 (green curves). A
direct comparison with figure 4.16-b, which refers to a value of ρ = 0.3, shows that, despite FK
definition (see eq. (4.7)) predicts better approximation of WF (s, s′) for smaller values of rho (com-
pare black curves that refer to the analytical solution for K1(δ(P ); s′) eq. (4.60)), the accuracy in
the computation of SIFs in FRANC3D can be compromised by the vicinity of the point loads to the
crack front. For example, for tr = 0.2, in the nodes closest to the point loads, it is reached an error
almost equal to 10% in absolute value on the approximation of WF (s, s′). b) Zoom of figure a.
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4.4 Appendix A: Finite part of Hadamard and limit to the bound-
ary of the squared distance

Elliptic crack fronts

In the present appendix details on the computation of integral (4.49), namely:

lim
ρ→0+

∫
F(t)

1

D2(P, s′)
ds′ (4.108)

are firstly shown in the case of elliptic crack front and then extended to the case of general
crack front shapes.

For an elliptic crack front of major semi-axis a and minor one b, with the notation of figure
4.18, the radius OQ = R(φQ) holds:

R(φQ) =
ab√

b2 cos2(φQ) + a2 sin2(φQ)

whence the distance between points P and Q, the latter being located at the generic abscissa s′,
reads:

D2(P, s′) = [ cos(φP ) (−ρ+R(φP ))− cos(φQ)R(φQ) ]2+[ sin(φP ) (−ρ+R(φP ))− sin(φQ)R(φQ) ]2

Figure 4.18: Notation about an elliptic crack front with a = 2 and b = 1.

Even for easy configurations as φP = 0, such that R(φP ) = a, the squared distance function

D2(P, s′)
∣∣
φP=0

= (a− ρ)2 − 2 cos(φQ)R(φQ) (a− ρ) +R(φQ)2

appears to be too much involved to lead to a closed form for integral (4.108). The main features
of limit (4.108) will thus be studied by making recourse to a different approach, assuming φP = 0.
With the notation of figure 4.19 and φQ = φ, it holds in fact:

lim
ρ→0+

∫
F(t)

1

D2(P, s′)
ds′ =

∫
F(t)/[−φ,φ]

j(φ)

a2 − 2 cos(φ)R(φ) a+R(φ)2
dφ (4.109)

+ lim
ρ→0+

∫ α

−α

√
1 + [y′2(y1)]2

(ρ+ y2(y1))2 + y2
1

dy1
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having defined with α = R(φ) sin(φ) and with j(φ) =
√
R(φ)2 +R′(φ)2 the Jacobian determinant

of the variable transformation. Having set φP = 0, it turns out

[y′2(y1)]2 =
a2 − (y2 + a)2

b2 − y2
1

(4.110)

�↵

x1 = y2

s0

s

y1

↵

�"
"

y2(y1)

a) b)

Figure 4.19: Notation about an elliptic crack used in: a) the limit process ρ → 0+ ; b) the finite
part of Hadamard. By defining α in a more general way, the notation applies to a generic smooth
crack front. Accordingly, the crack front curve F can be split as F0 ∪F1. Curve F1 is defined as in
b). Consider the Frenet frame at s and an interval of size [−α, α] about the origin of the tangent
axis, here denoted as y1. Denote locally the (smooth) crack front curve F as y2(y1). The curve F1

is the subset of F such that −α ≤ y1 ≤ α and F0 the complementary part F0 = F\F1.

The integrand function√
1 + [y′2(y1)]2

(ρ+ y2(y1))2 + y2
1

=
1

(ρ+ y2)2 + y2
1

√
1 +

a2 − (y2 + a)2

b2 − y2
1

is sufficiently smooth to admit a series expansion about y2 = 0. In fact, having assumed {y1, y2}
as to coincide with the Frenet frame, at y1 = 0 it holds y2 = y′2 = 0. The expansion reads√

1 + [y′2(y1)]2

(ρ+ y2(y1))2 + y2
1

=
1

ρ2 + y2
1

− 2ρ

(ρ2 + y2
1)2

y2 + h(ρ; y1, y2(y1)) (4.111)

with h(ρ; y1, y2(y1)) such that

lim
ρ→0+

∫ α

−α
h(ρ; y1, y2(y1))dy1 =

∫ α

−α
h(0; y1, y2(y1))dy1

Accordingly, in integral (4.109) one is left with

lim
ρ→0+

∫ α

−α

1

ρ2 + y2
1

dy1 − lim
ρ→0+

∫ α

−α

2ρ

(ρ2 + y2
1)2

y2 dy1
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The former limit is not bounded:

lim
ρ→0+

∫ α

−α

1

ρ2 + y2
1

dy1 =
π

ρ
− 2

α
(4.112)

The integrand function in the second integral vanishes at ρ = 0 but in the limit process the second
integral is known to generate a so called “free term”. Denoting with c the curvature at point P ′,
i.e. y2 = c y2

1 + o(y2
1), it holds:

lim
ρ→0+

∫ α

−α

2ρ

(ρ2 + y2
1)2

y2 dy1 = c π (4.113)

In conclusion therefore,

lim
ρ→0+

∫
F(t)

1

D2(P, s′)
ds′ =

∫
F(t)/[−φ,φ]

j(φ)

a2 − 2 cos(φ)R(φ) a+R(φ)2
dφ (4.114)

+
π

ρ
− 2

α
− c π +

∫ α

−α
h(0; y1, y2(y1))dy1

With regard to the finite part of Hadamard, one has:

I(ε) = lim
ε→0+

∫
F(t)/[−ε,ε]

1

D2(s, s′)
ds′ =

∫
F(t)/[−φ,φ]

1

D2(s, s′)
ds′ + lim

ε→0+

∫
[−φ,φ]/[−ε,ε]

1

D2(s, s′)
ds′

=

∫
F(t)/[−φ,φ]

j(φ)

a2 − 2 cos(φ)R(φ) a+R(φ)2
dφ+ lim

ε→0+

∫
[−φ,φ]/[−ε,ε]

√
1 + [y′2(y1)]2

y2
2 + y2

1

dy1

and in view of property (4.110) and expansion (4.111)

I(ε) =

∫
F(t)/[−φ,φ]

j(φ)

a2 − 2 cos(φ)R(φ) a+R(φ)2
dφ+ lim

ε→0+

∫
[−φ,φ]/[−ε,ε]

1

y2
1

+ h(0; y1, y2(y1))dy1

=

∫
F(t)/[−φ,φ]

j(φ)

a2 − 2 cos(φ)R(φ) a+R(φ)2
dφ+

2

ε
− 2

α
+

∫ α

−α
h(0; y1, y2(y1))dy1 (4.115)

By comparing the latter with limit (4.114) the basic identity

lim
ρ→0+

∫
F(t)

1

D2(P, s′)
ds′ =

π

ρ
− c π+ =

∫
F(t)

1

D2(s, s′)
ds′ (4.116)

comes immediately out. It has a general validity, as it will be proven below.

General crack fronts

In order to perform integral (4.49) and the limit thereafter the crack front curve F(t) can be
split as F0(t)∪F1(t). Curve F1(t) is defined as follows - see also figure 4.19-b. Consider the Frenet
frame at s and an interval of size [−α, α] about the origin on the tangent axis, here denoted with
y1. Denote locally the (smooth) crack front curve F(t) as y2(y1). The curve F1(t) is the subset of
F(t) such that −α ≤ y1 ≤ α and F0(t) the complementary part F0(t) = F(t)\F1(t). Accordingly,
curve F0(t) does not contain s and the limit ρ→ 0+ is trivial for the integral along F0(t).

Denote with

s′ − s = ψ(y1) =

∫ y1

0

√
1 + (y′2(y1))2 dy1 = y1 + o(y1)
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along F1(t) and consider integrals

lim
ρ→0+

∫
F1(t)

1

D2(P, s′)
ds′ = lim

ρ→0+

∫ α

−α

√
1 + (y′2(y1))2

(ρ+ y2(y1))2 + y2
1

dy1 (4.117)

lim
ρ→0+

∫
F1(t)

s′ − s
D2(P, s′)

ds′ = lim
ρ→0+

∫ α

−α
ψ(y1)

√
1 + (y′2(y1))2

(ρ+ y2(y1))2 + y2
1

dy1 (4.118)

If F1(t) is sufficiently smooth, it holds about y2 = 0√
1 + (y′2(y1))2 = 1 +

+∞∑
n=1

(−1)n
1

4n
(2n)!

(1− 2n)(n!)2
γn y

2n
1 (4.119)

1

(ρ+ y2(y1))2 + y2
1

=
1

ρ2 + y2
1

− 2 ρ

(ρ2 + y2
1)2

y2

+
+∞∑
n=2

(−1)n
(

y2

ρ2 + y2
1

)n n÷2∑
k=0

βkn
ρn−2k y2k

1

ρ2 + y2
1

(4.120)

with βkn, γn ∈ R. The expansion can thus be written again as in equation (4.111)√
1 + (y′2(y1))2

(ρ+ y2(y1))2 + y2
1

=
1

ρ2 + y2
1

− 2ρ

(ρ2 + y2
1)2

y2 + h(ρ; y1, y2(y1)) (4.121)

with h(ρ; y1, y2(y1)) bounded about ρ = 0 for all y1 ∈ [−α, α] so such that

lim
ρ→0+

∫ α

−α
h(ρ; y1, y2(y1))dy1 =

∫ α

−α
h(0; y1, y2(y1))dy1

thus leading to formula (4.114) again:

lim
ρ→0+

∫
F(t)

1

D2(P, s′)
ds′ =

∫
F0(t)

1

D2(P, s′)
ds′ +

π

ρ
− 2

α
− c π +

∫ α

−α
h(0; y1, y2(y1))dy1 (4.122)

In order to characterize limit (4.117) in terms of the finite part of Hadamard one writes:

I(ε) = lim
ε→0+

∫
F(t)/[−ε,ε]

1

D2(s, s′)
ds′ =

∫
F0(t)

1

D2(s, s′)
ds′

+ lim
ε→0+

∫
F1(t)/[−ε,ε]

√
1 + [y′2(y1)]2

y2
2 + y2

1

dy1

and in view of expansion (4.121)

I(ε) =

∫
F0(t)

1

D2(s, s′)
ds′ + lim

ε→0+

∫
F1(t)/[−ε,ε]

1

y2
1

+ h(0; y1, y2(y1))dy1

=

∫
F0(t)

1

D2(s, s′)
ds′ +

2

ε
− 2

α
+

∫ α

−α
h(0; y1, y2(y1))dy1 (4.123)

By comparing the latter with limit (4.122) the basic identity (4.116) is recovered for a generic crack
front.
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The same path of reasoning leads to:

lim
ρ→0+

∫
F(t)

s′ − s
D2(P, s′)

ds′ =

∫
F0(t)

s′ − s
D2(s, s′)

ds′ + lim
ρ→0+

∫ α

−α

y1

ρ2 + y2
1

dy1 +O(1) =

= −
∫
F(t)

s′ − s
D2(s, s′)

ds′ (4.124)

as

lim
ρ→0+

∫ α

−α

y1

ρ2 + y2
1

dy1 = 0



Chapter 5

Crack tracking algorithms

One of the challenging aspect of LEFM is to take into account non linearities induced by crack
front deformations. A suitable approach for this is the crack front perturbation method based on
successive iterations of the three dimensional weight function theory derived by Rice [116, 117] and
briefly reviewed in Chapter 4. It was first adapted for numerical purposes by Bower and Ortiz [19]
that extended the method of Gao and Rice [44, 45] to arbitrary large deformations of the crack
front, leading the way to numerical resolution of complex three dimensional crack problems in the
context of perturbation approaches.

With these latter, three dimensional weight function theory is applied numerically to a suc-
cession of small perturbations of the crack front resulting in arbitrary large ones. In [19], Bower
and Ortiz investigated the propagation paths of semi-infinite tensile cracks in heterogeneous me-
dia, in both fatigue and brittle fracture. A simplified numerical implementation of perturbation
approaches was later presented by Lazarus [78] for the case of arbitrary plane cracks, loaded in
mode 1, embedded in an infinite elastic body, and extended afterwards to mixed mode (2+3) shear
loadings by Favier and coworkers [37], where propagation was supposed to be channeled along some
weak planar layer in order to remain coplanar. Extension of Favier et al. [37] is notably heavier
than the original for mode 1 [78], because of the inevitably coupling of modes 2 and 3.

The procedure describing perturbation approaches can be divided into two steps. The first step
regards the determination of the SIFs and FKs WF along some arbitrary crack front, starting from
some crack shape, as close as possible to the front studied, for which they are known.
Then one has to construct a succession of intermediate cracks, very close to each other, between
the initial crack front and the final desired one. Applying iteratively equations (4.13) for δK1(s),
or its relative (4.14) for δK(s), and (4.95) for WF (s, s′), or its relative (4.96) for WF (s, s′), one can
finally obtain the SIFs and the FKs along the desired front.

The second step of the procedure regards the determination path of any arbitrary crack, the
initial crack being that corresponding to the end of step 1. A suitable propagation law has to be
provided in order to compute the elongation δl(s) along the crack front and to update its position
consequently. Again, formulas (4.13), or (4.14), and (4.95), or (4.96), update the SIFs and the FKs
along the new configuration. Repeating, as many times as required, the two preceding operations
to the new fronts obtained, one can study the propagation path of fractures only meshing the one
dimensional crack front because only one dimensional integrals along the crack front are involved,
avoiding the 3D meshing of the whole body.

In homogeneous materials loaded in mode 1 Lazarus [78], starting from elliptical, rectangular
and heart shaped cracks, showed that cracks become circular after a certain time, while in the case
of mixed mode Favier et al. [37] found that the cracks reach an almost elliptical shape in all cases,

102
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deriving ultimately an approximate, but accurate, analytic formula for the ratio of the axes of this
stable shape.

In Section 5.1, a different crack tracking algorithm is presented [128, 130]. It is grounded
on an implicit Newton-Raphson based scheme which is endowed with a variational formulation.
It exploits general formula (4.53) for the first order variation of the SIFs K1(s) and the weight
function update algorithm described in Section 4.3 at each iteration of the crack tracking scheme.

5.1 A variationally based crack tracking algorithm

The incremental framework depicted in Chapter 2 allows to find the crack front quasi static velocity
v(s, t) of a point s of the crack front F(t). Explicit algorithms in time (as Forward Euler, Heun or
Explicit Runge-Kutta) could then be conveniently deployed, following the usual implementations
for ordinary differential equations.
In [128] a different kind of crack tracking algorithm has been developed. Unlike the explicit tech-
niques mentioned above, it satisfies the Karush-Kuhn-Tucker conditions (2.16) at all times, which
is an essential feature of stable crack growth. Such an algorithm is expected to be more accurate,
robust, and numerically stable than explicit methods.

To build an implicit in time crack tracking algorithm, a finite elongation l(s; t, τ) in the normal
plane has to be modeled from an initial time t, in which the domain Ω contains the fracture surface
S(t) with its front F(t) in equilibrium at external actions κ(t), to a final time τ > t in which a
new equilibrated configuration S(τ),F(τ) is achievable at κ(τ) > κ(t). It is assumed that, at time
t, ϕ(s, t) ≤ 0 ∀s ∈ F(t) and ϕ(s, t) = 0 in a subregion F0(t). As the elongation is solely mod-
eled, the constraint that the crack surface at time τ includes the one at time t is a priori satisfied.
The driving force for the crack growth is considered here a finite change in the external actions
δκ = κ(τ)− κ(t). The supposed unique crack elongation l(s; t, τ) that guarantees ϕ(s, τ) ≤ 0 (see
eq. (2.7)) for all s along the new crack front F(τ) will be recovered iteratively.

In the assumption made of smooth crack path (i.e. t ≡ t+), Leblond’s expansion (2.2) applies to
the first order in l(s; t, τ) and an iterative algorithm is developed in analogy with elasto-plasticity
[122].

A sequence of numerical crack fronts are generated and denoted with F[n](τ), with n ∈ N stand-
ing for a counter of the iterations of the crack tracking scheme. According to this notation and
expansion (2.2), SIFs vector at step n is defined as K∗[n](s, τ). Assuming that the fronts F[n](τ)
converge to a finite configuration at n → +∞, the limit configuration for the front and the SIFs
vector will be denoted by F(τ) and K∗(s, τ), respectively.

The algorithm moves from an elastic trial - the step “0”- at the configuration F[0](τ) = F(t):

K∗[0](s, τ) = K∗(s, t)
κ(τ)

κ(t)
(5.1)

The onset of fracture (2.11) at the elastic trial yields:

ϕ[0](s, τ) =
1

2

(
K∗[0](s, τ) ·ΛK∗[0](s, τ)−GC

)
(5.2)

Two alternatives are allowed, the first of which:

ϕ[0](s, τ) < 0 ∀s ∈ F[0](τ) (5.3)

is typically expected for unloading, i.e. δκ < 0. When condition (5.3) is satisfied, the points along
the crack front F[0](τ) stand in the safe equilibrium domain and no crack extension is possible. It
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is by far more interesting when condition above is not satisfied at some locations along the crack
front. Those locations will define the part F̄o[0](τ) ⊂ F[0](τ), that from now on will be taken to be
a closed interval. It is defined by the following inequality:

F̄o[0](τ) = {s ∈ F[0](τ) s.t. ϕ[0](s, τ) ≥ 0} (5.4)

As F̄0
[0](τ) is defined in terms of K∗[0](s, τ), its size depends on δκ. When δκ = 0 then F̄o[0](τ) = Fo(t),

as obvious, noting however that the sets might be empty. For increasing loads δκ > 0, F̄o[0](τ)

cannot be smaller than Fo(t) because of the linearity of the problem that leads to the elastic trial
(5.1). Denoting with F̄[0](τ) the subset of F̄o[0](τ) in which inequality ϕ(s, τ) > 0 holds strictly, the

inclusion chain F̄o[0](τ) ⊇ F̄[0](τ) ⊇ Fo(t) comes out.

A new configuration for the crack front F(τ) must be sought such that ϕ(s, τ) ≤ 0 for all s ∈ F(τ):
it will be the converging solution of a Newton-Raphson scheme. In view of Gateaux derivative
(2.40) of the affine operator N [·], an operator N ′F[0]

is defined as follows:

N ′F[0]
[δl[1]] = ΛK∗[0](s, τ) ·K(1)

[0] [s, t; δl[1](s
′; t, τ)] (5.5)

with δl[1](s
′; t, τ) standing for the approximation of l(s′; t, τ) at the first iteration (n = 1) of the

crack tracking scheme. Operator K(1)[·] obtains the subscript [0], meaning that K
(1)
[0] [·] is defined

(according to equation (4.53)) by means of an integral over front F[0](τ). The sum:

ϕ̄[0](s, τ, δl[1]) = ϕ[0](s, τ) +N ′F[0]
[δl[1]] (5.6)

is the first order approximation of the onset of fracture at configuration F[0](τ) with respect to
the crack elongation, noting that the load was incremented before the trial and is not subjected to
change before the successive elastic trial. Definition (5.6) includes the case ϕ[0](s, τ) < 0 since in
such a case δl[1](s; t, τ) = 0 for all s ∈ F[0](τ) and it holds:

ϕ̄[0](s, τ, δl[1]) = ϕ[0](s, τ)

Karush-Kuhn-Tucker inequalities are enforced on ϕ̄[0]:

ϕ̄[0](s, τ, δl[1]) ≤ 0, δl[1](s; t, τ) ≥ 0, ϕ̄[0](s, τ, δl[1])δl[1](s; t, τ) = 0, ∀s ∈ F[0](τ) (5.7)

Equation ϕ̄[0](s, τ, δl[1]) = 0 can be numerically approximated in several ways. The most natural

in the light of the remarks above is a weak form along F[0](τ), by means of test functions δl̂ that
belong to the same space of δl(s; t, τ) namely:

−
∫
F[0](τ)

N ′F[0]
[δl[1]] δl̂ ds−

∫
F[0](τ)

ϕ[0](s, τ) δl̂ ds = 0 (5.8)

Equation (5.8) is the Euler-Lagrange equation whose solutions are the functions for which the fol-
lowing functional is stationary:

Proposition 3
Under hypothesis of stable crack growth:

N ′F[0]
[δw] δw ≤ 0, N ′F[0]

[δw] = 0 if and only if δw = 0 (5.9)
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the crack front increment δl[1](s; t, τ) that solves the problem (5.7) at iteration n = 0 minimizes the
functional:

χ[0][δw(s; t, τ)] = −1

2

∫
F[0](τ)

N ′F[0]
[δw(s′; t, τ)] δw(s; t, τ) ds−

∫
F[0](τ)

ϕ[0](s, τ) δw(s; t, τ) ds (5.10)

under the constraint δw(s; t, τ) ≥ 0 ∀s ∈ F[0](τ).

Once the crack elongation δl[1](s; t, τ) has been evaluated, a new crack front F[1](τ) arises.
As the geometry changes, a new global analysis is required to estimate SIFs K∗[1](s, τ) at all points

along F[1](τ). Two alternatives are again allowed, either

ϕ[1](s, τ) =
1

2

(
K∗[1](s, τ) ·ΛK∗[1](s, τ)−GC

)
< 0 ∀s ∈ F[1](τ) (5.11)

or the latter is not satisfied at some point along F[1](τ). When condition (5.11) is satisfied, the points
along the crack front F[1](τ) stand in the safe equilibrium domain, thus F[1](τ) is the approximation
of the new crack front F(τ). If condition (5.11) is not satisfied at some locations:

ϕ[1](s, τ) =
1

2

(
K∗[1](s, τ) ·ΛK∗[1](s, τ)−GC

)
≥ 0 s ∈ F̄o[1](τ)

then Proposition 3 can be exploited to estimate a new elongation and an approximation F[2](τ).
To this aim, Proposition 3 can be easily written and proved with reference to the generic step n of
the Newton- Raphson scheme as follows.

Proposition 3b
Under hypothesis of stable crack growth:

N ′F[n]
[δw] δw ≤ 0, N ′F[n]

[δw] = 0 if and only if δw = 0 (5.12)

the crack front increment δl[n+1](s; t, τ) that solves the problem (5.7) at iteration n minimizes the
functional:

χ[n][δw(s; t, τ)] = −1

2

∫
F[n](τ)

N ′F[n]
[δw(s′; t, τ)] δw(s; t, τ) ds−

∫
F[n](τ)

ϕ[n](s, τ) δw(s; t, τ) ds (5.13)

under the constraint δw(s; t, τ) ≥ 0 ∀s ∈ F[n](τ).

In this proof dependency of increments δw upon s and t is not made explicit to favor readability.
Denote with δw = δl[n+1] + ∆l[n+1]. Taking advantage of symmetry and linearity of operator N ′F[n]

,

it holds:

χ[n][ δw ]− χ[n][ δl[n+1] ] =

= −
∫
F[n](τ)

(
N ′F[n]

[δl[n+1]] + ϕ[n](s, τ)
)

∆l[n+1] ds− 1

2

∫
F[n](τ)

N ′F[n]
[∆l[n+1]] ∆l[n+1] ds =

= −
∫
F[n](τ)

ϕ[n] (δw − δl[n+1]) ds− 1

2

∫
F[n](τ)

N ′F[n]
[∆l[n+1]] ∆l[n+1] ds =

= −
∫
F[n](τ)

ϕ[n] δw ds+

∫
F[n](τ)

ϕ[n] δl[n+1] ds− 1

2

∫
F[n](τ)

N ′F[n]
[∆l[n+1]] ∆l[n+1] ds ≥ 0

(5.14)
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The first term is non negative, since ϕ[n] ≤ 0 and δw ≥ 0. The second term vanishes in view
of Karush-Kuhn-Tucker conditions (5.7). Finally, the last term is non negative under assumption
(5.12). The assert is thus proved.

Functional χ[n] in eq. (5.13) reminds to functional χ defined in formula (2.56) in Section 2.5, but
the domains of integrals in the two functionals are different. Theorem 1 descends from consistency
condition (2.36) which holds at incipient crack growth conditions (ϕ = 0): for this sake, integrals
are defined on F(t)|ϕ=0. Theorem 3 descends from the third of conditions (5.7), which holds on
the whole crack front.

At iteration n of the Newton Raphson scheme it is still true that F̄o[n](τ) ⊇ F̄[n](τ) but a

definition of Fo[n](τ) is questionable because it would refer to the previous iteration along a differ-
ent crack front. Furthermore, at each iteration the normal plane, in which elongation is defined,
changes, whereas the kinking angle θ keeps vanishing in the assumption of a smooth crack prop-
agation after an initial kink. The amount of external actions remains of course unchanged until
convergence is reached and the algorithm ends when a condition is met, eventually in terms of
l(s; t, τ) =

∑
n δl[n](s; t, τ).

The numerical solution of optimization problems can be achieved with several strategies [153].
Penalty methods replace the minimization of functional (5.13) by a series of unconstrained prob-
lems, based on functionals χH[n][δw(s; t, τ)] that are formed by adding a term χc[n][δw(s; t, τ)], termed

penalty functional, to functional (5.13). Penalty functional consists of a penalty parameter ε > 0
multiplied by a measure H[δw] of violation of the constraints, called penetration function. The
penetration function vanishes where constraints are not violated, and is chosen to be equal to one
elsewhere. The unconstrained form of functional (5.13), will be thus written as:

χH[n][δw(s; t, τ)] = χ[n][δw(s; t, τ)] + χc[n][δw(s; t, τ)] (5.15)

where the penalty functional reads:

χc[n][δw(s; t, τ)] =
1

2
ε

∫
F[n](τ)

H[δw] δw2(s; t, τ) ds (5.16)

The solution of the Lagrange multiplier method is recovered when ε→ +∞; however, large numbers
of ε can lead to ill-conditioned problems.
Optimality implies that the Gateaux derivative of functional (5.15), defined as usual by virtue of
α ∈ R as:

∂χH[n][δw + αδŵ]

∂α

∣∣∣∣∣
α=0

vanishes for any admissible function δŵ such that δw + α δŵ belongs to the same space of δw:∫
F[n](τ)

(
N ′F[n]

[δw] + ϕ[n](s, τ)− εH[δw] δw
)
δŵ ds = 0 (5.17)

Let δlh[n+1](s; t, τ) be a discrete approximation of the unknown field δl[n+1](s; t, τ) belonging to
the finite dimensional subspace Vh such that:

∀δl[n+1](s; t, τ), inf
δlh

[n+1]
∈Vh
‖δl[n+1](s; t, τ)− δlh[n+1](s; t, τ)‖ → 0 as h→ 0 (5.18)
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for h > 0. Denote with {ψj |j = 1, ...., Nh} a basis of space Vh of finite dimension Nh, with
ψi(sj) = 0 if i 6= j and ψj(sj) = 1 ∀ j = 1, ..., Nh. The discrete solution δlh[n+1](s; t, τ) is the

linear combination of shape functions ψj(s) and nodal unknowns δlj[n+1]:

δlh[n+1](s; t, τ) =

Nh∑
j=1

ψj(s)δlj[n+1] (5.19)

Exploiting the linearity of operator N ′F[n]
, the discrete form of eq. (5.17) can be stated as:

Nh∑
j=1

∫
F[n](τ)

ψi(s)

(
N ′F[n]

[ψj(s
′)]− εH

[
Nh∑
r=1

ψr(s)δlr[n+1]

]
ψj(s)

)
δlj[n+1] ds =

−
∫
F[n](τ)

ψi(s)ϕ[n](s, τ) ds (5.20)

for i = 1, 2, ..., Nh. Problem (5.20) is non linear because of the penetration function. Every step
n of the Newton-Raphson scheme requires therefore a further, internal, iterative solution scheme,
identified by counter k. A Newton-Raphson scheme as well as an Update Linearized scheme have
been devised to solve it. The latter leads to:

Nh∑
j=1

∫
F[n](τ)

ψi(s)

(
N ′F[n]

[ψj(s
′)]− εH

[
Nh∑
r=1

ψr(s)δl
(k−1)
r[n+1]

]
ψj(s)

)
δl

(k)
j[n+1] ds =

−
∫
F[n](τ)

ψi(s)ϕ[n](s, τ) ds (5.21)

for i = 1, ..., Nh until

‖δl(k)
[n+1] − δl

(k−1)
[n+1] ‖

‖δl(k)
[n+1]‖

< tol

where δl
(k)
[n+1] is the vector of Nh components δlj[n+1] at iteration n+1 of the crack tracking scheme

and iteration k of the internal loop and tol is the desired tolerance. To conceptually prove the
theory described above, the crack tracking framework is tested on two simple problems in what
follows: the axial symmetric example of a penny shape crack subjected to a point tensile action
acting in the center of the crack itself, and a penny shape crack loaded by two point forces acting
with a certain eccentricity with respect to the center of the crack. Results confirm the potential of
the proposed finite-step formulation [128, 130].

5.2 Circular crack axial-symmetric loaded

Consider the circular crack embedded in a continuum linear elastic and isotropic solid Ω depicted
in figure 5.1 with radius a(t) > a(0) > 0, loaded by two point loads of magnitude −κ(τ)n acting
in the center of the upper and lower crack surfaces. The crack propagation is thus homothetic.
The onset of propagation is reached simultaneously at all points along the crack front, and a single
scalar characterizes in full the front elongation. Since the shape of the crack remains circular, the
smooth increment δa[n+1](t, τ) of the radius a(t) can be assumed as crack elongation descriptor in
place of δl[n+1](s; t, τ). Spatial discretization (5.19) of the unknown field δa[n+1](t, τ), namely

δah[n+1](t, τ) =

Nh∑
j=1

ψj(s)δaj[n+1] (5.22)
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allows to transform the minimization of functionals (5.10) and (5.13) into a set of algebraic equations
with constraints.

Due to the axial-symmetry of the benchmark at hand, it is expected the either the part of
F[n](τ) with vanishing elongation δa[n+1](t, τ) coincides with the whole circular crack front or is
empty. As shown in Section 4.2, the former event is only compatible with unloading. If a positive
load increment δκ > 0 is taken a priori, minimization of functionals (5.10) and (5.13) leads to
a system of unconstrained algebraic equations along the crack front F[n](τ). In the light of this

consideration, functional χH[n][δa(t, τ)] of eq. (5.15) is such that χH[n][δa(t, τ)] = χ[n][δa(t, τ)] because

of the vanishing of the penetration function H[δa(t, τ)] at each iteration n of the Newton-Raphson
scheme. After collecting nodal unknowns δaj[n+1] in vector δa[n+1] the discrete form of functional
(5.13) reads:

χ[n][δa[n+1]] = −1

2

Nh∑
i=1

Nh∑
j=1

∫
F[n](τ)

N ′F[n]
[ψj(s)]ψi(s) ds δai[n+1] δaj[n+1]

− 1

2

Nh∑
i=1

∫
F[n](τ)

(K1[n](s, τ)Λ11K1[n](s, τ)−GC)ψi(s) ds δai[n+1]

By means of equations (5.5) referred to the generic step n of the crack tracking scheme and formula
(4.54), operator N ′F[n]

[ψj(s)] writes:

N ′F[n]
[ψj(s)] =

1− ν2

E
K1[n](s, τ)

[
1

2π
=

∫
F[n](τ)

WF[n](s, s′)K1[n](s
′, τ)

D2(s, s′)
ψj(s

′) ds′+

+

(
1

2

∂WS[n]

∂ρ

∣∣∣∣
s,s

−
c[n]

2

)
K1[n](s, τ)ψj(s)−

µ

1− ν
3
√

2π

8
Ξ1[n](s)ψj(s)

]
(5.23)

In this axial-symmetric case the stationary point for χ[n][δa[n+1]] is the solution of the linear system

A δa[n+1] = b (5.24)

with

Aij = −
∫
F[n](τ)

N ′F[n]
[ψj(s)]ψi(s) ds (5.25)

bi =
1

2

∫
F[n](τ)

(K1[n](s, τ)Λ11K1[n](s, τ)−GC)ψi(s) ds (5.26)

Taking into account closed forms (4.56) for the SIF K1, (4.58) for the 3/2 order coefficient Ξ1

of the crack opening expansion and (4.69) for the derivative of WS with respect to ρ, one obtains
expressions for the local and non local parts of matrix A, namely:

Alocij =
1− ν2

E

(κ(t) + δκ)2

(π a[n])3

3

2

∫ 2π

0
ψi(φ)ψj(φ) dφ (5.27)

Anlij = −1− ν2

E

(κ(t) + δκ)2

(π a[n])3

1

2π

∫
supp(ψi)

ψi(φ) =

∫
supp(ψj)

ψj(φ
′)

1− cos(φ′ − φ)
dφ′ dφ (5.28)

Evaluation of given terms (5.26) leads to:

bi =
1

2

1− ν2

E

[
(κ(t) + δκ)2

(πa[n])3
− (KC

1 )2

]
a[n]

∫ 2π

0
ψi(φ) dφ (5.29)
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Figure 5.1: Crack tracking framework described in Section 5.1 is benchmarked against the axial-
symmetric problem of a penny shape crack with radius a(t) embedded in an unbounded linear elastic
isotropic domain Ω and subject to two point load forces with magnitude −κ(t)n acting in the center
of the crack and directed so to open the crack lips. When the load is increased at a value κ(τ) > κ(t),
configuration F(τ) of the crack front is sought as the converged solution of the single load step of
the Newton-Raphson scheme.

If the assumption is made that at time t the condition ϕ(s, t) = 0 is reached (either exactly at
the beginning or with sufficient accuracy in the iteration process), fracture toughness KC

1 can be
related to κ(t) in view of (4.56):

(KC
1 )2 =

κ2(t)

(πa[0])3

If furthermore, for the sake of simplicity, the increment of load δκ is written as a given percentage
of κ(t), i.e. δκ = η κ(t), given terms (5.29) finally hold:

bi =
1

2

1− ν2

E

κ(t)2

π3

[
(1 + η)2

a3
[n]

− 1

a3
[0]

]
a[n]

∫ 2π

0
ψi(φ) dφ

Restating Aij and bi in the following way:

Aij = −1− ν2

E

κ(t)2

(πa[n])3
(1 + η)2Aij , bi =

1

2

1− ν2

E

κ(t)2

π3

[
(1 + η)2

a3
[n]

− 1

a3
[0]

]
a[n]b̄i (5.30)

where Aij and b̄i are expressed by equations (4.90) and (4.91), respectively ,it comes out immediately

δai[n+1] = −(A−1b)i
1

2

[
1−

a3
[n]

a3
[0](1 + η)2

]
a[n] (5.31)

The scalar (A−1b)i, is independent once again on i and on the iteration [n].
By the equality chain:

(KC
1 )2 =

κ(t)2

(πa3
[0])

=
κ(t)2(1 + η)2

(πa3
[n])
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it comes out

a3
[n] =

(1 + η2)

a3
[0]

which is the converged solution of the Newton-Raphson scheme (5.31).
A version of a meta code for a single load increment of the Newton-Raphson scheme can be

expressed as follows:

While [ δai[n] > a[0]εδ

δai[n] = −(A−1b)i
1

2

(
1−

a3
[n]

a3
[0](1 + η)2

)
a[n];

ϕ[n] = κ(t)2 (1 + η)2

(πa[n])3
− 1

π3
;

a[n] + = δai[n];

nofit ++ ; ]

A geometrical condition δai[n] < a[0]εδ is imposed as a test for convergency, at which corresponds
a more severe condition on ϕ < εϕ � εδ.

Take a unit load factor κ(t) = 1 acting on a given initial crack of unit radius, propagating
in a material of KC

1 = π−3. By assuming a load increment η = 5%, the convergence table 5.1 shows
that 4 iterations are required to gain an accuracy of 10−6 on δai[n] at the first load increment for
the Newton-Raphson scheme.

Iteration n δai[n] a[n] ϕ[n]

1 0.0310441 1.03104 0.000189688

2 0.00201305 1.03306 4.0927×10−7

3 4.37737 ×10−6 1.03306 7.09218 ×10−10

4 7.5856 ×10−9 1.03306 1.23502 ×10−12

Table 5.1: Convergency table for the proposed Newton-Raphson scheme.

The load has been further incremented 400 times, to reach a final amount of 21 units load.
The final crack radius amounts to a[n] = 7.61166, as plotted in figure 5.2, but the features of the
Newton-Raphson scheme depicted in table 5.1 remain unaltered in each load step.

5.2.1 The finite difference approach

Estimation of operator N ′F[n]
[δl[n+1]] and consequently of the operator K

(1)
[n] [s, t; δl[n+1](s

′; t, τ)] (see

eq. (5.5)) by means of the finite difference approach appears to be straightforward at a first sight.
Performed numerical experiments show on the contrary that the finite difference approach is not
reliable for this sake.

The benchmark of Section 5.2 of a circular crack with unit radius embedded in a continuum
body and axial-symmetric loaded by two point load forces, has been studied approximating the

first order variation of the SIFs along the crack front K
(1)
[n] [s, t; δl[n+1](s

′; t, τ)] by:

dK1

da
≈ K1(a+ δa)−K1(a)

δa
(5.32)



CHAPTER 5. CRACK TRACKING ALGORITHMS 111

3 6 9 12 15 18 21

1

2

3

4

5

6

7

Load

C
ra

c
k

ra
d
iu

s
a

Figure 5.2: Results of the Newton-Raphson scheme implementation. The radius of the circular
crack a goes from 1 to 7.61166 when the load is increased 400 times from a unit value to 21 units.

Accuracy of formula (5.32) is supposed to increase when the increment of the radius δa becomes
smaller and smaller.

Inspired by the solution of the benchmark of Section 5.2, a range of values for δa has been
investigated for derivative (5.32), with an upper bound of δa = 0.2. SIFs before elongation K1(a)
and after elongation K1(a + δa) have been computed by means of the software FRANC3D. Even
after using a finer discretization of the crack front F and surface S, the relative error on the
calculation of dK1/da results extremely high, in the order of 200%, for δa = 10−2. There is a clear
evidence that error does not decrease with δa. Numerical cancellation may explain this behavior. In
fact, the exact difference K1(a+δa)−K1(a) turns out to be much smaller (two orders of magnitude
smaller) of any of the two factors K1(a + δa) and K1(a). In spite having optimized FRANC3D
capabilities in SIFs estimation and having refined the discretization, the observed accuracy could
not be higher than the two significant digits for the example at hand. Although this accuracy
is quite remarkable per se, it reveals to be inadequate for the estimation of dK1/da because the
difference of SIFs results in a severe numerical cancellation. On the other hand, if δa is too large
compared to the size of elements mesh, the derivative (5.32) is inaccurate, bringing to the light the
same issues described for the stiffness derivative method in Section 3.3.3.

5.3 Circular crack with an eccentric load

A penny shape crack in an unbounded isotropic linear elastic body Ω is subjected to two point load
forces −κ(t)n at point P on the crack surface at a distance ρ from the initial crack front F(t) as
depicted in figure 5.3. The location of point P is fixed during crack evolution.
Extension of the benchmark described in Section 5.2 to the more general case of an eccentric load,
allows to study the solution of a full Signorini problem, capturing the eventuality of partial crack
front elongation having nodes of the discretization of the crack front that are not mobilized.

A fictitious brittle material is considered, with Young’s modulus E = 1, Poisson’s ratio ν =
0.3 and fracture toughness KC

1 = 0.17. Exploiting spatial discretization (5.19) of the unknown
field δl[n+1](s; t, τ) and collecting nodal unknowns in vector δl[n+1], the discrete form of functional
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Figure 5.3: A penny shape crack with radius a(t) embedded in a continuum body is subject to
two point load forces with magnitude k(t) acting at a distance ρ from the initial crack front F(t).
Crack tracking framework described in Section 5.1 is therefore benchmarked in the case of partial
elongation of the crack front. F(τ) represents the solution of the converged Newton-Raphson scheme
at the end of the single load step, after the increase of the load at κ(τ) > κ(t).

χH[n][δl[n+1]] (5.15) reads:

χH[n][δl[n+1]] = −1

2

Nh∑
i=1

Nh∑
j=1

∫
F[n](τ)

N ′F[n]
[ψj(s)]ψi(s) +

+
1

2
εH

[
Nh∑
r=1

ψr(s) δlr[n+1]

]
ψi(s)ψj(s) ds δli[n+1] δlj[n+1]

− 1

2

Nh∑
i=1

∫
F[n](τ)

(K1[n](s, τ)Λ11K1[n](s, τ)−GC)ψi(s) ds δli[n+1]

The discretized optimality condition (5.20) has been implemented with penalty parameter ε = 104.
The linear system:

(A + H(k−1))δl
(k)
[n+1] = b (5.33)

has been solved at each iteration k of the Update Linearized algorithm, with:

Aij = −
∫
F[n](τ)

N ′F[n]
[ψj(s)]ψi(s) ds (5.34a)

H(k−1)
ij = +ε

∫
F[n](τ)

H[δl
(k−1)
[n+1] ]ψi(s)ψj(s) ds (5.34b)

bi = +
1

2

∫
F[n](τ)

(K1[n](s, τ)Λ11K1[n](s, τ)−GC)ψi(s) ds (5.34c)

At initial time t = 0, S(0) is the circle of unit radius a(0) = 1.
Crack face weight functions are given for such initial geometry as well as WS and WF . They read:

k11(P, s′) =

√
ρ(2a[0] − ρ)

π
√
πa[0]

1

D2(P, s′)
(5.35a)
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WS(P, s′) =

√
2a[0] − ρ

2a[0]
(5.35b)

WF (s, s′) = 1 (5.35c)

Loading conditions are such to enforce a stable mode 1 propagation in the plane that contains
the initial configuration of the crack. This circumstance allows using equation (5.23) for operator
N ′F[n]

[·]. Stemming on the definition of crack face weight functions and on formula (5.35a), the

mode 1 stress intensity factor along the crack front at time t = 0 amounts to:

K1(s, 0) = κ(0)

√
ρ(2− ρ)

π
√
π

1

D2(P, s)
(5.36)

and the crack front curvature is c(0) = −1/2. In the hypothesis of small eccentricity of the
load, coefficients of the crack opening expansion (4.42) can be extrapolated from the closed form
solution available for axial-symmetric load for which ρ ≡ a[0], that are expressed in equation (4.58).
More generally, high order shape functions must be tailored to numerically capture Ξ1 in finite or
boundary element methods, as seen in Section 3.1.6.

Considering an eccentricity of the load 0.85 ≤ ρ < 1, in the initial equilibrium configuration,
all points s along the circular crack front F(0) of unit radius are in the safe equilibrium domain
E(s, 0) (see equation (2.17)) at value κ(0) = 0.65 of the load factor. To assess this condition SIFs
are estimated from the closed form (5.36). The load factor is then increased to κ(τ) = 1.01, value
at which most of the points along the front exit the safe equilibrium domain in force of the elastic
trial (5.1). Figure 5.4 plots ϕ[0](s, τ) defined in equation (5.2) for three different values of the
eccentricity ρ.

Figure 5.4: ϕ[0](s, τ) along the crack front F[0](τ) discretized in Nh = 32 elements for three different
values of the initial eccentricity of the load ρ = 0.95, ρ = 0.9 and ρ = 0.85 for a load factor κ = 1.01.
The subpart of the front F[0](τ) with ϕ[0](s, τ) ≤ 0 stay in the safe equilibrium domain E(s, 0).

A new configuration F(τ) in equilibrium at κ(τ) = 1.01 is sought for the crack front. Figure
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5.5-a plots the front F[1](τ) that evolves from F(t) by means of the converged solution δl[1] of the
Update Linearized algorithm (5.33), at a value of the load factor κ = 1.01.
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Figure 5.5: a) Converged solution of the Update Linearized algorithm from the initial circular crack
(continuous black curve), considering three different locations of the point load ρ = 0.95, ρ = 0.9 and
ρ = 0.85. b) Nodal values δl[1] along the crack front subdivided into Nh = 32 elements, considering
three different locations of the point load ρ = 0.95, ρ = 0.9 and ρ = 0.85.

The nodal values δl[1] along the crack front, subdivided into Nh = 32 elements, are plotted in
figure 5.5-b.

Convergence of the Update Linearized algorithm is detailed in table 5.2. Two iterations are
sufficient at each value of ρ in order to have a three digits accuracy:

‖δl(k)
[1] − δl

(k−1)
[1] ‖

‖δl(k)
[1] ‖

< 10−3

ρ = 0.95 ρ = 0.9 ρ = 0.85

k ‖δl(k)
[1] ‖ ‖δl(k)

[1] ‖ ‖δl(k)
[1] ‖

1 0.293844 0.431179 0.548453

2 0.293844 0.431179 0.548453

Table 5.2: Norm of the vector crack front elongation δl
(k)
[1] for each iteration k of the Update

Linearized algorithm of the first crack tracking step (n = 1) for the three different values of initial
ρ, namely ρ = 0.95, ρ = 0.9, and ρ = 0.85.

The stress intensity factors shall be estimated in order to device which points are in the safe
equilibrium domain at configuration F[1](τ), since the geometry has been updated. SIFs have been
evaluated numerically at each Newton-Raphson iteration n by the software FRANC3D. They are
plotted in figure 5.6 in the initial configuration (n = 0) for the case ρ = 0.95.

Since the geometry is now rather different from a circumference, fundamental kernels must be
updated as well. Figure 5.7 depicts the approximation for FK WF[1](s, s′) along curvilinear abscissa
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Figure 5.6: Dots represents the value of SIF K1[0](si, τ) in the middle node si of each crack front
element computed in FRANC3D in the initial configuration (n = 0) for the case ρ = 0.95. Contin-
uous curve shows a cubic spline least square approximation of the discrete data with respect to the
curvilinear abscissa s along the crack front F[0](τ).

s′ when two point load forces are applied at a small distance ρ̄ from point s of the crack front F[1](τ).
It has been achieved by the first order approximation formula (4.100b) of the FK approximation
algorithm described in Section 4.3. It is worth noting that discretization of the crack front exploited
to compute WF[n](s, s′) is independent upon the discretization considered in the crack tracking

algorithm. The curvature c[1] = −1/2a[1] and the universal quantity ∂W
S[1]

∂ρ

∣∣∣
s,s

= − 1
4a[1]

have been

updated at F[1](τ) considering as a[1] a sort of average radius along F[1](τ), namely

a[1] =

∑Nh
i=1(a[0] + δli[1])

Nh

1 2 3 4 5 6
0.98

0.99

1.

1.01

s'

W
F

Figure 5.7: Values of the FK WF[1](s, s′) by means of the first order approximation formula (4.100b)
in the configuration F[1](τ). These latter derive from the case of initial eccentricity of the load
ρ = 0.95. Continuous curve represents a least square approximation of the discrete data (black
dots) deriving from the computation with the software FRANC3D of SIF K1(δ(P ); s′i) in the middle
node s′i of each crack front element, due to the application of two point loads δ(P ) in a point P of
the crack surface S[1](τ) at a distance ρ̄ from F[1](τ).

The algorithm is iterated, in order to achieve the final configuration F(τ) at the end of the first
load increment. Three iterations of the Newton-Raphson scheme are necessary to converge up to
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the given tolerance 10−3 on ‖δl[n+1]‖. Table 5.3 details the evolution of the numerical procedure
for the case of an initial ρ = 0.95.

[n+ 1] ‖δl[n+1]‖ ‖ϕ[n]‖
1 0.293844 0.0127239

2 0.0260217 9.56499 · 10−4

3 0.000423446 3.03741 · 10−5

Table 5.3: First load step: iterations of the Newton-Raphson scheme for the case of an initial

ρ = 0.95. Quantity ‖ϕ[n]‖ has been computed as
√∫
F[n]|ϕ[n](s,τ)>0

ϕ2
[n](s, τ) ds ≈

√∑N̂h
i=1 ϕ̄

2
[n] lN̂h

where N̂h are the crack front elements with ϕ[n](s, τ) > 0 and length lN̂h and ϕ̄[n] is the average
value of ϕ[n](s, τ) along such elements at iteration n of the crack tracking scheme.

The configuration of the crack front F(τ) at the end of the first load step for an initial eccentricity
of the load ρ = 0.95 is showed in figure 5.8.
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Figure 5.8: a) Obtained converged configurations at each iteration n of the crack tracking scheme
for the first load step and initial eccentricity ρ = 0.95. b) Values of the increment of elongation δl[n]

in each node of the crack front, discretized in Nh = 32 elements, for each iteration n of the crack
tracking scheme and initial eccentricity ρ = 0.95. 3 iterations are requires to reach the converged
solution of the first load step (‖δl[n]‖ < 10−3).

Figure 5.9 plots the onset of propagation ϕ[n](s, τ) along the crack front at each iteration of the
crack tracking scheme for initial ρ = 0.95. Points in incipient propagation condition decrease with
the iterations, eventually vanishing. The equilibrium configuration F(τ) is therefore reached and
only a further increase of the external loads can lead the crack to a further stable propagation.

Intuition suggests that an equilibrium configuration for the problem at hand would be a penny
shape fracture centered at the point load. Indeed the configuration F(τ) perfectly overlaps a
circular front centered at the point load location, plotted in figure 5.8-a with a red dashed curve.
Such an equilibrium configuration provides a SIF equal to K1(τ) = 0.169 according to formula

K1(τ) =
κ(τ)

(πa(τ))3/2
(5.37)
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Figure 5.9: Onset of propagation ϕ[n](s, τ) along the crack front for each iteration n of the Newton-
Raphson scheme.

at magnitude κ(τ) = 1.01 and radius a(τ) = 1.04731. The distribution of SIFs at iteration n = 3
estimated via FRANC3D is printed in figure 5.10 and matches the intuition very well.
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0.168
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Figure 5.10: SIF K1[3](s, τ) along the crack front computed in FRANC3D at iteration n = 3 of
the Newthon Raphson scheme (black dots) and least square approximation of the discrete data
(continuous black curve). As one can notice, SIFs along F(τ) are close to the analytical solution
K1(τ) = 0.169 (dashed black curve) that corresponds to the case of a circular crack of radius
a(τ) = 1.04731 axial-symmetrically loaded by two point forces of magnitude κ = 1.01 acting in the
center of the crack according to equation (5.37).



Chapter 6

Fracture driven by diffusion of species
in solids

This Chapter focuses on a germinal model of stable 3D crack growth driven by diffusion of species
in solids. In particular the diffusion process investigated involves neutral species in the hypothesis
of small displacements and strains.

The fundamental assumption that is made is that guest atoms of the diffusing species in the
host material are separated into two different species of solutes, indicated with L and T , which may
potentially diffuse in and out of a subpart of the domain. Consequently, each quantity involved
in the diffusion process is split in an interstitial part, indicated with the subscript L, and a part
indicated with the subscript T that refers to trap sites. Mobility of species T is considered to
be zero [69, 136], meaning that species atoms diffuse trough lattice sites and traps sites are filled
by lattice diffusion. Traps (i.e. dislocations, grain boundaries, interfaces between phases, voids
or cracks) evolve during plastic deformations. Therefore the number of trap sites depends on the
deformation level, while the number of lattice sites is constant and depends on the host medium.
Only saturable and reversible traps are considered, such as dislocation cores [70].

The diffusion model detailed below [131] is suitable to describe phenomena such as hydrogen
embrittlement in metals, intercalation of neutral Lithium in brittle particles in Li-ion batteries,
or fracking for shale gas extraction from nano pores in rocks for CO2 sequestration in brittle
material repositories. Although the relevant mechanical constitutive laws are neither linear nor
elastic, numerical analyses for real cases of diffusion of species in solids manifest that the response
of the material in standard loading conditions is linear elastic almost everywhere apart from areas
extremely close to the crack front. Whereas all coupled processes must necessarily account for non
linearities in order to properly describe the interstitial diffusion, as for the increment of traps due to
plastic flow, evidences show that global inelastic responses are confined in a very narrow zone that
appears to correspond to the annulus postulated by the small scale yielding description of fracture
mechanics. Crack propagation is therefore assumed to take place either in brittle or in completely
embrittled environments.

When the description above applies, the process of crack growth can be conveniently described
in the LEFM framework, relating the energy release rate to the notion of SIFs. Species diffuses
into the crack tip region owing to the energetic driving force created by the chemical potential,
which in turn depends on the stresses and concentrations [72] and there is wide evidence that the
impurities segregation and enrichment of species around the crack front can greatly modify the
fracture processes.
Understanding cracks pattern evolution and predicting quantities of interest has revealed of great

118



CHAPTER 6. FRACTURE DRIVEN BY DIFFUSION OF SPECIES IN SOLIDS 119

importance in order to increase the safety and improve the mechanical performance of materials
and components. In other words: How big can a defect be when the the structural safety, proviso
a safety factor, is compromised? The presence of the species dramatically affects the safety in
some cases. In other ones, controlled quasi static crack growth can be beneficial, as for hydraulic
fracturing in shale gas extraction. Either positive or negative the interpretation of crack growth, the
major complexity stands in governing fracture propagation in embrittled materials before unstable
propagation takes place.

6.1 Balance laws

6.1.1 Mass balance

The trapping process can be described as a chemical reaction:

L� T (6.1)

which portrays the conversion of mobile (L) to trapped (T ) species and viceversa by the reaction
rate of reaction (6.1), denoted with w̄. The rate of the forward and backward reactions (termed
w̄T and w̄L ) can be conveniently written in terms of the rate w̄ of the reaction (6.1) as:

w̄T = w̄, w̄L = −w̄ (6.2)

Under equilibrium conditions the rate of the forward and backward reactions are equal, and the
equilibrium constant 1

Keq =
ceqT
ceqL

cmaxL − ceqL
cmaxT − ceqT

(6.3)

of reaction (6.1) can be established. Equilibrium concentrations of trapped (ceqT ) and mobile (ceqL )
species depend on temperature T , and so does Keq in turn. Differently from Oriani’s theory [106]
and the papers that it inspired, equilibrium’s conditions are not a priori enforced in the present
formulation and reaction (6.1) is unbalanced during species diffusion and interstitial species L is
either made available or trapped. This results in a mass supply/sink within the mass balance
equations, which yields:

∂cL
∂t

+ div [ hL ] + w̄ = 0 (6.4a)

∂cT
∂t
− w̄ = 0 (6.4b)

in the assumption that the traps are isolated, i.e. do not form an extended network and the trapped
species is immobile (see figure 6.1). This means that the flux of the species h across the boundary
of the domain Γ ≡ ∂Ω is assumed to be purely interstitial (and termed hL) [72, 73]. Therefore, the
trapped species in the bulk do not contribute to species transport and it lacks a mass flux term
in eq. (6.4b). Denoting with β = L, T , symbols in equations (6.4) have the following meaning: cβ
is the molarity (i.e. the number of moles per unit volume) of a generic species β and cmaxβ is the
correspondent saturation limit; hβ is the mass flux in terms of moles, i.e. the number of moles of
species β measured per unit area per unit time, w̄ is the reaction rate of the chemical reaction (6.1)
pertaining to species β, measured per unit volume per unit time. Concentrations cβ are defined
in space x ∈ Ω and time 0 ≤ t ≤ τ , i.e. cβ = cβ(x, t). The same holds for hβ and w̄. Functional
dependence however is specified when necessary only, to favor readability.

1Expression (6.3) results by equating chemical potentials µL and µT after constitutive characterization detailed
in Section 6.3.
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Figure 6.1: Schematic representation of the presence of impurities, represented by small black dots,
inside the crystal lattice of the host medium, represented by big grey dots. Along with the interstitial
species L indicated with a, there are trap sites for guest atoms for example at vacancies (b), edge
dislocations (c), and grain boundaries (d). Only saturable and reversible traps are considered in the
diffusion model presented in this Chapter.

6.1.2 Balance of momentum

The usual balance of forces:
div [σ ] + f = 0 (6.5)

and the symmetry of the stress tensor σ emanates from the principle of virtual power [50].

6.1.3 Weak form and boundary conditions

The weak formulation of balance equations (6.4, 6.5) results from multiplication by a suitable set
of test functions and from an integration upon the domain, exploiting Green’s formula to reduce
the order of differentiation. Consider the mass balance equation (6.4a):∫

Ω
µ̂L

{
∂cL
∂t

+ div [ hL ] + w̄

}
dΩ =

=

∫
Ω
µ̂L
∂cL
∂t

dΩ +

∫
Ω

div [ µ̂LhL ]−∇ [ µ̂L ] · hL dΩ +

∫
Ω
µ̂Lw̄ dΩ =

=

∫
Ω
µ̂L
∂cL
∂t

dΩ−
∫

Ω
∇ [ µ̂L ] · hL dΩ +

∫
Ω
µ̂L w̄ dΩ +

∫
Γ
µ̂L hL · n dΓ = 0 (6.6)

Within (6.6) a contribution is defined at the boundary Γ. The extension of Neumann boundaries
is defined for each field and differs from field to field. In order to enlighten the notation, the field
dependence has not been specified in writing Γh and has been left backward. Same arguments
apply to Dirichlet boundaries. It is not usual to know a priori the amount of mass flux along
part of the boundary. It is rather more natural to impose thermodynamic equilibrium between the
external species and the one at the boundary of the hosting material. Nevertheless, for the sake of
completeness, boundary conditions will be written as:

hL · n = h̄ x ∈ Γh

The weak form for the mass balance equation (6.4b) can be simply derived as:∫
Ω
µ̂T

{
∂cT
∂t
− w̄

}
dΩ = 0 (6.7)
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Finally, for the equilibrium equation (6.5) one writes in the assumption of vanishing body forces:∫
Ω

û · div [σ ] dΩ = −
∫

Ω
ε̂ : σ dΩ +

∫
Γ

û · σ n dΓ = 0 (6.8)

The boundary condition along Γp reads:

σ n = p̄ x ∈ Γp

A Dirichlet boundary condition (usually homogeneous), for the displacements shall be added along
the Dirichlet part of the boundary Γu.

In conclusion, the weak form of the balance equations can be written in terms of the potentials
in time interval [0, τ ] as:

Find y ∈ V [0,τ ] such that

d

dt
b(ŷ, z(t)) + a(ŷ, y(t)) = f(ŷ) ∀ ŷ ∈ V (6.9)

where

b(ŷ, z(t)) =

∫
Ω
µ̂L cL + µ̂T cT dΩ

a(ŷ, y(t)) = −
∫

Ω
∇ [ µ̂L ] · hL dΩ +

∫
Ω
ε̂ : σ dΩ +

∫
Ω

(µ̂L − µ̂T ) w̄ dΩ

f(ŷ) = −
∫

Γh
µ̂L h̄ dΓ +

∫
Γp

û · p̄ dΓ

with z = {cL, cT }, y = {µL, µT ,u}. Columns z and y collect the time-dependent unknown fields.
Column ŷ collects the steady-state test functions that correspond to the unknown fields in y.

To computationally solve the (either weak or strong) problem, constitutive equations must be
specified, and this will be the subject of Section 6.3. The weak form (6.9) acquires the usual
meaning of power expenditure: for this reason it is written in terms of chemical potentials µ̂L and
µ̂T rather than concentrations.

6.2 Thermodynamics of fracture in the presence of species

6.2.1 Energy balance

Consider an arbitrary material region P ∈ Ω ∈ R3, which is taken as non convecting, in agreement
with the assumption of small displacements and strains. The first law of thermodynamics represents
the balance of the interplay between the internal energy of P, the power expended on P, the heat
transferred in P, and the power due to mass exchanged on P. The energy balance for the problem
at hand, for quasi-static interactions, reads:

∂U(P)

∂t
=W(P) +Q(P) + T (P) (6.10)

with U the net internal energy of P, W the mechanical external power, Q the power due to heat
transfer, T the power due to mass transfer. It is assumed that any of these processes is accompanied
with its own separate energy contribution in the balance that read:

W(P) =

∫
P

f · υ dΩ +

∫
∂P

p · υ dΓ (6.11a)
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Q(P) =

∫
P
sq dΩ−

∫
∂P

q · n dΓ (6.11b)

T (P) =

∫
P

uµL sL + uµT sT dΩ−
∫
∂P

uµLhL · n dΓ (6.11c)

The time variation of net internal energy corresponds to the power expenditure of external
agencies: a mechanical contribution due to body forces f and contact forces p that spend power
against velocities υ; a heat contribution where the scalar sq is the heat supplied by external agencies
and q is the heat flux vector; a mass flux contribution with the scalar uµβ denoting the specific
energy required to provide a unit supply of mass of species β (β = L, T ), and the scalar sβ stands
for the external supply of species (i.e. excluding chemical reaction contributions).

As usual in thermodynamics of continua [50], one can make use of the specific internal energy
u:

U(P) =

∫
P
u dΩ

in small displacements it makes no difference to define specific internal energy per unit mass or per
unit volume, since both mass and volume do not change during the process. Standard application
of the divergence theorem and of mass balances (6.4) leads from (6.11) to:

W(P) =

∫
P
σ :

∂ε

∂t
dΩ (6.12a)

Q(P) =

∫
P
sq − div [ q ] dΩ (6.12b)

T (P) =

∫
P

uµL
∂cL
∂t

+ uµL w̄ − hL · ∇ [ uµL ] dΩ +

∫
P

uµT
∂cT
∂t
− uµT w̄ dΩ (6.12c)

The presence of crack surface S affects the usual localization procedure of the first principle of
thermodynamics. The rate of the internal energy splits in the sum:

∂

∂t

∫
P
u dΩ =

∂

∂S

∫
P
u dΩ

∂S
∂t

+

∫
P

∂u

∂t
dΩ

∣∣∣∣
S

The first contribution represents the change in internal energy when the fracture surface is changed
merely, whereas the second contribution accounts for the change in internal energy when the fracture
surface is unchanged. The amount of newly formed fracture surface reads:

∂S
∂t

= v(s, t)∂s

with the crack front velocity v(s, t) as defined in (2.1). The change in internal energy when nothing
but the fracture surface is changed is the energy release rate, namely:

G(P) = − ∂

∂S

∫
P
u dΩ

Irwin’s formula [62]:
G = K∗ ·ΛK∗ (6.13)

usually involves the whole volume Ω and the amount G(Ω) is simply denoted with G. In eq.(6.13)
definitions of SIFs vector K∗ and of matrix Λ refer to equations (2.3) and (2.12), respectively.
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There were no constitutive restrictions on energy release rate G so far and its only exploiting
Irwin’s formula (6.13) that analysis is restricted to LEFM.

The first principle of thermodynamics results:

− G(P )
∂S
∂t

+

∫
P

∂u

∂t
dΩ

∣∣∣∣
S

=

=

∫
P
σ :

∂ε

∂t
+ sq − div [ q ] + uµL

∂cL
∂t

+ uµT
∂cT
∂t
− hL · ∇ [ uµL ] + (uµL − uµT )w̄ dΩ

(6.14)

6.2.2 Entropy imbalance

The following form of the entropy imbalance

∂

∂t

∫
P
η dΩ +

∫
P
−sq
T

+ div
[ q

T

]
− ηµLsL + div [ ηµLhL ]− ηµT sT dΩ ≥ 0 (6.15)

can be derived in terms of the referential entropy η and of the absolute temperature T from the
usual entropy balance. The scalar ηµβ denotes the change in the specific entropy provided by a
unit supply of mass2 of species β = L, T .

Equation (6.15) stems from the non trivial assumption that mechanics does not contribute to
the total entropy flow in the entropy balance equation. The fundamental assumption made is that
an extension of fracture surface does not affect the entropy:

∂

∂t

∫
P
η dΩ =

∫
P

∂η

∂t
dΩ

A rationale for this assumption can be found in [34]. Although the understanding of the fundamental
physics beyond this hypothesis and its long-range impact is not yet fully clear, the timescale of the
diffusive process versus the velocity of the crack elongation in real materials seems to play a role. If
the velocity of the crack front is much higher than the diffusion velocity, it appears to be reasonable
to assume that the entropy of mixing is not influenced by crack elongation and that the entropic
redistribution takes place after a new mechanically equilibrated and compatible configuration has
been attained. Such a strong assumption is coherent with the assumption made that mechanics
does not cause an entropy flux in the entropy imbalance (6.15), and is equivalent to state that the
entropy release rate is zero. The entropy imbalance thus reads:∫

P

∂η

∂t
− sq
T

+ div
[ q

T

]
− ηµLsL + div [ ηµLhL ]− ηµT sT dΩ ≥ 0

By noting that

div
[ q

T

]
=

1

T
div [ q ]− 1

T 2
q · ∇ [T ]

the entropy imbalance can be rephrased in terms of the internal energy, taking advantage of identity
(6.14) and of the sign definiteness of temperature:∫

P
T
∂η

∂t
− 1

T
q · ∇ [T ]− T ηµLsL + T div [ ηµLhL ]− T ηµT sT dΩ

+ G(P)
∂S
∂t
−
{∫
P

∂u

∂t
− σ :

∂ε

∂t
− uµL

∂cL
∂t
− uµT

∂cT
∂t

+ hL · ∇ [ uµL ]− (uµL − uµT )w̄ dΩ

}
≥ 0

2The contribution of mass to the flux of entropy in (6.15) is not considered in [50].
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By exploiting mass balance equations (6.4) the entropy imbalance becomes

G(P)
∂S
∂t

+

∫
P
T
∂η

∂t
− ∂u

∂t
dΩ +

+

∫
P
− 1

T
q · ∇ [T ]− T ηµL

∂cL
∂t
− T ηµT

∂cT
∂t

+ T hL · ∇ [ ηµL ]− T (ηµL − ηµT ) w̄ dΩ

−
∫
P
−σ :

∂ε

∂t
− uµL

∂cL
∂t
− uµT

∂cT
∂t

+ hL · ∇ [ uµL ]− (uµL − uµT ) w̄ dΩ ≥ 0

Define the Helmholtz chemical potential of species β as

µβ = uµβ − T ηµβ (6.16)

and the affinity of the reaction (6.1) as:

Ā = µT − µL (6.17)

in order to write the entropy imbalance as:

G(P)
∂S
∂t

+

∫
P
T
∂η

∂t
− ∂u

∂t
dΩ +

+

∫
P
− 1

T
q · ∇ [T ] + µL

∂cL
∂t

+ µT
∂cT
∂t
− hL · ∇ [µL ]− ηµLhL · ∇ [T ]− Ā w̄ + σ :

∂ε

∂t
dΩ ≥ 0

(6.18)

Following [34], a new heat flux:
q| = q + T ηµLhL (6.19)

can be defined, whereby T ηµLhL represents a heat transfer due to the diffusion of interstitial
species in the lattice. q| is the thermodynamic force conjugated to the gradient of temperature, i.e.:

G(P)
∂S
∂t

+

∫
P
T
∂η

∂t
− ∂u

∂t
+ µL

∂cL
∂t

+ µT
∂cT
∂t

+ σ :
∂ε

∂t
dΩ

+

∫
P
− 1

T
q| · ∇ [T ]− hL · ∇ [µL ]− Ā w̄ dΩ ≥ 0 (6.20)

6.2.3 Additive decomposition of strains

As customary in the hypothesis of small strains, the total strain ε is additively decomposed in four
contributions: an elastic recoverable part after unloading εel, a swelling contribution due to the
intercalation of species in the hosting material εs, an inelastic distorsion, usually of plastic nature
εin, and a thermal distorsion εth:

ε = εel + εs + εin + εth (6.21)

The swelling contribution is taken as proportional to the deviation cβ − c0
β from the reference

concentration c0
β by means of factors ωL and ωT termed chemical expansion coefficients of the

species in the host material and in the traps, which equal one third of the partial molar volumes
at a given temperature:

εs = ωL(cL − c0
L)I + ωT (cT − c0

T )I
with I the identity matrix.
The thermal strain tensor is assumed to be proportional to the temperature difference T −T0, with
T0 a reference temperature, by means of a factor α termed thermal expansion coefficient:

εth = α(T − T0)I



CHAPTER 6. FRACTURE DRIVEN BY DIFFUSION OF SPECIES IN SOLIDS 125

6.2.4 Helmholtz free energy

Different thermodynamic potentials can be considered rather than the internal energy u.
The specific Helmholtz free energy is defined as:

ψ̄ = u− Tη (6.22)

and it is used henceforth. It holds:

T
∂η

∂t
− ∂u

∂t
= −∂ψ̄

∂t
− η∂T

∂t

to be inserted in (6.20) to derive the entropy imbalance in the final form:

G(P)
∂S
∂t

+

∫
P
−∂ψ̄
∂t
− η∂T

∂t
dΩ +

+

∫
P
µL
∂cL
∂t

+ µT
∂cT
∂t

+ σ :
∂εel

∂t
+

(
ωL

∂cL
∂t

+ ωT
∂cT
∂t

)
tr [σ ] + σ :

∂εin

∂t
+

+ α
∂T

∂t
tr [σ ]− 1

T
q| · ∇ [T ]− hL · ∇ [µL ]− Ā w̄ dΩ ≥ 0 (6.23)

Consider the free energy ψ̄ to be function of the temperature T , the concentrations cL and cT , the
kinematic variables in terms of the small strain elastic tensor εel, and of some kinematic internal
variables ξ that appear with the usual meaning in inelastic constitutive laws. One has therefore:

∂ψ̄

∂t
=
∂ψ̄

∂T

∂T

∂t
+

∂ψ̄

∂εel
:
∂εel

∂t
+
∂ψ̄

∂cL

∂cL
∂t

+
∂ψ̄

∂cT

∂cT
∂t

+
∂ψ̄

∂ξ
· ∂ξ
∂t

to be inserted in (6.23). The internal force vector conjugated to ξ is denoted with the symbol χ,
i.e.:

χ = −∂ψ̄
∂ξ

6.2.5 Clausius-Duhem inequality

Entropy imbalance (6.23) can be localized under the usual assumption behind the Colemann-Noll
procedure, i.e. (6.23) must be satisfied for every admissible process. Fracturing processes without
crack growth are certainly admissible processes, corresponding to condition (2.13). Inequality (6.23)
thus implies that:∫

P
−∂ψ̄
∂T

∂T

∂t
− ∂ψ̄

∂εel
:
∂εel

∂t
− ∂ψ̄

∂cL

∂cL
∂t
− ∂ψ̄

∂cT

∂cT
∂t

+ χ · ∂ξ
∂t

+

− η
∂T

∂t
+ µL

∂cL
∂t

+ µT
∂cT
∂t

+ σ :
∂εel

∂t
+

(
ωL

∂cL
∂t

+ ωT
∂cT
∂t

)
tr [σ ] + α

∂T

∂t
tr [σ ] +

+ σ :
∂εin

∂t
− 1

T
q| · ∇ [T ]− hL · ∇ [µL ]− Ā w̄ dΩ ≥ 0 (6.24)

Inequality (6.24) must hold for any subregion P, since the latter was arbitrarily taken. There-
fore, the following local entropy imbalance, usually termed Clausius-Duhem inequality, yields:

∂T

∂t

(
α tr [σ ]− η − ∂ψ̄

∂T

)
+
∂εel

∂t
:

(
σ − ∂ψ̄

∂εel

)
+
∂cL
∂t

(
µL + ωL tr [σ ]− ∂ψ̄

∂cL

)
+

+
∂cT
∂t

(
µT + ωT tr [σ ]− ∂ψ̄

∂cT

)
+ σ :

∂εin

∂t
+ χ · ∂ξ

∂t
− hL · ∇ [µL ]− Ā w̄ +

− 1

T
q| · ∇ [T ] ≥ 0
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6.2.6 Thermodynamics restrictions

Clausius-Duhem inequality must hold for any value of the time derivative of temperature T , the
concentrations cL and cT , the small strain elastic tensor εel. Since they appear linearly in the
inequality, the corresponding multiplicative contributions must be zero, otherwise it would be
possible to find a value for the time derivatives that make the inequality not to hold. Therefore,
the following restrictions apply:

σ =
∂ψ̄

∂εel
, η = −∂ψ̄

∂T
+ α tr [σ ] , µL =

∂ψ̄

∂cL
− ωL tr [σ ] , µT =

∂ψ̄

∂cT
− ωT tr [σ ]

(6.25)
thus yielding to the inequality:

σ :
∂εin

∂t
+ χ · ∂ξ

∂t︸ ︷︷ ︸
inelastic

−hL · ∇ [µL ]︸ ︷︷ ︸
transport

− Ā w̄︸︷︷︸
chemical

− 1

T
q| · ∇ [T ]︸ ︷︷ ︸
thermal

≥ 0 (6.26)

Mechanical, diffusive, chemical and thermal contributions can be devised. The structure of (6.26)
is the usual bilinear form, with thermodynamic flows (σ,χ,hL, w̄,q| ) conjugated to thermodynamic
variables
(∂ε

in

∂t ,
∂ξ
∂t ,∇ [µL ] , Ā,∇ [T ]). The latter vanishes at thermodynamic equilibrium.

Tensors can be decomposed in their volumetric and deviatoric parts:

σ :
∂εin

∂t
= sph [σ ] sph

[
∂εin

∂t

]
+ dev [σ ] : dev

[
∂εin

∂t

]
= p

∂tr
[
εin
]

∂t
+ dev [σ ] : dev

[
∂εin

∂t

]
with p = tr [σ ] /3. Inequality (6.26) rewrites accordingly:

p
∂tr
[
εin
]

∂t
+ dev [σ ] : dev

[
∂εin

∂t

]
+ χ · ∂ξ

∂t
− hL · ∇ [µL ]− Ā w̄ − 1

T
q| · ∇ [T ] ≥ 0 (6.27)

Owing to Curie symmetry principle [34], in inequality (6.27) fluxes and thermodynamic variables
of different tensorial character do not couple. Inequality (6.27) thus can be written as3

dev [σ ] : dev

[
∂εin

∂t

]
+ χ · ∂ξ

∂t
≥ 0 (6.28a)

hL · ∇ [µL ] +
1

T
q| · ∇ [T ] ≤ 0 (6.28b)

p
∂tr
[
εin
]

∂t
− Ā w̄ ≥ 0 (6.28c)

Cross effects, usually termed after Dufour and Soret, emanates from inequality (6.28b). When cross-
effects can be neglected, processes act separately and the Coleman-Noll procedure thus applies for
which one requires inequality (6.27) to hold for all constitutive processes independently [50, 143].
The following thermodynamic restrictions thus arise:

hL · ∇ [µL ] ≤ 0, q| · ∇ [T ] ≤ 0, p
∂tr
[
εin
]

∂t
≥ 0

Āw̄ ≤ 0, dev [σ ] : dev

[
∂εin

∂t

]
+ χ · ∂ξ

∂t
≥ 0 (6.29)

3Equation (6.28a) contains terms with different tensorial order. This strategy is adopted since the latter represents
the irreversibility due to the inelastic behavior of the host material.
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They are usually associated to Clausius and Planck names.

The hypothesis of irreversibility of crack elongation never entered the thermodynamics anal-
ysis described thus far. Therefore, the thermodynamic restriction (6.23) is the mere requirement
that processes that include crack healing have to satisfy. This intriguing scenario is not investi-
gated in the present work that frames under the assumption of irreversible crack growth, namely
v(s, t) ≥ 0 ∀s ∈ F and

Gv(s, t) ≥ 0 (6.30)

to add to restrictions (6.29). Inequality (6.30) has been established in Section 2.4, according to
[115]. From thermodynamic restriction (6.30) thus descends that the energy release rate G must
always be positive, as intuition suggests and Irwin’s formula (6.13) states.

6.3 Constitutive theory

All processes are henceforth be assumed to take place under thermal equilibrium at temperature
T0, so that the thermodynamic restrictions (6.29) relevant to the temperature and its gradient are
a priori satisfied. A more general treatment can be accomplished as in [35].

Guided by the thermodynamic restrictions (6.29) the flux of interstitial species is modeled by
Fickian- diffusion, that linearly correlates hL to the gradient of its chemical potential:

hL = −ML(cL)∇ [µL ] (6.31)

by means of a positive definite mobility tensor ML. A classical [4] specialization of mobility tensor
ML for dilute solutions accounting for saturation is isotropic yet non linear:

ML(cL) = u| LcL
(

1− cL
cmaxL

)
I (6.32)

The amount u| L > 0 is usually termed the mobility and represents the average velocity of interstitial
species when acted upon by a force of 1N/mol independent on the origin of the force. Definition
(6.32) represents the physical requirement that both the pure (cL = 0) and the satured (cL = cmaxL )
phases have vanishing mobilities.

Under the assumption that traps are isolated [106], trapped species does not flow. Assuming
that the latter has zero mobility, i.e. MT (cT ) = 0, is an alternative view of modeling the absence
of trapped species flux.

The Helmholtz free energy density ψ̄ is decomposed into three separate parts:

ψ̄(cL, cT , ε
el, ξ) = ψ̄diff (cL, cT , ξ) + ψ̄el(ε

el, cL, cT ) + ψ̄in(ξ) (6.33)

The mass transport process is described by ψ̄diff , adopting species concentrations as the state
variables. Statistical mechanics provides a description of the entropy for isolated systems in terms of
the density of states Ω| , which in the case of two-state systems is the number of possible molecular
configurations. Making recourse of Stirling’s approximation, combinations formula provides the
following number of possible configurations of interstitial species atoms into a crystalline ideal
lattice:

Ω| L = [θθLL (1− θL)(1−θL)]−NAc
max
L (6.34)
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having denoted with NA = 6.02214129(27) 1023mol−1 the Avogadro’s number and with θL =
cL/c

max
L . Inserting (6.34) into Boltzmann’s equation:

ηL = kB ln[Ω| ]

the following expression of the entropy comes out since the universal constant of gas
R = 8.3144621 JK−1mol−1 is the product of Boltzmann constant kB with Avogadro’s number:

ηL = −Rcmax
L (θL ln[θL] + (1− θL) ln[1− θL]) (6.35)

The ηT counterpart can be derived from Ω| T of the trapped species in terms of θT = cT /c
max
T where

the saturation limit for trapped species cmax
T (ξ) depends upon the history of inelastic deformations

by means of ξ:

ηT = −RcmaxT (ξ)(θT (ξ) ln[θT (ξ)] + (1− θT (ξ)) ln[1− θT (ξ)]) (6.36)

Formulas (6.35) and (6.36) allow defining the entropic contributions ηµL and ηµT to the chemical
potential, see formula (6.16). From the third and the fourth of thermodynamic equalities (6.25)
and definition (6.22), one is naturally lead to define:

ηµL =
∂ηL
∂cL

= −R (ln[θL]− ln[1− θL])

ηµT =
∂ηT
∂cT

= −R (ln[θT ]− ln[1− θT ])

An ideal solution model provides the following free energy density for the ideal continuum
approximation to mixing:

ψ̄diff (cL, cT , ξ) = µ0
LcL − TηL + µ0

T cT − TηT (6.37)

Specialization (6.37) of Helmholtz’s free energy density represents the entropy of mixing of an ideal
solution, with no energetic interactions. µ0

L and µ0
T are reference values of the chemical potential.

They are related to the trap binding energy −∆ET (i.e. the opposite of the Gibbs free energy
change) with respect to the lattice site, and in turn related to the equilibrium constant Keq of
reaction (6.1):

−∆ET = µ0
L − µ0

T = RT ln[Keq]

Owing to the expression of the stress tensor (6.43) derived below, the chemical potentials result in
the form:

µL =
∂ψ̄diff
∂cL

+
∂ψ̄el
∂cL

− ωLtr [σ ] =

= µ0
L + RT (ln[θL]− ln[1− θL]) +

1

2

∂K̄(cL)

∂cL
tr
[
εel
]2

+
∂µ(cL)

∂cL

∥∥∥dev
[
εel
]∥∥∥2

− ωL tr [σ ] (6.38a)

µT =
∂ψ̄diff
∂cT

− ωT tr [σ ] =

= µ0
T +RT (ln[θT ]− ln[1− θT ])− ωT tr [σ ] (6.38b)
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where K̄(cL) and µ(cL) are the bulk modulus and the shear modulus4 of the host material,
respectively, that are made dependent on cL, but not on cT . Even in the simple theory here dealt
with, the chemical potential is quite complex and consists in three separate contributions. The
first arises from the diffusive part of the free energy, and has a purely entropic nature. The second
contribution has a mechanical origin and conveys the effect of the mechanical parameters on the
chemical potential. Finally, the last contribution measures the influence of the swelling deformation
on the chemical potential.

Defining the interstitial diffusivity by D| L = u| LRT , the Fick’s law (6.31) becomes:

hL = −D| L∇ [ cL ] + ωLML(cL)∇ [ tr [σ ] ] +

− ML(cL)∇
[

1

2

∂K̄(cL)

∂cL
tr
[
εel
]2

+
∂µ(cL)

∂cL

∥∥∥dev
[
εel
]∥∥∥2

]
(6.39)

with the trace of the stress tensor to be evaluated from eq. (6.44) and the elastic strain tensor
from decomposition (6.21). By comparing (6.39) with the mass flux formula for infinitely dilute
solutions, that can be easily derived by taking cmax

L → +∞, one concludes that the saturation has
no effect on the diffusivity D| L: in fact, the impact of saturation on the mobility tensor (6.32) and on
the chemical potential (6.38a) act one against the other and the effects cancel out in the evaluation
of diffusivity. Saturation affects the mass transport by mechanical effects, even under the simple
assumption that material parameters K̄ and µ are not influenced by the interstitial concentration
of species.

Similarly to the definition of Fick’s law for the mass flux, a classical way to enforce thermody-
namic restrictions for affinity of reaction (6.1) is to linearly relate affinity to the reaction rate, by
means of a phenomenological coefficient L̄ > 0:

w̄ = −L̄ Ā(cL, cT , ε
el, ξ) (6.40)

The reaction rate is therefore related to the concentrations of the reactants, in view of the definition
(6.17) of the affinity and in view of the chemical potentials derived in (6.38). Some simplifications
are generally assumed in order to provide an insightful form for the affinity. It is usually accepted,
although on the unsatisfactory basis that there is insufficient information about either from exper-
iments or detailed micro mechanical models, that chemical expansion coefficients ωL and ωT are

equal. If furthermore the contribution ∂ψ̄el
∂cL

results negligible with respect to the diffusive parts of
the chemical potential in eq. (6.38), for instance because concentration have little influence on the
elastic properties, then it comes out:

Ā(cL, cT , ξ) =
∑
β

νβ RT

(
ln

[
cβ

cmaxβ − cβ

]
− ln

[
ceqβ

cmaxβ − ceqβ

])
(6.41)

to be inserted in (6.40). In eq. (6.41) β = L, T , whereas νL = −1 and νT = 1. In the proximity
of the equilibrium conditions (6.1), easy algebra leads to the following linearized expression for the
reaction rate:

w̄ = −L̄
∑
β

νβ
RT

ceqβ

cmax
β

cmaxβ − ceqβ
(cβ − ceqβ ) (6.42)

It is remarked in [34] that the linear phenomenological equation (6.40) is not a priori satisfactory
for chemical reactions, although there is always a region close to equilibrium where (6.42) holds.

4µ(cL) represents the shear modulus of the host material depending on the concentration cL, that has not to be
confused with the chemical potentials of the trapped µT , and interstitial µL species.
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The mechanical part of the free energy density ψ̄el(ε
el, cL, cT ) is the usual quadratic form in εel

ψ̄el(ε
el, cL, cT ) =

1

2

(
K̄(cL) tr

[
εel
]2

+ 2µ(cL)
∥∥∥dev

[
εel
]∥∥∥2
)

Thermodynamics restrictions (6.25) yield the stress tensor as the gradient of the free energy density
with respect to the elastic tensor, namely:

σ = K̄(cL)tr
[
εel
]
I + 2µ(cL)dev

[
εel
]

(6.43)

Owing to the additive decomposition of strains (6.21) and under the assumption of plastic incom-
pressibility tr

[
εin
]

= 0, the identities:

tr
[
εel
]

= tr [ ε ]− 3(ωL(cL − c0
L) + ωT (cT − c0

T ))

dev
[
εel
]

= dev [ ε ]− dev
[
εin
]

ensue, to be further inserted into (6.43) to finally derive the stress tensor in terms of the total and
plastic strain as well as the concentrations as:

σ = K̄(cL)tr [ ε ] I + 2µ(cL)dev [ ε ]− 3K̄(cL)[ωL(cL − c0
L) + ωT (cT − c0

T )]I− 2µ(cL)εin (6.44)

Numerical analyses [136, 146] showed that at relatively small values of initial impurity’s concen-
tration, the stress distribution is not influenced by the species, being the swelling contribution
negligible compared with the mechanical deformation itself.

To capture inelastic effects, any thermodynamically consistent theory that fits well with the
experimental evidences is a good candidate. To give an example, a standard J2 flow theory with
isotropic hardening is considered. Accordingly, only one internal variable ξ is used and

ψ̄in(ξ) =
1

2
K̄inξ2 (6.45a)

It has been taken K̄in ≥ 0 together with a Von Mises yield criterion:

ϕ(σ, χ̃) = ‖dev [σ ] ‖ −
√

2

3
σY + χ (6.45b)

and normality law:

ε̇in =
∂ϕ

∂σ
λ̇, ξ̇ =

∂ϕ

∂χ
λ̇ (6.45c)

Term σY in equation (6.45b) denotes the yield stress that doesn’t depend on cL [41], while χ has
to be meant as

χ = −∂ψ̄
in

∂ξ
(6.45d)

Definition (6.45d) and Karush-Kuhn-Tucker conditions

λ̇ ≥ 0, ϕ ≤ 0, λ̇ϕ = 0 (6.45e)

complete the incremental form of the mechanical constitutive equations.
Owing to definitions (6.36), (6.37) and (6.45d) thermodynamic restriction (6.28a) is rephrased

as follows [35]:

σ : ε̇in + χξ̇ −RT log(1− θT )
∂cmax

T

∂ξ
ξ̇ ≥ 0 (6.46)
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Adoption of J2 flow theory with isotropic hardening ensures:

σ : ε̇in + χ ξ̇
ϕ=0
= (‖dev [σ ] ‖+ χ) λ̇

ϕ=0
=

√
2

3
σY λ̇ ≥ 0

and allows to emphasize dependence on cmaxT on the equivalent plastic strain

ε̄in =

∫ t

0

√
2

3
‖εin‖ dτ

Restriction (6.46) is left with:

− log(1− θT )
∂cmaxT

∂ε̄in
λ̇ ≥ 0 (6.47)

Term log(1 − θT ) is always negative since trap concentration cT cannot exceed the upper bound
set by saturation limit cmaxT and thus 0 ≤ θT ≤ 1. In view of experimental observations [71] that

the number of traps increases with plastic deformation the positiveness of
∂cmaxT

∂ε̄in
is guaranteed and

therefore thermodynamic consistency (6.46).

6.3.1 Governing Equations

Under thermal equilibrium assumption, governing equations can be derived by incorporating the
constitutive equations (6.39), (6.40), and (6.44) into the balance equations (6.4, 6.5). A new variable
µmechL that designates the influence of mechanics on the chemical potential µL adds to the ones
that control the problem evolution, i.e. concentrations cL and cT and displacements u. Governing
equations are written in a reduced order form in terms of the new field, at all points x ∈ Ω:

∂cL
∂t
− div [ D| L∇ [ cL ] ] + div

[
ωLu| LML(cL)∇

[
µmechL

] ]
− L̄ Ā(cL, cT , ε

el, ξ) = 0 (6.48a)

∂cT
∂t

+ L̄ Ā(cL, cT , ε
el, ξ) = 0 (6.48b)

div
[
σ(cL, cT , ε

el, εin, ξ)
]

= 0 (6.48c)

µmechL − µmechL (cL, cT , ε
el, ξ) = 0 (6.48d)

defining with:

µmechL (cL, cT , ε
el, ξ) =

1

2

∂K̄(cL)

∂cL
tr
[
εel
]2

+
∂µ(cL)

∂cL

∥∥∥∥dev
[
εel
]2
∥∥∥∥− ωLtr [σ ] =

=
1

2

∂K̄(cL)

∂cL
tr
[
εel
]2

+
∂µ(cL)

∂cL

∥∥∥∥dev
[
εel
]2
∥∥∥∥+

− 3 K̄(cL)ωL (tr [ ε ]− 3(ωL(cL − c0
L) + ωT (cT − c0

T )))

Equations (6.48) are accompanied with non linear evolution equations (6.45) for inelastic strain
tensor εin and for ξ. Boundary conditions

hL · n = h̄ x ∈ Γh

σ · n = p̄ x ∈ Γp
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are imposed along Neumann boundaries. To ensure solvability to the problem, Dirichlet boundary
conditions have to be enforced along part Γu:

u = ū x ∈ Γu (6.50)

As assessed in [35], Dirichlet boundary conditions for concentration should not be imposed. The
correct boundary condition that enforces equilibrium for dissolved species in the hosting material
and the species out of Ω shall be written as an equivalence of chemical potentials.

Initial conditions are usually imposed for concentration of interstitial cL(x, t = 0) as well as
trapped species cT (x, t = 0). To comply with equilibrium thermodynamics they are constant in
volume Ω and equal to their equilibrium concentrations with external species. Balance of momen-
tum (6.48c) and the auxialiary condition (6.48d), together with boundary conditions, provide the
necessary and sufficient equations to be solved for u and µmechL at t=0.

6.4 Fracture propagation

Denoting as usual with Ω ∈ R3 the spatial domain of problem (6.4, 6.5) with boundary ∂Ω ≡ Γ,
consider within Ω an existing arbitrarily shaped crack as the one depicted in figure 2.1. The material
response to the following quasi-static external actions is sought: tractions p̄(x, t) on Γp, displace-
ments ū(x, t) on Γu, bulk forces f(x, t) in Ω, fluxes h̄(x, t) on Γh and potentials µ̄L(x, t) on Γµ.
In modeling crack elongation, mechanical external actions are all assumed to vary proportionally
to the load factor κ and the crack attains its initial length before the beginning of the diffusion
process.

It is postulated that the stress-strain fields in the crack tip vicinity are uniquely determined by
SIFs vector K. Even if the asymptotic expansion of the SIFs vector K(s, τ) at any point s of the
crack front at time τ > t in powers of the elongation l(s; t, τ) expressed by eq. (2.2) has not been
extended to the case of coupled diffusion and mechanics so far, it is assumed that expansion (2.2)
still holds at given loads and concentrations and since the material properties may depend upon
cL, so do the SIFs.

The global incremental quasi-static fracture propagation problem can therefore be restated as
follows in the presence of diffusion of species: given the state of stress, of concentrations and the
history of crack propagation, if any, at time t, express the crack propagation rate, if any, of the
crack front as a function of the stress, of the concentrations, and of the history. It is made the
assumption that the change in geometry is not affecting concentrations, since the time required
to reactivate mechanical equilibrium is taken to be much faster than the diffusive time scale. The
mathematical expression of the onset of crack propagation eq. (2.11) is now expressed by:

ϕ(s, t) =
1

2
(K∗(s, t) ·ΛK∗(s, t)−Gc(cL, cT ))

where components of matrix Λ are expressed in eq. (2.12).
Diffusion problem governs the transport of the species to the crack front, whereas mechanic

problem accounts for the fracture of the specimen. The coupling between diffusion and mechanics
relies in the fact that species transport affects the mechanical properties, decreasing the fracture
toughness of the host material, and mechanics affect the diffusion via the stress-field, which appears
in the pressure dependence of chemical potentials eq. (6.38).

Perhaps the greatest challenge in the fracture mechanics scenario depicted above is the mea-
surement of the dependence of the fracture energy GC with the concentrations of the species cL
and cT . Observed material embrittlement confirms that the fracture energy is highly influenced by
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trapped and interstitial species, but it is not so obvious how to define a fracture energy for a ma-
terial containing mobile species that may move to the surface upon crack formation. Attempts in
modeling the evolution of fracture energy GC(cL, cT ) have been taken in the framework of cohesive
fracture mechanics by Serebrinsky et al. in 2004 [132]. A cohesive law dependent on impurity cov-
erage was calculated from quantum mechanics and afterwards the atomic-level cohesive properties
were properly scaled up to the continuum scale in order to embed such a cohesive law into cohesive
elements for analysis of the static crack growth.
In the same year Jiang et al. [64] quantitatively assessed the decrease of Fe and Al crystal cohesive
energy due to the reduction of the local atomic binding at the crack tip caused by the segregation
of hydrogen to the incipient fracture zone inducing embrittlement. A concept closely related to
cohesive energy reduction is the decrease of surface energy, whereby the lowering of the surface
energy by species increases the driving force to form two new surfaces, i.e. to form a crack. They
found that the metal fracture energy decreases almost linearly with increasing hydrogen coverage.
Fracture energy computed at an atomistic level was then used as input into higher length scale
models for stress corrosion cracking at the continuum level.
The decrease in the surface energy comes from the competition between the propensity for the
species to stay on the surface versus remaining in the bulk. Therefore the kinetics of the species
segregation to the crack tip on the newly fractured surfaces can govern the cohesion reduction as
the crack propagates and may cause a time-delayed cracking behavior, explaining precisely why
intermittent crack growth is experimentally observed in continuum modeling of hydrogen embrit-
tlement.

In 2010 Song et al. [134] computed fracture energy as a function of hydrogen concentration in
nickel (Ni), exploiting an atomistic model to investigate actual crack tip behavior in the presence
of controlled arrays of hydrogen atoms around the crack tip.

Alterations of the fracture toughness and the energy available for crack growth for a solid
state diffusion process under chemical and mechanical loadings have been recently described by
Haftbaradaran and Qu [51], by means of a chemo-mechanical path-independent J-integral. They
proved that the classical J-integral of Rice [114] is path-dependent under combined chemical and
mechanical driving forces and developed a path-independent integral for an elastic solid under
chemo-mechanical equilibrium with its surrounding, i.e. when long enough time has elapsed or the
rate of solute diffusion is much faster in comparison with other kinetic processes in the problem,
neglecting the variations in the elastic properties of the host medium caused by solute concen-
trations. The J-integral represents a balance between the total energy inside the closed contour
around the crack tip and the energy passing through the contour line. In the presence of solid state
diffusion, the total energy inside the closed contour is higher than just the elastic strain energy
since energy associated with species diffusion and distribution must also be taken into account.
The chemo-mechanical path-independent integral thus obtained equals the energy release rate via
a line integral along any contour which encircles the crack tip.

Assume that the crack front at an arbitrary location s is at the onset of propagation at time t
(i.e. ϕ(s, t) = 0); stable crack growth may therefore be triggered off.
The system is thus subjected to a variation in the state of deformation ε, a variation in the con-
centrations cL and cT and a potential increment of fracture surface ∂S. Recent investigations [100]
conclude that concentrations remain bounded near the crack front. Granted this result, stresses
due to swelling (i.e. −3K̄(cL)[ωL(cL− c0

L) +ωT (cT − c0
T )]I) remain bounded and no stress intensity

factors emanate from constitutive law (6.44). Nevertheless, a variation of interstitial concentration
may affect the bulk and shear modulus and in turn SIFs. This variation can be considered to
be small with respect to the variation induced by increment of deformations and neglected, as if
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bulk and shear modulus are independent upon cL. In conclusion therefore, SIFs can be assumed
unaffected by concentrations.

The solution of the initial-boundary value problem depicted in the previous Sections describes
the evolution of concentrations and displacements with time. The evolution of geometry, i.e. the
propagation of cracks, arises from the variational formulation [125, 127] presented in Section 2.5
for LEFM that can be extended to the multi-physics problem at hand.
Propagation is governed at any instant t, by the Karush-Kuhn-Tucker conditions (2.16), namely:

ϕ(s, t) ≤ 0, v(s, t) ≥ 0, ϕ(s, t) v(s, t) = 0 (6.51)

Referring to the definition of operator N ′v (2.40), variational formulations descending from consis-
tency condition (2.19) read:

Proposition 4: Under hypothesis of stable crack growth:

N ′v[w]w(s, t) < 0 ∀w(s, t) ≥ 0, s ∈ F(t)

the crack front velocity v(s, t) that solves the global quasi-static fracture propagation problem at time
t minimizes the functional:

χ[w(s, t)] = −1

2

∫
F(t)|ϕ=0

N ′v[w(s′, t)]w(s, t) ds−
∫
F(t)|ϕ=0

GC(cL, cT )

κ(t)

∂κ

∂t

∣∣∣∣
t

w(s, t) ds (6.52)

under the constraint w(s, t) ≥ 0 ∀s ∈ F(t)|ϕ=0

Proposition 5: Under hypothesis of stable crack growth:

N ′v[w]w(s, t) < 0 ∀w(s, t) ≥ 0, s ∈ F(t)

the crack front velocity v(s, t) that solves the global quasi-static fracture propagation problem at time
t minimizes the functional:

ω[w(s, t)] = −1

2

∫
F(t)|ϕ=0

N ′v[w(s′, t)]w(s, t) ds (6.53)

under the constraint

N ′v[w(s′, t)] +
GC(cL, cT )

κ(t)

∂κ

∂t

∣∣∣∣
t

w(s, t) ≤ 0 ∀s′ ∈ F(t)|ϕ=0

Proof of the above theorems does not differ from the one reported in Section 2.5.

6.5 Hydrogen embrittlement

The diffusion model of a neutral species through a solid lattice described above perfectly fits the
case of Hydrogen Embrittlement (HE). Atomic hydrogen, being the smallest of gaseous impurities,
is a very mobile species that freely diffuses from one interstitial site to another and the presence
of hydrogen changes the mechanical properties of the metal, leading to inconsistent and usually
degraded structural performances in service. HE in metals has posed serious obstacles to design
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strong and reliable structural materials for many decades, and predictive physical mechanisms still
are a research subject.

Direct exposure to hydrogen gas can occur in pipelines and in pressure vessels. Indirect ex-
posure to hydrogen can occur from any physical contact of the metal with liquid water or water
vapor. In the latter case a chemical reaction between steel and water produces hydrogen gas which
subsequently enters and embrittles the metal. Hydrogen can also be introduced into a material
during the manufacturing process or by electrochemical charging. Phenomena related to the source
of the species and the kinetics of entrance into the host medium are not considered in this Chapter.
In any case, HE is a pervasive mode of degradation in many metallic systems that can occur via
several mechanisms which may operate simultaneously or separately under certain circumstances.
Among them:

• Hydride-induced embrittlement
This mechanism describes the hydrogen-induced phase changes to form metal hydrides ahead
of a crack. New hydrides nucleate and growth in the stress field generated by the presence of
preexisting hydrides, and finally coalesce. This auto catalytic process of hydride nucleation
and growth, together with the brittle nature of them, has been extensively observed experi-
mentally and seems to be the main cause of embrittlement in hydride-forming elements such
as V, Nb, Ti or Zn [149]

• H-Enhanced DEcohesion (HEDE) mechanism
It postulates that H atoms attracted to the crack front lower the fracture energy and favor
cleavage-like planar fracture. According to the HEDE mechanisms, hydrogen damage takes
place in the crack front process zone, when the local crack front tensile stress exceeds the
maximum local atomic cohesion strength, lowered by the presence of H [28, 46, 107, 145]. It
was shown [148] that the mobile segregant reduces the cohesion greater than the immobile
segregant.

• H-Enhanced Local Plasticity (HELP) mechanism
Transmission electron microscopy observations of changes in dislocations pile-ups with and
without H, show high local plastic-like deformations in embrittled materials and formation of
slip bands at the crack tips [1, 14, 16, 38, 119, 137]. HELP mechanism suggests that hydrogen
in a solid solution reduces the barriers to dislocations motion trough an elastic shielding effect,
thereby increasing the amount of plastic deformations that occur in a localized region adjacent
to the fracture surface. In this case the term hydrogen-assisted cracking is more descriptive
than hydrogen embrittlement, because hydrogen unlocks dislocations and allows them to
multiply and move.

The largely observed asymmetry between the kinetics of absorption and the kinetics of evolution
of hydrogen in steels, in the sense that absorption proceeds with a larger apparent diffusivity than
evolution does, is attributed to trapping of hydrogen atoms at various microstructural trapping sites
[35]. Most hydrogen transport models [3, 35, 69], which emanate from the seminal work of Sofronis
and McMeeking [136], consider the effect of the hydrostatic stress and trapping on the hydrogen
distribution in a plastically deforming steel, assuming that hydrogen diffusion is purely interstitial
and that traps sites are filled by lattice diffusion. Krom’s model [69] enhances the work of Sofronis
and McMeeking [136], that is based on the local equilibrium theory between H in reversible traps
and H in the lattice sites presented by Oriani [106], by including a strain rate factor in the H
transport equation. Coupled diffusion elastic plastic finite element analyses were carried out in
order to investigate the behavior of cL and cT near a blunting crack tip under small scale yielding
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conditions. Given the material parameters, the strain rate results to have a considerable influence
on the hydrogen concentration in lattice sites as a result of the creation and filling of traps sites
and at relatively high values of the strain rate the lattice sites can almost be depleted of hydrogen.
Krom’s model exploits a fit of the number of trap sites versus equivalent plastic strain which is
close to experimental observations [71] and to the fit used by Sofronis and McMeeking [136] that
reads:

log[NAc
max
T ] = 23.26− 2.33 e−5.5ε̄in

which satisfies requirement (6.47). Trapped hydrogen is considered as non contributing to the
embrittlement mechanism because cT results fairly independent on strain rate owing to the high
binding energy −∆ET . This means that a trapped hydrogen must acquire an energy substantially
larger than the lattice migration energy to escape the trap and consequently, the mean residence
time of a diffusing hydrogen atom is considerably longer in a trap site than in a lattice site.

Krom’s model [69] reproduces experimental evidences of Gao et al. [42], who investigated the
hydrogen distribution in the vicinity of a crack tip in steel under mixed mode loading using mass
spectroscopy, and of Sun et al. [142], who investigated the hydrogen distribution around a crack
tip in a fcc single crystal. They found two peaks in the hydrogen distribution ahead of a notch:
one peak is in the immediate vicinity of the notch, corresponding to the location of the maximum
equivalent plastic strain, and another peak is located at some distance from the notch correspond-
ing to the location of maximum hydrostatic stress.

As already stressed, traps are considered isolated5, that means that they do not form an ex-
tended network. Therefore, in mass balance equation (6.4b) it lacks a flux term hT because hydro-
gen trapped in the bulk doesn’t contribute to hydrogen transport by lattice diffusion.

The so called Oriani’s approach [106], where the influence of plastic deformations, trapping,
and microstructure jointly results in an effective diffusion constant, is used in Krom’s model to
relate the immobile trapped hydrogen and mobile interstitial lattice one. Indeed Oriani postulated
that, within a continuum-level material point, the micostructure affects the local distribution of
hydrogen in a manner such that the population of hydrogen in trap sites is always in equilibrium
with the population associated with lattice sites trough the equation:

cT =
NT

1 + 1
KeqθL

where NT is the trap density, i.e. the number of trap sites per unit volume.
According to [35], the correct boundary condition to add to eq. (6.50) that enforces equilibrium

for dissolved hydrogen in the hosting metal and the gaseous hydrogen H2 out of Ω shall be written
as an equivalence in terms of chemical potentials:

µL =
1

2
µH2 (6.54)

where the chemical potential of the hydrogen gas µH2 is:

µH2 = µ0
H2

+RT ln

[
fH2

p0
H2

]

being µ0
H2

the chemical potential in a reference state, p0
H2

the reference pressure, and fH2 the
fugacity of the hydrogen gas. Fugacity of a real gas is an effective partial pressure that equals the

5This assumption is part of the equilibrium theory presented by Oriani [106].
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pressure of an ideal gas which has the same chemical potential as the real gas. The fugacity fH2 of
the hydrogen molecules in the gas depends on the equation of state of hydrogen and if this latter
is taken in the simple Abel-Noble form, then

fH2 = pH2 exp
(pH2γ

RT

)
where γ is an experimentally measurable constant.

Conventionally µ0
H2

vanishes at a pressure of 0.101MPa and a temperature of 298K. Equation
(6.54) thus leads to a non linear boundary condition of type:

RT ln

[
cL

cmaxL − cL

]
+ µmechL =

µ0
H2

2
− µ0

L +RT ln

√
fH2

p0
H2

x ∈ Γµ (6.55)

that completes the set of governing equations of the diffusion problem described in Section 6.3.1.
Contrary to what done imposing constant lattice hydrogen concentration cL along the Dirichlet
boundary of interest, eq. (6.55) allows to take into account that changes in the elastic strain εel in
µmechL during deformation lead to non constant lattice hydrogen concentration cL on the specimen
surface.

Fracture processes are greatly affected by the enrichment of hydrogen around the crack tip.
As detailed by Song and Curtin [134, 135], in plastically deforming metals, in order to dissipate
energy it exists a competition between the mechanisms of cleavage and of dislocation emission
from the crack tip under embrittling species. Solute H can change the fracture mode from ductile
rupture to intergranular fracture due to H segregation along grain boundaries with a considerable
reduction in ductility. The micromechanics of the Ductile versus Brittle Transition (DBT) under
ideal elastic conditions are detailed in [134, 135]. Song and Curtin [135] demonstrated that a HE
mechanism operates at the atomic scale in α-iron, in which the accumulation of H around the crack
tip, driven by the crack tip stress fields, suppresses crack tip dislocation emission eliminating the
material’s ability to blunt crack. This favors brittle cleavage failure, followed by slow crack growth.
In general, the critical energy release rate for dislocation nucleation from the crack tip and the
critical energy release rate for Griffith cleavage decohesion, have to be compared. The nanoscale
mechanism presented in [135] is then connected to macroscopic embrittlement allowing to identify
the boundary between embrittlement and non embrittlement as a function of H concentration, H
diffusion, temperature and mechanical loading rate.
In this regard, under specific conditions, fracture propagation could correctly be described by vari-
ational formulations detailed in Section 6.4 and numerical analyses are in progress in order to
support this assertion.



Chapter 7

Conclusions

In this thesis the variational formulation for the global incremental quasi-static linear elastic fracture
propagation problem, presented by Salvadori and Carini [125] for the two dimensional case, has
been extended to three dimensional problems. Laws that describe onset and propagation of cracks
fall under the general Griffith theory [49], that puts Linear Elastic Fracture Mechanics (LEFM)
in analogy with standard dyssipative systems thermodynamics [87]. The SIFs vector “ right after
the kink” , if any, K∗ acts as an internal force, conjugated to the internal variable a∗. The latter
is related to the crack length and its variation induces a dissipation which must satisfy Clausius-
Duhem inequality. A plasticity analogy for LEFM was presented by Salvadori [122]: as expected, it
stems from a maximum dissipation principle, the counterpart of the maximum plastic dissipation
postulated in the thermodynamics of standard dissipative systems [143]. Griffith’s criterion is
recovered following a rigorous setting.

The key ingredients for this approach are:

• the SIFs expansion with respect to the crack elongation, provided by Leblond in [82], and
Leblond and coworkers in [83]. In the analogy it plays the role of a Colonnetti’s decomposition
of stress [30, 31].

• the 3D extension of Irwin’s formula, that relates the Energy Release Rate to the SIFs.
Whereas a formal proof for mixed mode has been provided for 2D in Chambolle et al. [26], a
formal 3D derivation seems to be lacking. In this regard, formula (2.11) is taken as a generally
accepted result. In the analogy, it is equivalent to the yield function in plasticity and allows
the definition of the elastic domain and of its boundary.

• the maximum dissipation principle, whence the normality and the complementarity laws come
out.

The rest follows from results of incremental plasticity [24].
Whereas in the 2D case the discrete nature of the number of crack tips makes the formulation

simple and the variational formulation a minimum of functions, in the 3D case the presence of
a curved crack front requires a detailed investigation of the symmetry property of operator N ′v[·]
defined in (2.40). The form (2.6) of non local operator K(1)[·], does not allow a straightforward
proof of symmetry for N ′v[·], and the latter has been provided on the basis of the physical meaning
of the operator itself, because of its link with the concept of the energy release rate.

Once the symmetry is provided, two minimum theorems follow. They provide quasi-static ve-
locity in each point along the crack front, based upon the corresponding increment for external
loads.

138
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Conditions for stable crack growth and, inherently, for the onset of unstable propagation have
been firmly formulated. Such results may reveal of great importance, since the safety of a structural
component is usually measured against the stable/unstable crack growth transition, assuming that
unstable propagation leads to structural collapse.

Form (2.6) of operator K(1)[·] originates from the fundamental hypothesis of steady location
of a point along the crack front, that was made in the seminal paper of Rice [117] on 3D weight
function theory and has been kept afterwards. The purpose of providing a more general form for
eq. (2.6), removing in full the hypothesis of steady location, and consequently the ones introduced
at a later stage to circumvent the resulting limitations, motivates the reformulation of minimum
theorems in terms of weight functions. Such a reformulation brings to the stage the more general
concept of finite part of Hadamard in the limit processes to the boundary. In their celebrated
paper [83], Leblond and coworkers showed that symmetric operator K(1)[·] is not universal. Its non

local contribution K
(1)
nl [·] contains in fact an operator, denoted with Z in [83], which is intrinsically

dependent upon geometry and boundary conditions. Focusing on plane cracks that propagate in
their own plane, the first order variation of the SIFs derived, see formula (4.53), contains four alter-
native constituents of K(1)[·]: the non universal fundamental kernel WF , the derivative ∂WS/∂ρ,
the curvature of the crack front, and the 3/2 order term Ξ1 of the crack opening and sliding expan-
sion. This set of well identified elements has to be evaluated beforehand in order to numerically
approximate K(1)[·]. Fundamental kernels are known explicitly for only a few relatively simple
crack geometries such as half-plane cracks, and circular cracks (see the review of Lazarus [79]). A
general method to approximate fundamental kernels even for finite bodies, based on the definition
of weight function itself, is presented in the thesis. In this regard, investigation of crack front shapes
different from the circular one is extremely desirable, just as the extension of all the formulation
to mixed mode 2 and 3.

As very promisingly done by Bower and Ortiz [19], Lazarus [78] and Favier et al. [37], funda-
mental kernels WF can also be updated incrementally using first and second order [85] techniques.
This modus operandi has been applied so far to infinite bodies merely. Boundless is not inborn in
Rice’s [117] formulation itself, but is a compulsory consequence of the steady location assumption.
The final formalism derived in the present thesis has the purpose to extend previous formulations
[19, 37, 78] to the case of finite bodies and quasi-static (rather than fatigue) crack growth.
Numerical approximation of the 3/2 order term Ξ1 has been performed by means of cubic-order
singular finite elements along the crack front.

The expression of operator N ′v[·] in terms of weight functions, written in the thesis for the case
of mode 1 growth, leads to an easy proof of symmetry property for the operator itself. Its discrete
counterpart leads to an effective numerical scheme for the approximation of the velocity of the
crack front. It has been benchmarked against an easy problem for fracture mechanics, a penny
shaped crack subject to point loads, which in spite of being classical reveals several concerns when
dealt with other techniques such as finite differences. The accuracy obtained via the variational
characterization is remarkable.

From the approximated crack front velocity field, the formulation of crack tracking algorithms
can be devised. An implicit 3D crack tracking algorithm has been detailed in this work (see Section
5.1). It is based on a Newton-Raphson numerical formulation of the Griffith- Maximum Energy
Release Rate condition, which is imposed at every iteration starting from an “ initial elastic trial”.
The algorithm shares several features with return mapping algorithms in plasticity, since it is de-
rived essentially from the broader analogy between rigid-plasticity and fracture.
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Nevertheless, some differences with plasticity are worth to be remarked. The numerical scheme
is here deployed at a “ global” level rather than at a constitutive level. The notion therefore of
elastic trial can be a bit misleading, as it normally refers to a constitutive equation solution. Here
the name was kept motivated by the fact that the global problem is normally elastic, and a trial
attempts at a load evolution without changes in geometry. In any case, the elastic trial requires a
global analysis.

Triggered off by the elastic trial, the algorithm provides an estimation of the crack front posi-
tion. Accordingly, the geometry of the problem is updated at each iteration of the Newton-Raphson
scheme and a new evaluation of SIFs has to be carried on, again on the global level. The Griffith
condition is tested again for the updated SIFs and, if violated, the iteration process is continued
up to convergence.
As a major feature of the proposed crack tracking algorithm, it is endowed with a variational formu-
lation within each iteration, where a constrained minimum problem can be solved, which provides
a new estimation of the crack front location. The constraint is computationally handled by means
of the penalty method, one of the available techniques for constrained optimization. The presence
of the penalty term makes any iteration of the Newton-Raphson scheme a non linear problem and
for this reason every step of the Newton-Raphson scheme requires a further, internal, iterative
solution scheme. An Update Linearized algorithm and an inner Newton-Raphson algorithm have
been applied to solve each Newton-Raphson step obtaining coincident results. The solution of a full
Signorini’s problem is obtained, capturing the eventuality of partial crack front elongation, having
nodes of the discretization that are not mobilized. Performed numerical benchmarks confirmed the
capability of the proposed algorithm to determine the crack front configurations based upon an
increment of the external actions.

The crack tracking algorithm presented in this work revealed to be more accurate, robust, and
numerically stable with respect to explicit methods for integration in time, naturally led by the
incremental picture of global quasi-static fracture propagation problem. Such explicit type algo-
rithms were formulated in order to allow the step-wise approximation of crack length increment of
the crack front. In their simplest formulation these algorithms do not enforce Griffith condition
step by step, and may lead to large errors in the estimation of both configuration and critical
load, measured at the transition between stable and unstable propagation regimes. The proposed
algorithm instead, has the potential to place numerically calculated trajectories on a much firmer
basis. Accordingly, industrial applications (for example for ceramic materials, because of their
inherent brittleness) may benefit from its implementation in techniques such as standard or eX-
tended Finite Elements, as well as Boundary Element method in which crack growth direction is
usually determined based upon standard criteria [124], but crack growth rate is far less well defined.

The plasticity analogy in which the derived minimum theorems are rooted, allows the inter-
pretation of fracture as a standard dissipative system, being aware that the proposed approach
narrows the picture very much with respect to the phase field method. Going out of LEFM, where
SIFs are not defined, it does not seem to be obvious. Nevertheless, even within the proposed frame-
work, some extensions can be clearly devised. The issue of environmentally assisted brittle fracture
can be included naturally, once the correct driving force is described as done for the increment of
external loads. The problem of fracture growth in the presence of diffusion of neutral species in
solids is dealt with in the last part of the thesis. Crack propagation is assumed to take place in
a completely embrittled environment because of the accumulation of the species at the crack tip,
which reduces the cohesive strength of the host material and gives rise to a reduced fracture tough-
ness. For example, high strength steels, when exposed to hydrogen, suffer from a loss of ductility
and toughness that may lead to sudden, premature failure. In this case hydrogen induces brittle
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intergranular fracture in a manner resembling the failure of polycristalline ceramics.
Governing field equations for species diffusion are described, taking into account the partitioning

of the species between the traps and the bulk lattice. Besides cohesive models for fracture growth
in the presence of an embrittling species, such as for example that of Serebrinsky et al. [132], the
variational formulation derived in this thesis aims at describing fracture growth in the context of
LEFM. Minimum theorems give the crack front quasi-static velocity, provided that the dependence
of the fracture energy with the concentration of the species can be given. Numerical validations of
the proposed model are in progress.
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