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Abstract

Lithium-ion batteries application to high power and high capacity demanding systems
still encounters limitations. This technology is based on the classical intercalation reac-
tion, during which Li is inserted into or extracted from electrodes. During this process the
hosting material experiences large volume changes, leading to mechanical degradation, loss
of integrity and of electric contact with current collectors. Nano-structured and composite
material electrodes may reduce such damaging phenomena.

An electrochemical cell must include two electrodes, a separator, and an electrolytic so-
lution. Depending on the phase, different mobile species carry the electric charges: electrons
in the electrode and ions in the electrolyte. Ions must be transported through the electrolyte
from one electrode to the other to bring reactants to the interfaces. Mass transfer in an
electrolytic solution requires a description of the motion of mobile ionic species which is
governed by diffusion, driven by gradients of concentration, and by migration, driven by an
electric field for any charged particles.

Computational modeling and simulations may be helpful in designing new combinations
of materials and geometries. To simulate a whole battery cell at the scale at which Lithium
intercalate would be computationally unfeasible. A multi-scale approach is desirable and
the computational homogenization technique is here adopted. This allows to track micro
structural events that initiate damage and lead to macroscopic failure from macroscopic
boundary conditions, while limiting the computational cost.

The adopted approach originates from the fundamental balance laws of mass, force and
charge. Electroneutrality assumption has been taken into account. Maxwell’s equations
are considered in a quasi-static sense in a rigorous setting. The weak formulation derived
preserves an energetical meaning, as required by the multiscale framework tailored on com-
puatational homogenization.
Microscopic processes within a composite electrode are investigated. All the materials form-
ing the multi-component porous electrode are clearly identified. Migration, diffusion, and
intercalation of Lithium in the active particles are modeled. Constitutive assumptions, that
emanate from a rigorous thermodynamic setting, complete the formulation.
After spatial discretization, time-advancing algorithms have been implemented using a Wol-
fram Mathematica package script and by means of an Abaqus User Element (UEL) script.
Different finite elements have been designed to deal with the electrolyte, the electrodes and
the reaction layer between them. Several case studies have been simulated to validate the
implemented formulation.



ii

Sommario

L’applicazione delle batterie agli ioni di Litio in impianti e infrastrutture che richiedono
elevate potenze e capacità trova ancora oggi limitazioni. L’intercalazione e lo stoccaggio del
Litio, ripetutamente inserito ed estratto dagli elettrodi, sta alla base di tale tacnologia. Du-
rante questo processo il materiale ospitante è soggetto a sensibili variazioni di volume, con
conseguente danneggiamento meccanico, perdita di integrità e di contatto con il collettore di
corrente elettrica. Materiali compositi e nano-strutturati possono contribuire alla riduzione
di questi effetti deleteri.
Una cella elettrochimica necessita la presenza di due elettrodi, un separatore e una soluzio-
ne elettrolitica. A ciascuno di essi corrisponde un diverso vettore per le cariche elettriche:
elettroni negli elettrodi e ioni nell’elettrolita. Gli ioni si muovono da un elettrodo all’altro
attraverso l’elettolita, consentendo ai reagenti di giungere alle interfacce. Il moto della massa
entro una soluzione elettrolitica richiede la descrizione del moto di speci ioniche, governato
da diffusione, associata a gradienti di concentraione, e migrazione, associato alla presenza di
un campo elettrico a cui le speci cariche sono sensibili.
Modelli computazionali e simulazioni numeriche possono offrire un notevole supporto alla
progettazione e realizzazione di combinazioni di materiali e geometrie innovativi. Tuttavia,
la simulazione numerica dell’intera batteria, alla scala spaziale a cui gli il Litio intercala, è
computazionalmente proibitiva. Un approccio multiscala è da ritenersi più opportuno, da
cui, la scelta di adottare la tecnica denominata omogenizzazione computazionale nel presente
lavoro di tesi. Tale soluzione permette di tenere traccia dei fenomeni microstrutturali da cui
il collasso macroscopico ha inizio, a partire da condizioni al contorno proprie della macro-
scala, limtando il costo computazionale nel contempo.
L’approccio perseuguito si basa sulle leggi di conservazione della massa, delle forze e della
carica. L’ipotesi di eletroneutralità è stata propriamente adottata. Le equazioni di Maxwell
sono state rigorosamente consideate secondo la formulazione detta quasi-statica. La forma
debole ottenuta preserva un significato energetico, imprescindibile in un’ottica multiscala
basata sull’omogenizzazione computazionale.
I processi microscopici cui sono soggetti gli elettrodi compositi sono stati accuratamente
investigati in seguito all’indentificazione delle diverse fasi costituenti. La migrazione, diffu-
sione e intercalazione di Litio nei materiali attivi sono state direttamente modellate. I legami
costitutivi adotatti a completamento della formulazione soddisfano le restrizioni termodina-
miche.
A seguito della discretizzazione spaziale delle equazioni governanti, gli algoritmi di avanza-
mento nel tempo sono stati implementati utilizzando i codici commerciali Wolfram Mathe-
matica e Abaqus (User element). Diversi tipi di elementi finiti sono stati implementati per la
simulazione del comportamento degli elettrodi, dell’elettrolita e dell’interfaccia che li separa.
Molteplici casi studio sono stati considerati ai fini della validazione.
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Nomenclature

Notation

Vectors ~a will be denoted by an over-right-arrow, second order tensors A by bold face,
exception made for symbol 1 denoting the identity matrix. This notation does not apply to
operators.

Operators

- the symbol tr [− ] denotes the trace operator
- the symbol dev [− ] denotes the deviator operator
- the symbol div [− ] denotes the divergence operator
- the symbol ∇ [− ] denotes the gradient operator
- the symbol curl [− ] denotes the curl operator
- the symbol ∆ [− ] denotes the Laplace operator
- the symbol · denotes the single contraction of two vectors or two tensors
- the symbol : denotes the double contraction of two tensors
- the symbol ||x||2 denotes the squared norm of vector ~x or tensor x
- the symbol T denotes the transpose of a tensor

Subscripts and superscripts

- the subscript Li+ identifies quantities for Lithium cations, at both scales
- the subscript X− identifies quantities for anions, at both scales
- the subscript Li identifies quantities referring to neutral Lithium, at both scales
- the subscript H identifies quantities referring to Hydrogen
- the subscript L identifies quantities referring to Hydrogen within the lattice
- the subscript T identifies quantities referring to trapped Hydrogen
- the subscript a identifies active particles
- the subscript c identifies conductive particles
- the subscript s identifies solid phase
- the subscript e identifies electrolyte
- the subscript m identifies the microscopic variables
- the subscript M identifies the macroscopic macroscale
- the subscript BV identifies the Butler-Volmer equation
- the subscript e− identifies the electrons
- the superscript m identifies the microscopic variables
- the superscript M identifies the macroscopic variables
- the superscript max identifies the saturation limit of a chemical species



viii Contents

Variables and parameters

Electromagnetic variables and fields
- ~B denotes magnetic field
- ~D denotes electric displacement field
- ~E denotes electric field
- ~H denotes magnetizing field
- ~i denotes the electric current density
- φ denotes the electric potential
- ζ denotes the charge density
- ζ| denotes the state of charge
- ε| denotes the permittivity
- κ denotes the electric conductivity

Mechanical variables and fields
- σ denotes the stress tensor
- ε denotes the small strain tensor
- ~b denotes the body forces
- ~p denotes the contact forces
- ~u denotes the displacement field
- ~v denotes the velocity field
- E denotes the Young’s modulus
- K denotes the bulk modulus
- G denotes the shear modulus
- ν denotes the Poisson’s ratio
- σY Yield stress
- ε̄p equivalent plastic strain
- Kp hardening modulus

Mass transport variables and fields
- c denotes the concentration measure called molarity
- ~hα denotes the mass flux of species α - zα denotes the valency of ion α
- µ denotes the chemical potential, also known as partial molar free energy
- µ denotes the electrochemical potential
- µ| denotes the permeability
- χ| denotes the exchange factor
- Keq equilibrium constant
- ∆Eτ additive inverse of the trap binding energy

Chemical (interface kinetics) variables and fields
- i0, denotes the exchange current density in the Butler-Volmer interface conditions
- β denotes the symmetry factor in the Butler-Volmer interface conditions
- γ denotes the thermodynamic imbalance at electrode-electrolyte interface
- ξ denotes the discontinuity for the electrostatic potential
- χ denotes denotes the surface over-potential



Nomenclature ix

Geometrical variables and fields
- ~n denotes the outward normal direction on a surface
- V denotes a domain at the microscale
- ∂V denotes a boundary or an interface between domains at the micro scale
- Ω denotes a domain at the macro scale
- ∂Ω denotes a boundary or an interface between domains at the macro scale
- Γ denotes a boundary or an interface between domains

Other variables and fields
- t denotes time
- v denotes the porosity
- T denotes the absolute temperature
- ~q denotes the heat flux vector
- q denotes the heat supply
- s denotes mass supply

Constants and parameters

- NA is Avogadro’s number, NA = 6.02214129(27)× 1023 mol−1

- e is elementary charge, e = 1.602176565(35)× 10−19 C
- F = NA e is Faraday’s constant, F = 96485.3383 C mol−1

- R is the universal gas constant 8.3144621 JK−1mol−1

- ε|0 is the vacuum permittivity, 8.85418782× 10−12 F m−1

- µ|0 is the vacuum permeability = 4π × 10−7N A−2





Chapter 1

Introduction

Developing the next generation of batteries for higher capacity and longer life of cycling
is one of the strategic challenges facing the energy storage planning of mankind. Lithium
ion (Li-ion henceforth) batteries currently have the highest energy storage density of any
rechargeable battery technology [1]. The present commercial realities, however, are not yet
at such a technological level to meet the requirements of two main applications that show
great potential for Li-ion batteries: Electric Vehicles and Smart Grids.

Major advances may be obtained only by moving towards new materials, as also pointed
out in the European Strategic Energy Technology (SET) Plan, 2007, in the following SET
Plan Materials Road Map, 2011 as well as in the recent (2013) recommendations on their im-
plementation. In contrast to attempting to tailor a single electrode material, nano-structured
materials, composites, and architectures can provide an optimum way of crafting desired
characteristics. Appealing classes of materials are Li metal alloys, e.g. Silicon (Li-Si), and
Tin (Li-Sn), due to their specific capacity which largely exceeds that of conventional anode
based on graphite. The potentialities of these materials have been known for some time,
but their exploitation has been until recently prevented by serious mechanical issues [2].
Similar concerns apply to the technology of graphene in battery electrodes, of very recent
investigation [3, 4].

Theoretical and computational modeling provide the ability to predict, tailor, and shape
new material properties. Material modeling of the multiscale and multiphysics processes that
take place during charge/discharge can play a valuable role in battery design and lifetime
prediction. This is the focus of the present thesis1.

1.1 Thesis outline

Basic ideas of Li-ion batteries composition and core functioning are summarized in chapter 1
together with some insights about computational homogenization technique. A short review
of the literature is also provided.

Part I provides an overview of the multiscale model tailored on Lithium ion batteries.

In chapter 2 the fundamental balance laws of mass, force, charge and Maxwell’s laws are
recalled. Proper assumptions are introduced (and discussed) to reshape the equations and
make them suitable for the description of the problem at hand.

If a system involving n different ionic species is considered, the n mass balance equations
contain n+1 unknowns, i.e. n mass concentrations plus the electric potential. An additional
relation is sufficient to solve the set of equations and the most common selection in battery

1The present chapter extends the contents available in [5]



2 1. Introduction

modeling (see among others [6], page 286) is the electroneutrality condition. In several
studies, the electroneutrality condition is thus used instead of Gauss’s law for the electric
field.

It is paramount to point out however that electroneutrality is not a fundamental law, but
rather an approximation towards the solution [7]. In the approach proposed here (according
to [8, 9]), rather then imposing the electroneutrality condition as an equation to be fulfilled,
the impact that it has on the fundamental balance laws is investigated. For some of them,
typically the force balance, the impact is major because the effects of the Lorentz interactions
on bulk forces are minuscule (although they do not vanish) with respect to the mechanical
effects due to the constrained swelling. On the contrary, electroneutrality has no influence on
Maxwell’s law because the bulk terms cannot be disregarded, at least according to the current
numerical and experimental evidences. As previously observed, taking electroneutrality as
a fundamental equation leads to the paradox of an electric field that is incompatible with
Maxwell’s laws [7, 10].

In the batteries modeling literature [6, 11, 12], it is generally assumed that the electro-
magnetic fields and their interactions are static. This assumption implies vanishing inter-
ference effects between the electric and magnetic phenomena. As a consequence, the set of
Maxwell’s equations are replaced by their electrostatic counterparts, as for the steady current
case [13].

In the approach proposed here, the electro-magnetics is explicitly taken in to account
via the electro-quasi-static formulation [14]. Capacitive but inductive effects are included,
making the electro-quasi-statics different from the static approach, since Maxwell’s correction
is preserved within Ampère’s law, i.e. the effect of the magnetizing field is still taken into
account.

As insightfully noticed in [14], electrostatics is a particular case of the general Maxwell’s
equations but electro-quasi-statics is not, it is an approximation. The conditions at which
the quasi-static solution to Maxwell’s equations becomes exact are discussed in [14] and have
been verified for battery cells in section 2.2.

In chapter 3 a computational homogenization technique is tailored to Li-ion batteries us-
ing a multiscale scheme with a complex multi-particle representative volume element (RVE).
Scales separation in term of characteristic length and time evolution are discussed.
The model is formulated assuming small displacements and strains. The battery cell is sup-
posed to have a single binary electrolyte which is a solution of a binary salt, say LiX, plus
solvent, say a polymer, in which the concentrations of ionic species vary with location in the
cell. Active particles in the composite electrodes are idealized as network solids following
Larché and Cahn [15], with the lattice material assumed as insoluble in the electrolyte. The
concentration of ions in the solid phases is neglected.

A rigorous analysis of general principles of non-equilibrium thermodynamics is performed
in Part II following the approach of [16, 17] both for the electrolyte and active material.
Constitutive relations, meeting the thermodynamic restrictions derived, complete the set of
governing equations. Validation of the numerical algorithms descending from them have
been carried out.

In chapter 4 the electrochemical potential is defined moving from the rate at which power
is expended on a material region, in terms of mechanical contribution as well as of the power
due to mass transport and to electromagnetic interactions. All processes are taken to be
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isothermal. The entropy imbalance and the Coleman-Noll procedure provide thermodynamic
restrictions, satisfied by the usual Fickian description of diffusion and migration in terms of
electrochemical potential, defined as in [18, 19]. Ideal, infinitely dilute solutions as well as
dilute solutions taking into accounting the saturation limit have been contemplated.

A weak form has been derived for balance and for governing equations in terms of the
selected thermodynamic fields, namely concentrations, displacements, and the electric po-
tential. After spatial discretization, a Backward Euler time-advancing algorithm has been
implemented into a Wolfram Mathematica package script.
A one-dimensional ionic transport process in Li-ion batteries electrolyte has been simulated,
inspired by [10].

Modification to the liquid electrolyte model have been introduced to catch peculiarities
of solid-electrolyte arising during batteries operation. Li+ ions are generated or consumed by
ionization reaction. The latter acts as a rate controller: at all points where Li+ accumulates
during battery operations more immobile oxygen-binded Lithium is created, and vice versa,
resulting in a mass supply within the mass balance equation for ionic species.

The same methodology has been pursued in chapter 5 to model the active materials.
Linear Fickian-diffusion law accounting for saturation limit is drew up for the Lithium diffu-
sion in the electrodes. At high C-rates, which are indeed expected in real batteries or super
capacitors, peaks of Lithium concentration can be observed in the electrodes, making regular
solution [19, 20] a more suitable model.
Differently from the electrolyte, diffusion and stress evolution are thermodynamically coupled
in terms of constitutive prescriptions. A standard J2 flow theory with isotropic hardening
is used to account for plastic material response. Analogies with hydrogen embrittlement
modeling have been emphasized.

A Backward Euler time-advancing algorithm has been implemented into an Abaqus User
Element (UEL) script. A numerical benchmark accounting for stress-diffusion coupling in a
tube-like axisymmetric cross section has been used for validation.

In chapter 6 the set of governing equations described in chapters 4 and 5 has been applied
to an all-solid-state battery, reproducing the analysis proposed in [21], to validate the overall
model.
The outcomes of the numerical analyses show that the multiphase model developed for porous
electrodes, chapter 3, well reproduces the behavior of each component of a Li-ion batteries
and their interactions. The processes affecting the cell during a single discharge process are
well cached by the simulations, denoting the robustness of the approach.

Part III is devoted to future developments.

The solution of nested boundary value problems can be only approximated numerically
through a fully coupled analysis, not attained within this work exclusively because of the
lack of time. Nevertheless, a two-scale Newton-Raphson algorithm is provided in chapter 7.

Preliminary attempts towards multiscale numerical analyses are reported. The frame-
work described in chapter 4 has been applied to a two-dimensional problem. The micro
structural behavior of a multi phases separator has been investigated. Boundary conditions
descend from a multi scale theoretical formulation for batteries discussed in chapter 2. A
strong influence of the geometry is observed from the outcomes, in particular at the interface
between fluid electrolyte and the separator membrane. This numerical evidence strengthens
the conceptual framework of the multi scale approach that permeates this work, namely that
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electrochemical and mechanical performance of Li batteries strongly depends on the interac-
tion between micro and nano-scale phenomena, in particular within the electrodes.

1.2 Li-ion batteries in brief

Composition

Anode

Electrolyte
Separator

membrane

Figure 1.1: Li-ion battery scheme and detail showing the composite microstruture of cathode electrode (Cour-
tesy of M. Magri).

Electrochemical cells necessarily consists of several phases [6] (see Figure 1.1) which must
include current collectors, two electrodes, a separator, and an electrolytic solution.

Metallic current collectors are required to connect the battery to external circuit. They
drive the electron flux from the external circuit to the electrodes.

Charge is transported through the electrode by the movement of electrons. Typical elec-
trode materials include solid metals (e.g., Pt, Au), liquid metals (Hg, amalgams), carbon
(graphite), and semiconductors (indium-tin oxide, Si) [11].
Nevertheless, composite porous electrodes are nowadays widespread. A solid matrix made
by particles of active material is bounded by a polymer binder to a network of conductive
particles. Active particles are prone to Lithium insertion, while conductive particles im-
prove/accelerate the flux of electrons between active particles and the current collector.
Beneficial effects follow from composite porous structure: at first, the diffusion path for ions
and electrons is shortened due to the possibility of the electrolyte to fill the pores; further-
more, the effective area available for chemical reactions increases due to the micrometric
dimensions of the active particles (being the surface-area-to-volume ratio proportional to
the inverse of the characteristic length) [22].

The electrolyte is a conducting medium laying between the electrodes in which electric
current flows due to the transport of ions.
The most frequently used electrolytes are liquid solutions containing ionic species (cations,
carrying positive charge and anions, carrying negative charge) in either water or a non-
aqueous solvent. Ionic species result from the dissociation of a salt. Binary ionic compound
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refers to a salt that dissociates into two ions only.
To physically separate electrodes a porous polymeric membrane is usually inserted. The
latter is placed between the electrodes to prevent short circuit. The pores of the membrane
are filled by the electrolyte, allowing ions to transfer charges from one electrode to the other.
The term separator indicates the system formed by electrolyte/membrane.
Less conventional electrolytes include fused salts (e.g., molten NaCl-KCl eutectic) and ioni-
cally conductive polymers (e.g., Nation, polyethylene oxide-LiClO4). Solid electrolytes also
exist, in which ions move under the influence of an electric field even in the absence of solvent
[11]. In Lithium based solid electrolyte (e.g. Li3PO4) Lithium atoms may either be mobile
or not in the hosting matrix. Depending on battery operation the transition from one state
to the other results in a local Li-ion source or consumption.
The issues related to solid electrolyte modeling will be addressed in section 4.11.

Core functioning

Li-ion batteries are based on the classical intercalation reaction during which neutral Li is
inserted into or extracted from electrodes. The essential processes that take place in a Li-ion
battery cell can be sketched as follows. During discharge, charges flow (electrons externally,
ions across the separator) from the anode towards the cathode.
When the battery cell is first assembled, ions in the electrolyte/separator are provided by
the dissociation of the (binary) salt into the organic electrolyte, which is supposed to be
complete, and are free to flow into the latter. In the absence of convection, as usually assumed
and henceforth, movement of ionic species is governed by diffusion, driven by gradients
of concentration, and by migration driven by an electric field. X− anions can not enter
electrodes, and Li+ cannot intercalate into conductive particles.
An oxidation/reduction reaction occurs at the active particle/electrolyte interface, within an
atomistic size layer. During oxidation Li+ ions are generated while during reduction those
ions meet the electrons to produce neutral Lithium. The latter intercalates into the active
particles causing large volume changes, inelastic effects [23, 24], phase-segregation [25, 26],
micro-cracks and particle fracture [27], decrepitation or pulverization and loss of integrity;
these damaging phenomena that may lead to electrodes failure in few cycles.

In order to address the problem of the mechanical failure of particles in the electrode,
optimization of their morphology is required. Nanostructured configurations, capable of
buffering large volume changes, are expected to ensure longer cycle life and higher specific
capacity [1].
Since the seminal work of Doyle et al. [28], there have been a number of fundamental
studies of Li-ion battery operation based on porous electrode theory. This theory accounts
for distinct phases within the battery using superposition and does not require detailed
knowledge of the surface morphology of electrodes and separator. The microstructure is
accounted for only with a pore volume fraction and the field variables are computed in a
volume-averaged sense [29].

1.3 Multiscale modeling

The behavior of the battery cell is intrinsically multiscale, because the multiphysics phenom-
ena involving diffusion, migration, intercalation, and the accompanying mechanical effects
take place at the characteristic length scale of the electrode compound, which is three order
of magnitudes smaller than the battery cell size. Directly resolving all scales and modeling all



6 1. Introduction

particles in the electrodes is computationally unfeasible. A more efficient way to deal with
multiscale modeling is represented by homogenization methods, by which the nano-scale
effects are incorporated into a microscale problem.

The complex microstructural behaviour made the computational homogenization (CH)
technique attractive, since it provides valuable information on the local microstructural fields
as well as the effective material properties. Assuming separation of scales [30], these method
allows to compute effective properties of composites by averaging the micro-level behavior
which incorporates the nano-scale effects. Those effective quantities are then directly used
at the macroscopic scale which is usually considered as a classical continuum.

Computational homogenization technique and its application within the context of me-
chanics of material is first introduced to set up notation and terminology. An introduction
about computational homogenization for batteries will follow, while a more extensive discus-
sion is postponed to chapter 3.

1.3.1 Computational homogenization in mechanics

Since a few years, substantial progress has been made in the two-scale computational homog-
enization of complex multi-phase solids. This technique is essentially based on the solution
of nested boundary value problems, one for each scale. Focusing on the nonlinear charac-
teristics of the material behaviour, this technique proves to be a valuable tool in retrieving
the constitutive response. First-order (i.e. including first-order gradients of the macroscopic
displacement field only) computational homogenization schemes fit entirely in a standard
continuum mechanics framework and are now readily available in literature [31–35]. Main
features of this numerical method are:

• The constitutive response at the macro scale is a priori undetermined. No explicit
assumptions are required at that level, since the macroscopic constitutive behaviour
ensues from the solution of the micro scale boundary value problem.

• The method is suitable for large displacements (large strains and rotations) provided
that the microstructural constituents are modelled adequately.

• The different phases in the microstructure can be modelled with arbitrary nonlinear
and time-dependent constitutive models.

• The influence of the evolution of the microstructure (as described on the micro-scale)
can be assessed directly on the macro-scale.

• The micro scale problem is a classical boundary value problem, for which any appropri-
ate solution strategy can be used. Finite Element Method is often succesfully adopted
[31, 34, 35].

• Macroscopic constitutive tangent operators can be obtained from the microscopic over-
all stiffness tensor through static condensation. Consistency is preserved through this
scale transition.

In spite of the huge computational cost of a nested two-scale solution problem, efficiency can
be achieved by solving the problem through parallel computations [34, 36]. Another option
is selective usage, where non-critical regions are modelled by continuum closed-form homoge-
nized constitutive relations or by the constitutive tangents obtained from the microstructural
analysis but kept constant in the elastic domain, while in the critical regions the multi-scale
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analysis of the microstructure is fully performed. Despite the large computational require-
ments, the computational homogenization technique has proven to be a valuable tool to
establish non-linear micro-macro structure-property relations, especially in the cases where
the complexity of the mechanical and geometrical microstructural properties prohibit the
use of other homogenization methods. The first-order technique is by now well-established
and widely used in the scientific and engineering community (the reader should refer to [30]
for a review).

Principles and assumptions

At the macro-scale, the material is considered as a homogeneous continuum, whereas at the
micro level it is not (the morphology consists of distinguishable components or phases), as
schematically illustrated in Figure 1.2. The microscopic length scale is much larger than
the molecular dimensions ldiscrete, so that a continuum approach is justified for every con-
stituent2. At the same time, in the context of the principle of separation of scales, the
microscopic length scale lmicro is assumed to be much smaller than the characteristic length
lmacro over which the size of the macroscopic loading varies in space, i.e.

ldiscrete � lmicro � lmacro (1.1)

This is named after principle of scale separation.

Figure 1.2: Continuum representation of the macroscale (M) and correspondent underlying microstructure
(m)

Most of the homogenization approaches rely on the assumption of global periodicity of the
microstructure, implying that the whole macroscopic domain consists of spatially repeated
unit cells. In a computational homogenization approach, a more realistic assumption is made,
which is commonly denoted by local periodicity. According to that, different microstructures
may correspond to different macroscopic points.

The basic principles of computational homogenization have gradually evolved from the
concepts employed in other homogenization methods and well fit into the four-steps homog-
enization scheme established by Suquet [32]:

1. definition of a microstructural representative volume element (RVE), in which the
constitutive behaviour of individual constituents is assumed to be known;

2Chemical processes will be modeled, within a computational homogenization framework for Li-ion bat-
teries (see chapter 3), from a continuum level perspective.
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2. formulation of the microscopic boundary conditions from the macroscopic input vari-
ables and their application on the RVE (macro-to-micro transition);

3. evaluation of the macroscopic output variables from the analysis of the deformed mi-
crostructural RVE (micro-to-macro transition);

4. obtaining the (numerical) relation between the macroscopic input and output variables.

The main ideas of the first-order computational homogenization have been established in
[32, 37, 38] and further developed and improved in more recent works [31, 33, 34].

Computational homogenization scheme

A computational homogenization scheme generally departs from the computation of a macro-
scopic deformation tensor, ∇

[
~uM

]
, calculated for every material point of the macrostructure

(here and in the following denoted with the subscript M).
The deformation tensor ∇

[
~uM

]
is next used to formulate the boundary conditions to be

imposed on the microscopic RVE related to this point. Upon the solution of the microscale
boundary value problem, the macroscopic stress tensor σM is obtained by averaging the
stress field over the volume of the RVE. Consequently, the (numerical) stress-deformation
relationship at the macroscopic point is available. Additionally, the local macroscopic con-
sistent tangent is extracted from the microstructural stiffness. The entire framework is
schematically illustrated in Figure 1.3.
The computational homogenization technique defined in this sense may be categorized as
a first-order deformation driven approach, being the macroscopic material point response
dependent on the first gradient of the displacement field only.

A stress driven procedure (given a local macroscopic stress, obtain the deformation) is
also possible. However, it does not directly fit into a standard displacement-based finite ele-
ment framework, usually employed to solve the macroscopic boundary value problem. More-
over, in case of large deformations the macroscopic rotational effects have to be added to the
stress tensor in order to uniquely determine the deformation gradient tensor, thus complicat-
ing the implementation. Therefore, the “stress driven” approach, is generally not adopted
in coupled multi-scale computational homogenization strategies of the type described here.

In order to limit repetitions, scale transition conditions will be discussed in section 3.4
within the context of CH particularized to Lithium batteries. Mechanical aspects will be
emphasized therein.

1.3.2 Computational homogenization for batteries

The computational homogenization technique is tailored here to model the multiphysics
events that coexist during batteries charging and discharging cycles [8, 9]. Two nested
boundary value problems have to be solved, one for each scale. At the macroscale, diffu-
sion–advection equations model the coupling between electrochemistry and mechanics in the
whole cell. The multi-component porous electrode, migration, diffusion, and intercalation of
Lithium in the active particles, the swelling of the latter are modeled at the micro-scale.
A complete set of equations and boundary conditions governing displacements, electric,
chemical, and electrochemical potentials will be derived in chapters 3-5 for the whole battery
cell at both scales following non-equilibrium thermodynamics of porous electrodes [6, 39].
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Figure 1.3: Computational homogenization scheme

1.4 Literature review

An up-to-date literature review on battery modeling is reported. The target is to underline
the efforts of the scientific community in modeling and simulating Li-ion batteries, by no
means presuming to be exhaustive of the widespread literature available on the topic.

Batteries are by far the most common form of storing energy [12]. Among the various
existing technologies, Li-based batteries currently outperform other systems, accounting for
63% of worldwide sales values in portable batteries [40]. In 2013, consumers bought five
billions of Li-ions cells to supply laptops, cameras, mobile phones and electric cars [41].
Being Lithium the most electropositive as well as the lightest metal in nature, it allows Li-ion
batteries to posses the highest energy densities (capability to store energy per unit weight
or volume) among all rechargeable batteries, see Figure 1.4 [40]. This is the main reason of
the wide diffusion of this technology. Other advantages related with Li-ion batteries are a
relatively low self-discharge rate, about 5% per month compared with more than 20-30% per
month for Ni-metal hydride and Ni-Cd batteries respectively, and wide temperature range,
−25÷ 50◦C [2].
Li-ion batteries are more environmentally friendly with respect to most others [2, 22]:
Lithium can be found in unlimited quantities in sea water or be concentrated from brines,
which is anyway a much greener process than conventional mining.
The demand for lithium could also be eased by recycling [42], which has already proved its
value with lead-acid batteries [22]. Long-term considerations, involving all the phases of the
life cycle, are extremely relevant for the choice of the materials for future generations of
batteries.

Research activities carried out worldwide in the last few years call attention to the con-
nection between Li-ion batteries performance and the materials used for electrodes and
electrolyte. An accurate description of prominent phenomena occurring during common op-
erations as well as of the material response to solicitations and of ageing mechanism [43] are
crucial for the development of the next generation of batteries.

An example of an interconnected computational framework together with a 3D validation
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study is presented in Allu et al. [44]

Figure 1.4: Battery technology comparison [40]

Electrolyte

Mass must be transported through the electrolyte from one electrode to the other to bring
reactants to the interfaces. Mass transfer in an electrolytic solution requires a description of
the motion of mobile ionic species which is due to three contributions: diffusion, caused by
concentration gradients; migration, caused by the applied electric field; convection, due to
movement of bulk electrolyte solution [6]. Even if the latter contribution might be relevant
for some electrochemical systems [45, 46], it is natural to neglect this term in Li-ion battery
models, see among others [10, 47–51].

In many cases, ionic transport is described assuming the electrolyte as an ideal infinitely
dilute solution. Under this hypothesis the energetic interactions between different species are
neglected; hence, the flux of a species is proportional to the gradient of the electrochemical
potential of the species itself [10].

Electroneutrality3 [6, 10] is another widely used hypothesis in the electrochemical litera-
ture. Since a huge electric field would be required to separate positive from negative charges,
it is admissible to assume that charges cannot separate within the electrolyte bulk. Such an
assumption is valid for material points far enough from the electrode/electrolyte interfaces.

However, electroneutrality is not a fundamental law, but rather an approximation towards
the solution, which can lead to paradoxes if not consciously adopted. To this end, Dickinson
et al. [7] show that electroneutrality does not constrain in any way the electric field to satisfy
Maxwell’s equations. Danilov and Notten [10], discussing results obtained from numerical
simulations moving from electroneutrality assumption for an electrolyte model, show that

3that is: over macroscopic distances the difference among concentrations of the ionic species is small
compared to the total concentration [52]
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despite numerical advantages and good estimation of ionic concentration distribution, this
approximation yet leads to an unjustified electric field.

Although one dimensional mathematical description is generally accepted for the separa-
tor, owing to the geometry of the battery cell, such a geometrical description reflects reality
only in an average sense. The porous separator of an electrolytic cell is in fact a multi-phase
structure that includes a network of interconnected and irregular pores and channels [53].

Multiscale approaches have already been adopted to evaluate stresses induced on the
separator microstructure [54] during charge/discharge cycles.

Intercalation in active materials

Lithium intercalates inside active material in neutral form. Active particles are often treated
as a binary Larché-Cahn system: the hosting material filled with Lithium and the free
interstitial lattice material [15, 55]. As the internal concentration of Li increases, the hosting
material swells, and experiences stresses which may be sufficient to cause inelastic effects as
plastic flow, as shown by Sethuraman et al. [56], eventually leading to failure.

Fragmentation, disintegration and fracturing, and concomitant loss in contact of the
electrode material with the current collector result in severe capacity fade with electrochem-
ical cycling, which ultimately renders the electrode material unsuitable for further cycling.
Hence, stress development in electrode materials is one of the primary causes for capacity
fade and eventual failure of Li-ion batteries [2].

Mechanical effects in battery microstructures have been experimentally observed and
modeled in several recent publications. Most of them concern single particle analysis [57–
61], nano-wires [62–65], or thin films [23, 66–68].

While the evaluation of stresses in composite electrodes is still an open challenge, some
researchers [23, 56, 69] have recently employed optical stress sensors to track stress generation
during electrochemical cycling of thin film electrode materials.

To avoid the complexity of the non-uniform intercalation current density within each
porous electrode, it is quite customary in literature [29, 55, 59, 60, 70], to restrict the analysis
to a single active particle without modeling the surrounding material and phenomena; neither
the electrolyte nor the interface reaction are directly considered, but the electrochemical
interactions are replaced by “a priori” given incoming flux. Diffusion equation (neutral
species moving in an electrically conductive medium [29, 49]) has to be adopted [49, 59, 60,
70].

Since atomic diffusion in solids is much slower than deformation, mechanical equilibrium
is assumed to be immediately established at all instants, hence a mechanically equilibrated
problem is formulated in time. An exhaustive literature review about stress-diffusion cou-
pling can be found in Yang [71].

Elastic material response

The simplest way to model mass diffusion-induced stress is in analogy to thermoelasticity. In
Cheng and Verbrugge [59, 60] any influence of the mechanics on concentration distribution
is disregarded, diffusion equation is solved independently and stress distribution estimated
thereafter according to small strain linear elastic theory. A more complete model has been
proposed by Zhang et al. [70], where stress and concentration distribution are fully coupled
through constitutive laws, extending the formulation presented by Li [72].
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Elastic stresses arising due to interactions between particles undergoing swelling have
been included in the models proposed by Purkayastha and McMeeking [48] and Aifantis and
Dempsey [73].

Non-linear material response

Experimental observations show that active materials experience phase transition and large
deformations while lithiated [56, 63, 68, 74]. As a consequence, plastic deformations and
fractures arise, making an elastic characterization of the material not realistic.

More refined models accounting for non-linear response have been developed [55, 58, 67,
73, 75–77]. Many of the latter report numerical analysis results relative to 1D problems,
restricting the attention to spherical particles or thin films.

Both crystalline and amorphous Silicon undergo phase transformation [25, 57, 62]. Crys-
talline Silicon electrodes react with Lithium at room temperature forming an amorphous
phase of lithiated Silicon with atomically sharp (about 1nm thickness [78]) reaction front.
Since lithiated Silicon is an electron conductor, Lithium ions and electrons recombine into
Lithium atoms upon reaching the Silicon electrode. Lithium atoms then diffuse through the
lithiated Silicon, and react with the crystalline Silicon, at the reaction front, to form fresh
lithiated Silicon. The reaction causes the lithiated Silicon to grow at the expense of the
crystalline Silicon and metallic Lithium.

Evidence shown [62, 79] that, in nanostructured electrodes, the velocity of the reaction
front is not limited by the diffusion of Lithium through the occupied phase, but by the
reaction of Lithium at the interface front. Under a constant voltage the displacement of
the reaction front is linear in time [62] indicating that the rate of lithiation is limited by
short-range processes, such as breaking and forming atomic bonds.

Migration of Lithium ions in the electrolyte is relatively fast, so that the diffusion of
Lithium through the lithiated Silicon and the reaction between Lithium and Silicon at the
front may limit the velocity of the reaction front [79].

Huang et al. [61] and Zhao et al. [79] investigated the distribution of stresses, accounting
for plastic strains, in a spherical particle, fixing a priori the law which the two phases
separation front obeys while moving from the outer boundary of the particle toward the
center.

A different methodology has been chosen by Drozdov [80, 81]. Lithiation process is
considered after splitting guest atoms into mobile and immobilized, following the approach
previously suggested by [20, 82, 83] to study hydrogen diffusion in metals. The major
advantage of this approach is that, for trapping rate strongly exceeding the rate of diffusion,
a sharp interphase naturally appears, without any a priori assumption.

In recent works of Anand [20] a continuum-level thermodynamically consistent theory is
formulated to couple species diffusion with large elastic-plastic deformations of a body. A
classical Cahn-Hilliard theory was developed to account for phase segregation caused by the
diffusing species. The phase-interface is modeled as a diffuse-interface: the concentration
field takes distinct values in each of the phases with a smooth change between the values
around the interface, permitting a regularization of the problem.

For a complete review about models and experimental measurement of stresses in Li-ion
battery electrodes, the reader may refer to Mukhopadhyay and Sheldon [2].

Analysis of stress affecting Li-ion batteries have been carried out also at higher scales.
Examples can be found in Zhang et al. [84], where diffusion-induced stress in layered struc-
ture (multilayer electrode plate including active plates as well as current collector) has been
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investigated and [85–87] where Wierzbicki and his co-workers investigate structural response
of battery cells subjected to externally applied mechanical stresses.

Interface reaction

The electrode/electrolyte interface controls the overall behavior of the battery cell. Such an
interface is the location where the mechanism of charge transfer changes: in the electrolyte,
charges are carried by ions and driven by concentration and electric potential gradients (when
convective contribution to ion motion is neglected); in the electrodes, charges are carried by
electrons and driven by the electric potential gradient only.

Assuming LiCoO2 to be the positive electrode material for instance, the following elec-
trochemical charge transfer reaction holds

LiCoO2 � Li1−xCoO2 + x Li+ + x e− 0 ≤ x ≤ 1

2
(1.2a)

If graphite is taken to serve as anode material, intercalation and extraction are described by

C6 + z Li+ + z e− � LizC6 0 ≤ z ≤ 1 (1.2b)

Mass is transported through the electrolyte from one electrode to the other, to bring reac-
tants to the interfaces for the electrochemical charge transfer reactions (1.2) to take place.
The latter relates charge and mass transfer through the interface. When the Lithium ions
are reduced to neutral state variation in electric potential does not affect their transport any
more.

Since the cell is first assembled, the charges are localized around the interface between
electrode and electrolyte, causing an intense electric field to develop in a region (known as
the Stern Layer) with atomic-scale dimensions adjacent to the interface, together with a
more diffuse region of charge (known as the Gouy-Chapman layer) in the electrolyte [88].
These regions together (in the order of 10 to 20nm according to the literature [6]) define a
so-called electric double layer.

An exhaustive dissertation about the electric double layer can be found in Newman and
Thomas-Alyea [6] as well as in Bard and Faulkner [11]. Biesheuvel et al. [89] report a recent
review of the relevant literature and a mathematical model of the steady state behavior of a
galvanic cell that includes the double layer description.

In Li-ion battery modeling literature, specific description of the double layer is generally
disregarded with a few exceptions (e.g. Bazant et al. [52], Marcicki et al. [29]), local
electroneutrality is assumed throughout the electrolyte and a discontinuity in the electrostatic
potential across the electrode/electrolyte boundary is allowed for (see among others [10, 45,
46, 48, 90]). The electric double layer is thus assumed as infinitesimally narrow, allowing for
a distribution of a charge layer in the electrolytic solution equal and opposite to the charge
layer on the surface of the electrode.

A semiempirical equation, named after Butler and Volmer, is used to relate the local
intercalation current to the potential difference between the working electrode and the point
in solution immediately beyond the ideally narrow double layer [48, 49, 67, 75, 91]. Streeter
and Compton [92] critically discuss the electroneutrality and negligibly small double layer
approximations, showing they are appropriate only if the (active) particles of the electrode
are much larger than the electric double layer.
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SEI layer

Electrode/electrolyte interface is affected by the formation of a so-called solid electrolyte
interphase layer (SEI). The SEI layer is a passivating film that appears since the first time the
electrode contracts the electrolyte solvent and is made by electrolyte decomposition products
[93]. Its composition, formation, and functioning are still under investigation because the SEI
effects can be either beneficial (it prevents uncontrolled Li-intercalation in the electrode) and
negative (excessive SEI formation may lead to undesirable Li-ions consumption and active
electrode area reducing). Attempts to include SEI growth in Li-ion battery models can be
found in literature, see for example Xie et al. [94] and Pinson and Bazant [95].

Complete battery cell models

A simplified model of galvanostatic charge/discharge process of a complete battery cell has
been proposed by Doyle et al. [28], considering one-dimensional transport from a lithium an-
ode to a composite cathode through the separator. In this model no mechanical contribution
has been taken into account.

A whole battery cell with two porous electrodes has been considered in [29, 90, 91]. Porous
electrode theory models the overall battery, but particles that make up the intercalation
electrodes are assumed to be spherical, thus allowing for a 1D description.

2D models of half battery cell are presented in Purkayastha and McMeeking [48] and
Garcia et al. [49] in which all the phases are fully described. It was envisaged in [49] that
the level of stresses experienced by the active particles during electric cycles may depend on
their location with respect to the separator.

Multiscale battery cell models

Multiscale approaches have been pursued in Li-ion batteries: Golmon et al. [50, 51] consid-
ered the Mori-Tanaka approach at a meso-scale; Hashin-Strickman as well as Wiener bounds
have been considered by Ferguson and Bazant [39].

Computational homogenization schemes, also called FE2, are based on the solution of
two nested boundary value problems (Suquet [96]; Miehe et al. [33]; Feyel and Chaboche
[34]; Geers et al. [30]). Upscaling of the effective behavior is usually achieved according to
the Hill-Mandel principle of macro-homogeneity which ensures energy consistency between
the two scales, Hill [97].

CH mechanical schemes are well-established, the reader may refer to Geers et al. [30]
for a detailed review. In recent publications this technique has been extended to problems
in which multiphysics comes into play. Özdemir et al. [98, 99] have recently extended this
approach to the thermo-mechanical coupling; Wu et al. [100, 101] have set a thermo-chemo-
mechanical coupled multiscale model to deal with concrete failure due to chemical reaction;
Zäh and Miehe [102] developed a CH framework for dissipative electro-mechanically coupled
materials.

In two-scale formulations for heat conduction [98, 99], a steady-state mass transport
hypothesis was adopted at the microscale. Steady-state mass and charge transport is justified
at the micro level in the presence of fast diffusive response or negligibly small RVEs. Steady-
state would imply instantaneous changes for concentration and potentials at the micro scale,
dictated through the boundary conditions that originate from the macro scale problem,
which is time-dependent. From a simple estimate it turns out that the steady-state mass
and charge transport hypothesis at the microscale is not satisfied for the battery problem
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[9]. Accordingly, a concurrent time modeling between the macro and micro scales will be
carried out in the present work.

CH scheme with non-steady state microstructures is not a novelty. Larsson et al. [103], in
the context of transient thermal problems, adopted a scheme to predict the thermal response
of composites with non-steady state microstructures. Pham et al. [104] applied CH technique
to metamaterials subject to dynamic excitation.





Part I

Balance equations and multiscale
formulation





Chapter 2

Overview

Despite many progresses have been made in the last decades, modeling the complex structure
of batteries still represents an open challenge. The different nature of the phenomena involved
- mechanical, electrical, electrochemical and thermal (the latter not discussed in this work) -
lead to a mathematical framework that entails a high number of unknowns (displacements,
electric potential, concentration, temperature...). Additional complexities are provided by
both multiphysics (coupling among variables often arise through non-linear relations) and
multiscale (different observation scales are involved).

Basic ingredients underling the developed model are described in the chapter.
The set of equations involved in the multiphysics description is then introduced. The limits
of electro-quasi-static formulation, used in place of the complete set of Maxwell’s law, and
of electroneutrality assumption are rigorously discussed1.

2.1 Balance laws

2.1.1 Mass balance

The mass balance equation may be written as

∂cα
∂t

+ div
[
~hα

]
= sα (2.1)

where: cα is the molarity (i.e. the number of moles per unit volume) of a generic species α;
~hα is the mass flux in terms of moles, i.e. the number of moles of species α measured per unit
area per unit time; sα is the mass supply rate in terms of moles, i.e. the number of moles of
species α measured per unit volume per unit time. It applies to ions Li+, X−, electrons e−,
as well as neutral Li. Concentrations are defined in space ~x ∈ V and time 0 ≤ t ≤ tf , i.e.
cα = cα(~x, t). Functional dependence however is specified when necessary only, to enhance
readability.

2.1.2 Faraday’s law

Charges in the solution are transported by dissociated ions. Therefore, the charge density ζ
is related to their concentrations.

ζ = F
∑
α

zα cα (2.2)

where F = 96485.3383 C mol−1 is Faraday’s constant and zα is the valency2 of ion α. The
flux of mass in balance (2.1) of each species contributes to a current density ~i and a charge

1This chapter extends contents of [8, 9]
2i.e. the number of electrons transferred per ion, typically +1 for Li+ cations and −1 for X− anions.
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supply rate sc in view of Faraday’s law of electrolysis

~i = F
∑
α

zα~hα , sc = F
∑
α

zα sα (2.3)

2.1.3 Maxwell’s equations in matter

Maxwell’s equations describe electric and magnetic fields and their reciprocal interactions3.
Gauss’s law relates the electric (in Volts per meter) and magnetic fields emanating from a
distribution of free electric charge ζf (in Coulomb per unit volume).

div
[
~D
]

= ζf (2.4)

div
[
~B
]

= 0 (2.5)

~D is termed electric displacement field and ~B is known as the magnetic field. Maxwell-
Faraday’s law of induction describes how the variation in time of the magnetic field induces
an electric field.

curl
[
~E
]

= −∂
~B

∂t
(2.6)

~E denotes the electric field. Finally, the Ampère’s law (with Maxwell correction) relates the
electrical current and the time variation of the electric displacement field to the magnetic
field.

curl
[
~H
]

=~if +
∂ ~D

∂ t
(2.7)

~H is termed the magnetizing field and ~if is the free current density.

Equations (2.4 - 2.7) depend only on free charges and currents, whereas the contribution
of bound quantities is included in the two additional electric ~D and magnetic ~H fields.
Phenomenological splitting related those quantities to ~E and ~B. The splitting is a definition,
it does not entail any constitutive nature.

~D = ε|0 ~E + ~P

~H =
1

µ|0
~B − ~M

The factor ε|0 is termed vacuum permittivity or electric constant. Its value is 8.85418782 ×
10−12C V−1 m−1. The factor µ|0 is termed vacuum permeability or magnetic constant. Its
value is 4π × 10−7N A−2.

Vector ~P is termed polarization field and represents the dipole moment of bound charges
ζb per unit volume. Magnetization vector ~M takes into account the bound currents~ib. They
hold:

div
[
~P
]

+ ζb = 0

3The equations have two variants. The so called “microscopic” set of equations involve total charge
and current, which means that atomic charges and current must be included to model bound quantities.
Maxwell’s equations in matter model the latter by means of two auxiliary fields, the polarization ~P and the
magnetization ~M
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∂ ~P

∂ t
+ curl

[
~M
]

=~ib

with total charge and current defined by the sums ζ = ζf + ζb, ~i =~if +~ib.

In order to lighten the modelization burden, it will be assumed that bound charges play
a secondary effect, i.e. materials are without polarization and magnetization. Such an
hypothesis is constitutive in nature and as a result all currents and charges are free and will
be denoted henceforth as ζ and ~i. Equations (2.4 - 2.7) thus trivially modify as follows:

div
[
~D
]

= ζ (2.8)

curl
[
~H
]

= ~i+
∂ ~D

∂ t
(2.9)

Their combination lead to the continuity law (mathematical expression of conservation
of charge) in terms of charge density ζ, electric current density ~i (in Ampères per unit area)
and charge supply sc (in Coulombs per unit volume per unit time). It reads

∂ζ

∂t
+ div

[
~i
]

= sc (2.10)

with sc deriving from a charge supply sζ , implicitly included in equation (2.8) as a part of
charge ζ.

2.1.4 Balance of momentum

Following [20], the fundamental assumption will be made that the power expended by each
“rate-like” kinematical descriptor can be expressed in terms of an associated force consistent
with its own balance. Assuming small displacements and strains, the conjugated pairs within
the internal expenditure of virtual power Wint are the Cauchy stress σ and the infinitesimal
strain tensor ε, whose hatted amount ε̂ is taken here as a virtual velocity gradient. The
principle of virtual power (with the two requirements: Power balance Wext = Wint in any
sub volume, frame indifference for Wint in any sub volume for any virtual velocity) leads to
the usual balance of forces:

div [σ ] +~b = ~0 (2.11)

and to the symmetry of tensor σ. Among bulk forces ~b the Lorentz forces of interaction of
a moving charge density ζ with velocity ~v in an electric field ~E and magnetic field ~B will
be denoted by ~bζ = ζ ( ~E + ~v × ~B). Balance equation (2.11) states that electric and stress
fields are unavoidably related in the presence of charge densities. Such a relationship has a
fundamental nature.

Note that the mass balance equations relate to charged or neutral species and Maxwell’s
equations pertain to charged species, i.e. to ions and electrons that flow into a lattice. The
force balance applies to a continuum, i.e. to the macroscopic, averaged, description of the
lattice itself which ions, electrons, and/or neutral particles flow through. The electrostatic
forces are the only interactions between flowing particles and the lattice. If charge density
vanishes - as for neutral Lithium intercalation into active particles or in view of the elec-
troneutrality assumption, for instance - there is no coupling between flows and forces at
all.
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A coupling is indeed still expected in view of the influence of the stress state of the lattice
on the predisposition of the lattice itself to convey mass flux. In other terms, of the swelling
effect induced by the species concentration deforming the lattice. Such a coupling has a
different, constitutive origin.

2.2 Electro-quasi-static Maxwell’s law assumption

It is usual in the batteries literature not to consider the contribution of the magnetic field
[6, 11, 12]. To formalize this simplification, the electro-quasi-static (EQS) model [14] is here
adopted in place of the full Maxwell’s equations set. Interference between the electric and
magnetic phenomena are restricted to capacitive effects only (i.e. non inductive). By these
assumptions, the time-dependent hyperbolic Maxwell’s equations are replaced by parabolic
equations that can be solved in a more simple way (see for instance [105], chapter 10).

In the light of EQS model, the time derivative of the magnetic field is negligible within
Maxwell-Faraday’s law of induction, which thus reads

curl
[
~E
]

= ~0 (2.12)

Accordingly, the electric field is irrotational and derives from an electrostatic potential φ:

~E = −∇ [φ ] (2.13)

The impingement of the magnetizing field field ~H in Ampère’s law cannot be disregarded in

the simplified framework of electro-quasi-statics4. Since div
[

curl
[
~H
] ]

= 0, a differential

form can be straightforwardly obtained from Ampère’s law (2.9), after application of the
divergence operator:

div

[
∂ ~D

∂ t
+~i

]
= 0 (2.14)

This form will be used in the sequel of the work, together with (2.13).

2.2.1 A simple justification

The origin of the electromagnetic waves is the coupling between the laws of Faraday and
Ampère through the magnetic induction and the displacement current. By disregarding the

induction contribution ∂ ~B
∂t ∼ 0 in Maxwell-Faraday’s law (2.12), the electromagnetic waves

are neglected as well. In support of the electro-quasi-static approximation, the following
arguments can be forwarded, consistent with [106].

For the electro-quasi-static approximation to hold, the error introduced on ~E by ignoring

the induction contribution ∂ ~B
∂t must be small compared to the quasi-static field ~E itself.

According to [106], chapter 3, the electro-quasi-static approximation implies “sufficiently”
slow time variations τ and small dimensions L so that

L
√
ε|µ| � τ (2.15)

4It will be shown in section 3.2.3 that Ampère’s law plays a basic role in the interface conditions at the
micro scale. The magnetizing field is customarily linearly related to the magnetic field by the constitutive
relation ~H = 1

µ|
~B, µ| being the magnetic permeability of an isotropic material.
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with (ε|µ|)(−1/2) the velocity of traveling electromagnetic waves in the material, provided
that ε| and µ| are respectively the permittivity and the permeability of the same. ε| = ε|r ε|0
quantifies a material’s ability to transmit (or “permit”) an electric field. The permittivity of a
homogeneous material is usually given relative to that of vacuum ε|0, as a relative permittivity
ε|r. In the same way, µ| = µ|r µ|0 quantifies a material’s ability to support the formation of a
magnetic field and is usually given relative to that of vacuum µ|0, as a relative permeability
µ|r.
The left hand side in formula (2.15) is the time required for an electromagnetic wave to
propagate at velocity (ε|µ|)(−1/2) over a length L characterizing the system, e.g. the length
of the edge of the RVE. τ is the characteristic time scale, i.e. a fraction (typically the time
increment ∆t in a time stepping procedure) of the time required by an ionic charge to cross
the RVE. A simple estimate for ∆t is the ratio

L

vLi+

with vLi+ the average velocity of the Lithium ions. The order of magnitude of such a velocity
is evaluated by

~hLi+ = cLi+ ~vLi+ = −D ∇ [ cLi+ ]

For a one-dimensional flow (with no tortuosity) it comes out

|vLi+ | = D
|∇ [ cLi+ ] |

cLi+
∼ 2

D

L

thus ending up with the following condition

2D
√
ε|µ| � L (2.16)

for the electro-quasi-static approximation to hold. Typical values of diffusivities for elec-
trolytes are in the order of 10−11m2s−1 whereas

√
ε|µ| is in the order of 10−8m−1s. For a

characteristic RVEs size of 10−5m this condition is largely satisfied.

2.3 The electroneutrality approximation

The mechanism of charge transport is radically different in solid particles and in the fluid
electrolyte.

In active particles, charges are essentially transported by pure electrical conduction; the
large mobility of electrons grants charge neutrality. The charge of Li+ cation after intercala-
tion into the active particles is instantaneously wiped out by the transport of electrons over
the current collectors towards the Stern and the Gouy-Chapman layers. As a consequence,
the intercalation of Lithium in active particles is considered to be neutral.

Charge transport in the electrolyte on the other side is exclusively due to ionic transport.
In fact the transfer of electrons into the electrolyte would result in the reduction of Lithium
ions in the electrolyte to metallic Lithium. Such a process is considered to be an interesting
potential degradation mechanism in Li-ion batteries but it is not taken into account in the
present model.

Charges localize in the electrolyte near the interface with active particles, causing an
intense electric field to develop in two regions (the Stern and the Gouy-Chapman layers)
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where the oxidation-reduction reactions effectively take place. According to the literature
[6], the size of such a diffuse double layer structure is in the order of 10 to 20nm. The
RVE that will be analyzed (see Section 3.1.1) has a characteristic length three orders of
magnitudes larger than the double layer size. Concentrated electrolytes are neutral on this
scale due to the strong Coulomb interactions between the ions leading to an extremely small
Debye screening length.

Intermezzo - An excellent discussion on the origin of the electroneutrality assump-
tion was disclosed in [7]. By combining Gauss’s Law (2.8) in terms of the electrostatic
potential (2.13) with charge density (2.2), the well-known Poisson equation results

∆ [φ ] +
F

ε|
∑
α

zα cα = 0 (2.17)

To write a dimensionless form of the Poisson equation in terms of concentration and
electric potential one makes use of the “thermal voltage” φ∗ = RT/F and the bulk
concentration of the electrolyte cbulk to write:

RT ε|
F 2cbulk

∆

[
φ

φ∗

]
+
∑
α

zα
cα
cbulk

= 0 (2.18)

The ratio

rD =

√
1

2

ε|
cbulk

RT

F 2
(2.19)

is termed Debye length5. It assesses a charge electrostatic effect in solution, and
measures how far those effects persist. The Debye length is the characteristic length
scale in equation (2.18) and sets the scale for variations in the potential and in the
concentrations of charged species. As it is typically in the order of a few nanometers in
battery cells electrolyte, for bounded potential second derivatives it holds∣∣∣∣∣∑

α

zα cα

∣∣∣∣∣� 1 (2.20)

Enforcing that the sum
∑
α zα cα is identically zero leads to a new equation, which is

often used instead of the Gauss law. In the present paper this approach is not pursued,

rather the influence of equation (2.20) is investigated in the balance equations of Section

2.1. �

The distribution of electric charge ζ in the electrolyte solution is due to an unbalance
of concentration between anions and cations, in light of Faraday’s law. Electroneutrality,
justified as in (2.20), implies that charge separation is almost impossible, i.e. that neutrality
is maintained in the solution. Equation (2.20) reflects physical properties of the processes in
an average sense, and has to be considered as an approximation, as correctly pointed out in
recent literature [7].

Notwithstanding its nature, electroneutrality in the form∑
α

zα cα = 0 (2.21)

5cbulk [mol m−3] stands for the bulk concentration of salt LiX, T [K] for the absolute temperature,
R [J K−1 mol−1] for the universal gas constant, F [A s mol−1] for Faraday’s constant. The Debye length
rD is therefore measured in m.
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has been largely used instead of Gauss’s law (2.8) in batteries modeling (see among others
[6], page 286). As the latter is a fundamental balance equation, using electroneutrality in
its place leads to the paradox that the electric field is not constrained to satisfy Maxwell’s
equations (see for instance [10], fig. 3 and comments therein).

Numerical analyses reveal that the deviation from electroneutrality is small, ten orders
of magnitude with respect to the equilibrium electrolyte concentration (see [6], page 286 and
[10]). According to the data commonly available in the literature [10], the order of magnitude
of the Lorentz forces ~bζ is a few Newtons per cubic meter, completely insignificant with
respect to those due to purely mechanical effects. The evidence is obvious for electrostatic
forces in deformable dielectric materials [107] and was observed by Toupin in the fifties [108].
Electroneutrality assumption therefore allows to uncouple the mechanical and electric fields
in the force balance equation (2.11), which in the absence of mechanical body forces becomes
homogeneous.

The electric charge ζ is related by eq. (2.2) to the unbalance of concentration by Fara-
day’s constant. Since the ratio of Faraday’s constant and the permittivity amounts at
F

ε| ∼ 1.1 · 1017ε|r
Vm
mol , the observed deviation from electroneutrality may provide electric field

contributions comparable to those in the battery cell (see again [10]). Accordingly, usage of
electroneutrality inside Gauss’s law does not seem to be appropriate.





Chapter 3

Multiscale formulation

3.1 Computational homogenization in batteries
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Figure 3.1: Sketch of a Li-ion battery cell with porous electrodes. Additives are used to create conductive
networks in both electrodes, to increase the electronic conductivity. Additives include large (graphite) and
small (carbon black) conductive particles, that are bound to the active particles that host Lithium by a polymer
binder (PVDF for instance). Separator scanning electrode microscope images can be found for instance in
[53].

Two scales will be considered in modeling composite electrodes and porous separators Ωs

whereas a single macroscopic scale is adequate to model the metallic electrodes, the current
collectors, as well as all other parts that are homogeneous - see Figure 3.1.
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The macroscopic scale modeling hinges on the theory for porous materials, taking into
account the pore-filling electrolyte1 (from now on with subscript e) and the porous solid
material (subscript s). At the microscopic level, the electrolyte is also denoted with subscript
e and the electrode (subscript s) is separated into its particles compound (active particles
(subscript a) and conducting particles (subscript c)). The RVE contains all solid phases and
the pore-filling electrolyte. Superscript M still refers to the macro scale and distinguishes it
from the microscale, denoted with a lower case superscript m.

At the macroscopic scale, the intercalation of Lithium into the particles is described by a
volume supply sLi. The amount of the intercalated Lithium sLi and the constitutive behavior
for all phenomena involved (diffusion, migration, intercalation, and the mechanical coupling)
are to be determined. Those quantities are upscaled from the underlying microstructure.

At the micro-scale all fundamental mechanisms are modeled in detail. Scale transitions
are invoked to:

• define the micro scale boundary value problem (macro to micro scale transition, section
3.4.1) by linking it to the controlling macroscopic variables;

• provide tangent operators and updated values of the (dual) macroscopic fields (micro
to macro scale transition, section 3.4.2), i.e. the average stress field, ionic mass fluxes,
electron current density, concentration of ions in the electrolyte and of Lithium in
the electrode, intercalation supply of neutral Lithium in the electrode. In order to
upscale all these quantities, a suitably extended Hill-Mandel condition and the mass
conservation across the scales will be imposed.

3.1.1 RVE dimensions

The choice of the RVE is a fundamental issue in the theory of composite materials. According
to Drugan and Willis [110], an RVE may be defined in two different ways. It can be consid-
ered as the smallest microstructural volume for which the averages of properties as stresses,
strains, constitutive moduli represent with “sufficient accuracy” the mean macroscopic re-
sponse (see e.g. [97]). Accordingly, RVE’s size is influenced by the material behaviour of
the microstructural components. A second definition requires the RVE to be statistically
representative of the microstructure, that is to essentially include a sampling of all possible
microstructural configurations occurring in the composite. This definition leads to signifi-
cantly larger RVEs than in the former case, as the microstructural element must incorporate
several kinds of material heterogeneities. Based on this definition, statistical methods have
been presented to determine the size of the RVE and the number of inclusions to consider,
see among the others [111–113].

In order to clearly describe the physical range of the RVE dimensions, the electrode com-
pound materials should be specified. Representative models of the battery microstructure
based on experimentally obtained statistical information have been addressed in the litera-
ture. In [114], the three dimensional microstructure of a graphite porous electrode has been
analyzed via tomographic techniques. The minimum RVE size is estimated as 43×60×60µm
according to tailored statistical analyses. An estimate of the characteristic dimensions of the
RVE is derived in [115] for LiCoO2 electrode material (RVE edge ≈ 30µm ). The microscale
arrangement of active particles, carbon, binder and pores is recovered from statistical analy-
ses of 2D cross sections of the electrode achieved through scanning electron microscope with

1The electrolyte in the current technology of Li-ion batteries [12] might be a solid, a liquid or a gel. An
up to date discussion on the subject can be found in [109].
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focused ion beam. A similar approach is employed for electrodes utilizing LiFePO4 as active
material where the RVE size is measured as 5× 5× 15µm [116].

3.1.2 Concurrent time modeling

Time modeling at the microscale

In two-scale formulations for heat conduction [98, 99], a steady-state mass transport hypoth-
esis was adopted at the microscale. Steady-state mass and charge transport is justified at the
micro level in the presence of fast diffusive response2 or negligibly small RVEs. Steady-state
would imply instantaneous changes for concentration and potentials at the micro scale, dic-
tated through the boundary conditions that originate from the macro scale problem, which
is time-dependent.

In order to verify if steady-state mass and charge transport can be applied to battery
modeling, dimensional analysis arguments are invoked. By choosing a trivial, yet compatible,
constitutive law of the kind

~hα = −D ∇ [ cα ]

and no bulk terms for all α, the mass balance equations lead to the homogeneous diffusion
equation

∂cα
∂t
−D∆ [ cα ] = 0 (3.1)

Assuming a one-dimensional flow and defining a non-dimensional time t∗ = t/t, length s =
x/L and concentration ξ = c/cbulk the following non-dimensional form of the homogeneous
diffusion equation results

L2

Dt

∂ξα
∂t∗

= ∆ [ ξα ] (3.2)

If the dimensionless number L2

Dt
would be zero, then ∆ [ ξα ] = 0, which is precisely the

steady-state mass and charge transport hypothesis at the microscale. Such an hypothesis
can be thus justified for “sufficiently small” values of L2

Dt
, at least for smooth variations in

time of the concentration. Typical values of diffusivities for electrolytes are in the order of
10−11m2s−1, whereas characteristic RVEs size described in literature and reviewed in Section
3.1.1 is in the order of 10−5m. Literature analysis show [10] that the time-frame required
for the development of a steady concentration profile in the electrolyte is in the order of
102÷103s, with a typical time step in the order of 1s in numerical schemes. From this rough
estimate it turns out that L2

Dt
∼ 10, which implies that the steady-state mass and charge

transport hypothesis at the microscale is not satisfied for the battery problem.

Time scale separation

Assume that a liquid electrolyte fills voids in porous electrodes and separators. The time
scales during lithiation/extraction are dictated by two mobilities, the one of the ions in
the electrolyte and the one of the neutral Lithium in the active particles during intercala-
tion/deintercalation. The two mobilities differ several order of magnitudes: the diffusivity
for ions is in the order of 10−11m2s−1, whereas the one for neutral Lithium takes a value in
the order of 10−15m2s−1. According to the literature, the average size for the active particles
is in the order of 1µm or even less for Silicon particles [57], whereas the electrode length is

2Diffusive processes scale with 1/L2, L being the length scale [117]. The time for a particle to reach the
steady state when concentration is changed scales with 1/L2.
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in the order of 100µm - see [48] and references therein. As shown in equation (3.2) diffusive
processes scale with L2, i.e. the time scale for the species (either an ion in the solution or
neutral Lithium in the active particle) to travel a distance L is given on the average by L2/D.
By comparing the macroscopic and microscopic ratios L2/D, it turns out that time scales do
not separate, i.e. all active particles in the electrode are lithiated concurrently. Accordingly,
a concurrent time modeling between the macro and micro scales will be carried out.

3.2 Microscale

The evolution of electrochemical and mechanical fields at the finest scale is defined in an RVE
of volume V and boundary ∂V . It is provided with the essential physical and geometrical
information on the microstructural components, i.e. the active particles, the conductive
particles, and the pore filling electrolyte3.

Two kinds of particles are modeled within the RVE: the active particles (collectively
occupying domain Va) and the conductive particles that define domain Vc. Accordingly, the
solid phase will occupy volume Vs = Va ∪ Vc. The electrolyte will fill all the remaining part
Ve of the RVE; Ve is such that V = Vs ∪ Ve.

Active 
particles

Conductive
 particles

Electrolyte

Figure 3.2: Sketch of an RVE

3.2.1 Balance equations

The microscopic mass balance equations characterize the species transport in two phases,
namely the transport of neutral Lithium in the active particles and the transport of Li+ and
X− ions in the electrolyte.

∂cmLi

∂t
+ div

[
~hmLi

]
= 0 ~x ∈ Va (3.3a)

∂cm
Li+

∂t
+ div

[
~hm

Li+

]
= 0 ~x ∈ Ve (3.3b)

∂cmX−

∂t
+ div

[
~hmX−

]
= 0 ~x ∈ Ve (3.3c)

3This chapter extends contents of [8, 9]
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The concentration of neutral Lithium is identically zero in the conductive particles. There
is no supply of species at the micro scale, as: i) intercalation phenomena are analytically
described as mass fluxes across interfaces; ii) the degree of dissociation of the binary salt
in the solution is assumed to be complete. The latter condition is generally not satisfied in
reality, as it is known from literature that the degree of dissociation of Li-salts dissolved in
an organic solvent is incomplete. Modeling the dissociation rate would require a bulk term
in the mass balance equation of the ionic species accompanied with a further mass balance
equation for the undissociated salt [10].

Current density in active and conductive particles is due to electron transport, and the
local form of mass and charge conservation read:

∂cme−

∂t
+ div

[
~hme−

]
=
∂cme−

∂t
− 1

F
div
[
~ime−

]
= 0 ~x ∈ {Va ∪ Vc} (3.4)

Charge and mass equations for electrons are equivalent in the assumption that the positively
charged cores are steady.

Either by applying the divergence operator to Ampère’s law (2.9) or by the time derivative
of Gauss’s law (2.8), taking into account Faraday’s law (2.3), the electric displacement field
(in the electrolyte denoted with ~Dm

e , in the electrode with ~Dm
s ) is governed by the following

rate equations

div

[
∂ ~Dm

e

∂t
+ F (~hm

Li+
− ~hmX−)

]
= 0 ~x ∈ Ve (3.5a)

div

[
∂ ~Dm

s

∂t
+~ime−

]
= 0 ~x ∈ {Va ∪ Vc} (3.5b)

Inertia effects as well as non electrostatic bulk forces are neglected. In light of the
electroneutrality assumption, electrostatic forces are of secondary order. The balance of
momentum (2.11) specializes as:

div [σm ] = ~0 ~x ∈ V (3.6a)

skw[σm ] = 0 ~x ∈ V (3.6b)

3.2.2 An “averaged” description of electrode kinetics

Consider the Lithium deposition or dissolution reaction

Li � Li+ + e− (3.7)

that takes place at the active particle/electrolyte interface, which is assumed to be equipped
with all thermodynamic requirements as in [118].

If the chemical potential µLi exceeds the sum of the electrochemical potential of the
Lithium ions in the solution µLi+ and of the electrons in the metal µe− then Li dissolution
takes place. The imbalance of electrochemical potentials in the reaction (3.7) is the driving
force for the electrode reaction. It is measured by the amount

γ = µLi − µe− − µLi+ (3.8)
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which is usually termed thermodynamic excess. Thermodynamic equilibrium is reached if
and only if γ = 0.

Reaction (3.7) cannot be treated as a simple chemical reaction in a single phase since the
process must generate or consume electrical charge, and this will always be accompanied by
the formation of an electric field and an electrostatic potential difference between the two
phases. A large gradient in the electric field takes place in a nano metric size double layer,
that is here4 identified with a discontinuity locus at the interface between solid particles and
electrolyte.

By identifying the double layer as a zero-thickness interface, a discontinuity ξ = JφK in
electrical potential arises between an electrode and its surrounding solution.

It will be assumed henceforth that the rate of chemical reaction (3.7) is very rapid com-
pared to the mass flux governed by mass balance equations. Such an assumption usually
connotes a nerstian reaction. Under this condition (see [11], chapter 1.4), surface concentra-
tion of species are related to the electrode potential by the well known Nernst equation. By
denoting the reaction Gibbs energy with

γ = µLi − µe− − µLi+ (3.9)

Nernst equation reads

ξ +
γ

F
= 0 (3.10)

It describes the conversion of the Gibbs reaction energy into electric energy and holds if the
kinetics of electron transfer is rapid, so that the concentration of Li and Li+ at the electrode
surface can be assumed locally at equilibrium γ = 0 with the electrode potential5.

When a battery cell is assembled at open circuit, electrochemical reactions take place and
a potential discontinuity ξ rises to inhibit further dissolution, leading the whole system to
equilibrium with a vanishing net current across the interface. The value of ξ at such a global
thermodynamic equilibrium for reaction (3.7) is termed ξNernst and the potential difference

χ = ξ − ξNernst (3.11)

is called surface over-potential. A net current passing between electrode and solution is
related to χ.

The current density in the outward normal direction ~i · ~n at the surface of an electrode
will be denoted by iBV . The relationship between averaged current density and surface
over-potential is usually described by means of the Butler-Volmer equation [6, 11, 88, 118]:

iBV = i0

{
exp

[
(1− β)

RT
F χ

]
− exp

[
− β

RT
F χ

] }
(3.12)

There are two kinetic parameters in equation (3.12), namely i0 and β. Experimental data are
required to estimate these parameters. Factor i0, termed exchange current density, depends

4The modeling of the double layer is mainly based on the work of Stern, Gouy and Chapman, see [88] for
details.

5This assumption reminds to Oriani’s law for H2 diffusion in metals, according to which different popula-
tions of H are in thermodynamic equilibrium during the whole diffusion process [119].
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on the composition of the solution adjacent to the electrode - see [11], formula (3.4.4). It is
often assumed to be constant at a metallic anode. Parameter β is a symmetry factor and
represents the fraction of the surface over-potential that promotes cathodic reaction. It is
widely assumed to be β = 1/2. The reader may refer to specialized literature [6, 11, 120] for
further details.

The mass flux in the outward normal direction ~h · ~n at the surface of an electrode will
be denoted by hBV . It is related by stoichiometry (3.7) and by Faraday’s law to the current
density in the same direction at the same location

iBV = F hBV (3.13)

Nernst equation (3.10) induces a constraint along the active particles/electrolyte interface
to the otherwise independent chemical and electric potential fields.

At low surface over-potentials, Butler-Volmer equation can be linearized as

iBV =
i0
RT

F χ (3.14)

providing a significant computational simplification.

As observed in [121], by using the Butler-Volmer equation, stress can only influence
the reaction through the electrochemical potentials, i.e. by altering the concentrations of
the reacting species, because mechanical fields do not enter equation (3.12) directly. A
more refined model of the interaction of mechanics and electrochemical reactions involve the
mechanical characterization of the Stern and Gouy-Chapman layers, the former of which has
atomistic size. Such an attempt is not carried out here, the reader may refer to [88, 121].

3.2.3 Weak form and interface conditions

Weak form - This section aims at building up the weak form of the balance equations to
be used for the micro to macro scale transition and, upon further development at a later
stage, to enable a numerical approximation of the partial differential equations problem at
the micro-scale. Formally speaking, the weak formulation is obtained after multiplication
of the strong form of the balance equations (3.3-3.6) by a suitable set of test functions and
performing an integration upon the domain, exploiting Green’s formula with the aim of
reducing the order of differentiation. Such a weak form is given here in terms of the scalar
potentials and displacements, collected in column ym, in a time interval [0, tf ] as:

Find ym ∈ V [0,tf ] such that
d

dt
bm (ŷm, zm(t)) + am(ŷm, ym(t)) = f(ŷm) ∀ŷm ∈ V

where bm, zm, am, and f will be detailed in what follows.

Let’s construct the weak form of the generic mass balance equation (3.3)∫
Vα

µ̂mα

{
∂cmα
∂t

+ div
[
~hmα

]}
dV =

=

∫
Vα

µ̂mα
∂cmα
∂t

dV +

∫
Vα

µ̂mα div
[
~hmα

]
dV =

=

∫
Vα

µ̂mα
∂cmα
∂t

dV +

∫
Vα

div
[
µ̂mα

~hmα

]
−∇ [ µ̂mα ] · ~hmα dV =

=

∫
Vα

µ̂mα
∂cmα
∂t

dV −
∫
Vα

∇ [ µ̂mα ] · ~hmα dV +

∫
∂Vα

µ̂mα
~hmα · ~n dΓ = 0

(3.15)
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Within (3.15) one recognizes: i) a “time derivative” contribution
∫
Vα
µ̂mα

∂cmα
∂t dV to be in-

cluded within the bilinear form bm (ŷm, zm); ii) a bulk term
∫
Vα
∇ [ µ̂mα ] ·~hmα dV that fits into

am(ŷm, ym(t)); iii) a contribution defined at the interface between particles and electrolyte
as well as at the RVE boundary.

Likewise, the weak form of Ampère’s law (3.5) is given as∫
Vα

φ̂mα div

[
∂ ~Dm

α

∂t
+~imα

]
dV =

−
∫
Vα

∇
[
φ̂mα

]
· ∂

~Dm
α

∂t
dV −

∫
Vα

∇
[
φ̂mα

]
·~imα dV+

+

∫
∂Vα

φ̂mα

{
∂ ~Dm

α

∂t
+~imα

}
· ~n dΓ = 0

(3.16)

and will be written for the electrolyte and the electrode, without separating active and
conductive particles.

Similarly for the equilibrium equations (3.6) in rate6 form∫
V

~̂um · div

[
∂σm

∂t

]
dV =

−
∫
V
ε̂m :

∂σm

∂t
dV +

∫
∂V

~̂um · ∂σ
m

∂t
· ~n dΓ = 0

(3.17)

on the whole RVE.
Faraday’s law (3.13) is weakly imposed along the boundary of the electrolyte, i.e. at

the location where the oxidation/reduction reaction takes place, through the multiplication
for a Lagrange multiplier λ which takes the meaning of the projection of the curl of the
magnetizing field along the normal ~ne∫

∂Vs∩∂Ve
λ̂m [λm − F hBV (χm)] dΓ = 0 (3.18)

Interface conditions - In the present multiscale framework, continuity of displacements
and surface tractions equilibrium are imposed along all interfaces. Referring to Figure 3.3 for
notation, the aforementioned conditions along an interface ∂Va∩∂Vc between active particles
and conductive particles read

lim
Va3~y→~x

~u (~y) = lim
Vc3~z→~x

~u (~z) (3.19a)

lim
Va3~y→~x

σm(~y) · ~na (~x) + lim
Vc3~z→~x

σm(~z) · ~nc (~x) = ~0 (3.19b)

Similar conditions can be stated for active-active particles interfaces and conductive-conductive
particles interfaces. This coupling is strong and implies essentially that the binder is mod-
eled as a perfect adhesive with zero thickness. A cohesive interface model may be more
adequate in terms of capability of transferring mass and charge against a critical detachment
of particles but is still useless at this point since interface parameters cannot be measured
yet. This relates to the failure mode of the electrodes, a topic that goes beyond the scope of
the present paper and which constitutes subject of forthcoming work.

6The rate form choice has been made to give the meaning and the dimension of power to all contributions of
the weak form. It’s a purely formal choice, which however is required also in order to derive the dimensionless
numbers that govern the numerical stability of the problem. In the implementation, other choices can of
course be made.
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Figure 3.3: Sketch of an interface ∂Va ∩ ∂Vc between active particles and conductive particles and of the
mechanical interaction that takes place. The interface ∂Va ∩ ∂Vc is defined as the set of points ~x in which
active Va and conductive Vc particles are in contact. Therefore all point ~x that concurrently belong to the
boundaries ∂Va and ∂Vc constitute the interface. Outward normals ~na and ~nc along ∂Va and ∂Vc are defined
as usual. In this figure, boundaries ∂Va and ∂Vc are vertically translated with respect to the actual interface
∂Va ∩ ∂Vc for the sake of clarity.

Interface between active particles and conductive particles ∂Vc ∩ ∂Va - Electrons are
free to flow without causing discontinuities in the electric field and in potentials φ, µe− .
Neutral Lithium does not intercalate into conductive particles.

~hmLi · ~na = 0 ~x ∈ ∂Vc ∩ ∂Va (3.20)

Interface between electrolyte and conductive particles ∂Ve ∩ ∂Vc - There is no in-
tercalation neither of Li-ions nor of counterions. Electrons do not flow through the
interface. The mass fluxes interface conditions are thus homogeneous:

~hm
Li+
· ~ne = 0 ~x ∈ ∂Vc ∩ ∂Ve (3.21a)

~hmX− · ~ne = 0 ~x ∈ ∂Vc ∩ ∂Ve (3.21b)

~hme− · ~ne = 0 ~x ∈ ∂Vc ∩ ∂Ve (3.21c)

and there is no current transport along these interfaces.

In order to devise the interface conditions for the electric potential - see equation (3.16),
Ampère’s law (2.9) is invoked(

∂ ~Dm

∂t
+~im

)
· ~n = curl

[
~Hm

]
· ~n (3.22)

It turns out therefore that the evaluation of the magnetizing field ~Hm is required.
In order to evaluate it across interfaces, the differential problem (2.5) for ~B must be
solved. In fact, interface conditions are the mere link between the magnetic and electric
fields in the electro-quasi-static assumption. It will be assumed henceforth that the
curl of the magnetizing field is continuous across all interfaces when projected in the
normal direction(

∂ ~Dm
s

∂t
+~ime−

)
· ~nc +

(
∂ ~Dm

e

∂t
+~ime

)
· ~ne = 0 ~x ∈ ∂Vc ∩ ∂Ve
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Under this assumption the evaluation of the magnetizing field ~Hm is not necessary and
a Lagrange multipliers formulation, that will be described at a later stage (chapter 6),
suffices.

Interface between electrolyte and active particles ∂Ve ∩ ∂Va - There is no intercala-
tion of X-anions, whereas a Faradaic reaction converts the oxidized Lithium to its
neutral state before its diffusion into the active particles lattice. Electrode kinetics is
here modeled via the Butler-Volmer equation (3.12), in terms of surface over potential
χ, defined in equations (3.11). Interface conditions read:

~hm
Li+
· ~ne = −hBV ~x ∈ ∂Va ∩ ∂Ve (3.23a)

~hmLi · ~na = hBV ~x ∈ ∂Va ∩ ∂Ve (3.23b)

~hme− · ~na = −hBV ~x ∈ ∂Va ∩ ∂Ve (3.23c)

~hmX− · ~ne = 0 ~x ∈ ∂Va ∩ ∂Ve (3.23d)(
∂ ~Dm

s

∂t
+~ime−

)
· ~na +

(
∂ ~Dm

e

∂t
+~ime

)
· ~ne = 0 ~x ∈ ∂Va ∩ ∂Ve (3.23e)

Va

Va

!hm
Li+

!hm
Li

!hm
e−

!hm
e−

Ve

Vc !hm
e−

!hm
e−

toward the
current
collector

Va

toward the
other
electrode!na

!ne

Figure 3.4: Sketch of a process of Li oxidation in porous electrodes and its modeling by interface conditions
(3.23)a-d. The Stern and Gouy-Chapman layers are here idealized as a zero-thickness interface ∂Va ∩ ∂Ve
between active particles and electrolyte, here depicted with a dashed line. The chemical reaction is thermo-
dynamically described as a nernstian process [11]. Accordingly, the interface entails a discontinuity locus for
the electric and the chemical potentials, (respectively the electric and the reaction Gibbs energies [118]). The
chemical reaction kinetics is described by a Butler-Volmer equation, expressing the current density as a non
linear function of the surface over-potential. Owing to Faraday’s law, mass fluxes are related to the current
density, as stated in conditions (3.23)a-d.

In conclusion, a weak form can be given in terms of the potentials and displacements in a
time interval [0, tf ] as:

Find ym ∈ V [0,tf ] such that
d

dt
bm (ŷm, zm(t)) + am(ŷm, ym(t)) = f(ŷm) ∀ŷm ∈ V
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where

bm (ŷm, zm) =

−
∫
Va

µ̂mLi c
m
Li dV −

∫
Va∪Vc

µ̂me− c
m
e− dV −

∫
Ve

µ̂m
Li+

cm
Li+

+ µ̂mX− c
m
X− dV+

−
∫
Va∪Vc

∇
[
φ̂ms

]
· ~Dm

s dV −
∫
Ve

∇
[
φ̂me

]
· ~Dm

e dV +

∫
V
ε̂m : σm dV

am (ŷm, ym) =

+

∫
Va

∇ [ µ̂mLi ] · ~hmLi dV +

∫
Va∪Vc

∇ [ µ̂me− ] · ~hme− dV+

+

∫
Ve

∇
[
µ̂m

Li+
]
· ~hm

Li+
+∇ [ µ̂mX− ] · ~hmX− dV+

−
∫
Va∪Vc

∇
[
φ̂ms

]
· (−F ~hme−) dV −

∫
Ve

∇
[
φ̂me

]
·
(
F
(
~hm

Li+
− ~hmX−

))
dV+

−
∫
∂Vs∩∂Ve

ξ̂m λm + γ̂m hBV (χm) + λ̂m [λm − F hBV (χm)] dΓ

(3.24)

with zm = {cmLi, c
m
e− , c

m
Li+

, cmX−}, y
m = {µmLi, µ

m
e− , µ

m
Li+

, µmX− , φ
m
s , φ

m
e , ~u

m, λm}. The unknown

field λm along the interface acts as a Lagrange multiplier7. The Gibbs reaction energy is
defined according to equations (3.9) as

γ̂m = µ̂mLi − µ̂me− − µ̂
m
Li+

(3.25)

the potential jump as
ξ̂m = φ̂ms − φ̂me

Mass flux across the interface obeys to Butler-Volmer equation

hBV (χm) =
i0
F

{
exp

[
(1− β)

RT
F χm

]
− exp

[
− β

RT
F χm

] }
(3.26)

with the surface over potential χm defined by equation (3.11) and imposing hBV = 0 along
interface ∂Vc ∩ ∂Ve. The right hand side f(ŷm) is a functional on V [0,tf ] that accounts
for possible non-homogeneous Neumann boundary conditions, as bulk terms vanish in the
strong form of the balance equations. A discussion on these boundary conditions is deferred
to section 3.4.1, where it will be clarified that f(ŷm) vanishes. A formal proof is given in
appendix 3.5.

Note that in the weak form (3.24) Faraday’s law has been imposed strongly, by implicitly
defining

~ime− = −F ~hme− , ~ime = F
(
~hm

Li+
− ~hmX−

)
(3.27)

The identification of the functional spaces V [0,tf ],V falls beyond the scope of the present
paper. Columns zm and ym collect the time-dependent unknown fields. Column ŷm collects
the steady-state test functions that correspond to the unknown fields in ym.

7The weak form proof, deferred in appendix 3.5, manifests that λm has the meaning of the projection of
the curl of the magnetizing field along the normal across an interface
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The weak form here proposed is remarkably different from other forms in the literature
[48, 50, 51] since it is written in terms of potentials rather than concentrations. Through this
choice, the weak form maintains the usual physical meaning of power expenditure, which is
mandatory to establish the correct scale transitions. A similar path of reasoning has been
recently followed for the problem of hydrogen embrittlement [83], that indeed shows several
similarities with the one at hand.

To computationally solve the (either weak or strong) problem, constitutive equations
must be specified. Column zm is dependent on ym through the constitutive equations. El-
lipticity of operators, functional and numerical properties of the solution and of its approxi-
mation depend on the constitutive assumptions and on the choice of the correct functional
spaces V [0,tf ],V.

It has been observed that the surface over-potential depends on the reaction (3.7) rate.
The modeling here proposed captures this behavior relating the surface over-potential to the
macroscopic boundary conditions at the largest scale, i.e. χ will depend on the charge/dis-
charge rates.

3.3 Macroscale

At each point ~x of porous composite electrodes Ωs - see Figure 3.1 - two continuous phases
superpose as usual for models of porous materials [122].

The porosity ve is the fraction of void space in the porous material. It is defined by the
ratio:

ve =
Ve
V

where Ve is the volume of void-space - filled by the electrolyte - and V is the total volume
of material, including the solid and void components. The complementary ratio is denoted
by vs = 1− ve.

In more detail, the volume ratios of each microscopic phase with respect to the overall
volume V in the electrodes is defined as:

va =
Va
V

, vc =
Vc
V

(3.28)

It turns out vs = va+vc = Vs/V , where Vs = Va+Vc is the volume of the electrode compound.
Porosity can actually be considered a macroscopic property, being uniquely defined at each
point of the macroscopic domain on the basis of the underlying microstructure. For the sake
of readability the superscript M will be omitted for v.

3.3.1 Balance equations

The macroscopic mass balance equations characterize the species transport in the phases
of composite compounds, namely: i) the transport of neutral Lithium in the active parti-
cles, when present, macroscopically undistinguished from the other particles in the porous
electrode; ii) the transport of Li+ cations and X− anions in the electrolyte.

∂cMLi

∂t
+ div

[
~hMLi

]
= sLi ~x ∈ Ωs × [0, tf ] (3.29a)
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∂cM
Li+

∂t
+ div

[
~hM

Li+

]
= sLi+ ~x ∈ Ωs × [0, tf ] (3.29b)

∂cMX−

∂t
+ div

[
~hMX−

]
= 0 ~x ∈ Ωs × [0, tf ] (3.29c)

The source term sLi averages the amount of neutral Lithium that intercalates in the active
particles at the micro scale, leaving the electrolyte because of chemical reactions at the
particle/electrolyte interface8 as modeled in equations (3.12, 3.23).

Macroscopic stoichiometry of the oxidation/reduction reaction of Lithium requires9

ve sLi+ = −va sLi

The flux of charge in the electrode is caused by the transport of electrons ~hMe− in the solid
particles. For each ion that leaves the electrolyte an electron corresponds that leaves the
flux se− = sLi. The balance of mass for electrons thus read

∂cMe−

∂t
+ div

[
~hMe−

]
= se− ~x ∈ Ωs × [0, tf ] (3.29d)

Ampère’s law (2.14) must be rephrased for the macro scale in terms of the macroscopic
electric displacement field and of the macroscopic current. Two separated electric displace-
ments fields are considered at each point, one pertaining to the electrolyte ~DM

e and one to
the electrode ~DM

s . They are specified as follows:

div

[
∂ ~DM

e

∂t
+ F

(
~hM

Li+
− ~hMX−

)]
= rLi+ ~x ∈ Ωe × [0, tf ] (3.30a)

div

[
∂ ~DM

s

∂t
− F ~hMe−

]
= − re− ~x ∈ Ωs × [0, tf ] (3.30b)

with rLi+ and re− bulk terms that macroscopically average the projection of the curl of the
magnetizing field along the normal across the interface between electrolyte and electrode10.

Equilibrium holds as in (2.11). Bulk forces are here neglected in view of the electroneu-
trality assumption

div
[
σM

]
= ~0 ~x ∈ Ωs × [0, tf ] (3.33)

skw[σM ] = 0 ~x ∈ Ωs × [0, tf ] (3.34)

8Intercalation is accounted for at the micro scale by boundary fluxes driven by chemical reactions, which
within the multi scale modeling are macroscopically accounted for via volumetric source terms: sLi will be
estimated by a scale transition in the homogenization framework - see section 3.4 and in particular formula
(3.58f). The concentrations and the mass fluxes ~hMα will be upscaled within the homogenization procedure
as well.

9It could be argued if such a constraint can be imposed a priori. In fact bulk contributions are upscaled
and question raises if the stoichiometric constraint should be part of the scale transitions. As will be pointed
out in section 3.4, the scale transitions only involve one parameter (say sLi) that averages the Butler-Volmer
intercalation amount along the interfaces, thus allowing the stoichiometry equations to be imposed macro-
scopically. Note that the mass of an electron 9.109× 10−28g is neglected with respect to the atomic mass of
Lithium 1.153× 10−23g.

10To substantiate formulae (3.30), one may move from Gauss’s law imposed in both phases and exploit
Faraday’s law (2.2). By means of the mass balance equations (3.29b-d), easy algebra leads to

div

[
∂ ~DM

e

∂t
+ F

(
~hMLi+ − ~h

M
X−

)]
= F sLi+ ~x ∈ Ωs × [0, tf ] (3.31a)
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3.3.2 Boundary and initial conditions

Whereas balance equations have a fundamental nature and describe in a general way all
classes of Li-ion batteries problems, boundary and initial conditions are particular for each
problem to be solved. There is a broad literature on the topic.

Figure 3.5: A schematic of a lithium ion battery half cell and of the notation used for domains and interfaces
at the macro-scale. A metallic anode is here depicted. Aluminum foils are generally used for cathodes current
collectors.

An example is reported here assuming a Li-metal anode according to [8] (see Figure 3.5).
Extension to porous anode is straightforward: it will be sufficient to apply at the anode the
path of reasoning that will be here applied to the porous cathode.

Initial conditions are suitably taken, depending on the process that is simulated: galvano-
static/potentiostatic, charge/discharge. The battery cell is initially modeled as undeformed
in any case.

At the anode current collector interface ΓelA the electric potential is set to zero, according
with the selection of the Li-anode as the reference electrode. As in [121], the electric field
outside of system is assumed to vanish, thus ~E = ~0 at the exterior surfaces of the electrodes.
Mechanical boundary conditions consider no displacements at both ends or an external
pressure applied at the boundaries ΓelA and Γcc. During a galvanostatic discharge process
with steady current density I, the boundary condition F~hMe− · ~nelA = I holds at a generic
point ΩelA 3 ~x → ΓelA, assuming homogeneous distribution of electric current. ~nelA refers
to the outward normal direction along the boundary of ΩelA.

At interface ΓelA/sep three conditions are enforced. Anions cannot leave the separator,

div

[
∂ ~DM

s

∂t
− F ~hMe−

]
= −F se− ~x ∈ Ωs × [0, tf ] (3.31b)

which are a specification of (3.30). Both (3.30) and (3.31) are evidently incompatible with Ampère’s law in
form (2.9) unless the mass supply rates vanish. Compatibility can be recovered if mass supply rates can be
written as the divergence of two otherwise arbitrary vectors. In such a case however, Faraday’s law for the
current and mass fluxes (2.3) no longer applies. Indeed Faraday’s law at the macro scale looses its original
interpretation of electrolysis production, which is valid only microscopically where electrolysis is described
explicitly. It is here considered that macroscopically Faraday’s law has to take into account the average
Lithium ions that leave the solution due to chemical reactions and similarly for the electron flow in the
electrode. It is thus assumed that macroscopically Faraday’s law can be written as

~iM =
∑
α

zα F ~h
M
α + ~rα (3.32)

with ~rα providing bulk terms rLi+ and re− by means of the divergence operator into Ampère’s law in form
(2.14).



3.3. Macroscale 41

therefore ~hMX− · ~nsep = ~0 at a generic point Ωsep 3 ~x→ ΓelA/sep. Moreover, for every electron

that leaves the anode, a Li+ ion enters the electrolyte: thus F ve~h
M
Li+
· ~nsep = −I at point

Ωsep 3 ~x → ΓelA/sep. Here the normal is outward with respect to the separator, coherently
with the choice of ~x ∈ Ωsep. Finally, a boundary condition of an influx of Li+ ions is stated
in terms of the surface over potential11 χM and of the thermodynamic excess γM by the
Butler-Volmer equation (3.12)

ve~h
M
Li+
· ~nS =

i0
F

{
exp

[
1− β
Rϑ

γM
]
− exp

[
− β

Rϑ
γM
] }

~x ∈ ΓelA/sep

The open circuit potential ξNernst in equation (3.11) can be taken as zero if the anode is used
as reference electrode. A further boundary condition is derived from Ampère’s law (2.9)(

∂ ~DM
s

∂t
+~iMe−

)
· ~nAn + ve

(
∂ ~DM

e

∂t
+~iMe

)
· ~nS = 0 ~x ∈ ΓelA/sep

At interface Γsep/elC continuity conditions for potentials and fluxes are imposed because
anions and cations are free to pass from the separator to the electrolyte in the porous
cathode in a thermodynamic equilibrium condition. Electrons and neutral Lithium cannot
exit the cathode, therefore ~iMe− · ~nelC = ~0 as well as ~hMLi · ~nelC = 0 at ΩelC 3 ~x→ Γsep/elC .

At the cathode-current collector interface ΓelC/cc, neither Lithium ions, nor counterions,

nor neutral Lithium can leave the battery ~hM
Li+
· ~nelC = ~hMX− · ~nelC = ~hLi · ~nelC = ~0 at

ΩelC 3 x→ ΓelC/cc. The electrode carries all the current vs~i
M
e− · ~nelC = I. Such a current is

constant in the current collector. In case of potentiostatic process, the electric potential at
the current collector boundary Γcc is given.

3.3.3 Weak forms

The weak form for the macroscale balance equations and boundary conditions12 can be given,
either for a complete cell or for a part of it, following the same path of reasoning for the
micro scale. In modeling a complete cell, the boundary conditions are indeed the ones that
drive the problem, whereas the specifications at interfaces between electrodes, separator,
and collectors follow from continuity equations. On the other hand, to write the weak form
for each single part is more readable. For this sake, the weak form for the macroscale
balance equations and boundary conditions on electrodes (el), the separator (sep), current
collectors (cc) are here separately considered, in terms of the potentials and displacements
in a time interval [0, tf ]. By denoting, as for the micro scale, zM = {cMLi , c

M
e− , c

M
Li+

, cMX−} and

yM = {µMLi , µ
M
e− , µ

M
Li+

, µMX− , φ
M
s , φ

M
e , ~u

M}, the weak forms read

Any yM ∈ V [0,tf ] such that

d

dt
bel
(
ŷM , zM (t)

)
+ ael(ŷ

M , yM (t)) = fel(ŷ
M ) + jel(ŷ

M ) ∀ŷM ∈ V (3.35a)

Any yM ∈ V [0,tf ] such that

11Such a condition is expected at the micro scale only. This is correct for porous materials. However, as
the anode foil is here described as homogeneous, the Butler-Volmer interface condition is expressed macro-
scopically, too.

12As no constitutive laws are assumed at the macro-scale the notion of governing equations is vacuous at
such a scale.
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d

dt
bsep

(
ŷM , zM (t)

)
+ asep(ŷ

M , yM (t)) = fsep(ŷ
M ) + jsep(ŷ

M ) ∀ŷM ∈ V (3.35b)

Any yM ∈ V [0,tf ] such that

d

dt
bcc
(
ŷM , zM (t)

)
+ acc(ŷ

M , yM (t)) = fcc(ŷ
M ) + jcc(ŷ

M ) ∀ŷM ∈ V (3.35c)

The identification of the functional spaces V [0,tf ],V falls beyond the scope of the present
contribution. The former space includes time dependent functions, whereas space V does
not (see [123], chapter 12). Vector ŷM collects the steady-state test functions that correspond
to the unknown fields in yM . Vector zM is dependent on yM by constitutive equations, that
are imposed only incrementally with tangent moduli upscaled from the micro scale as usual
in computational homogenization. The bilinear forms a and b for porous electrode materials
in eqns. (3.35) read13

bel
(
ŷM , zM

)
=

∫
Ω
bM
(
ŷM , zM

)
dΩ (3.36a)

ael
(
ŷM , zM

)
=

∫
Ω
aM
(
ŷM , zM

)
dΩ (3.36b)

fel
(
ŷM
)

=

∫
Ω
fM

(
ŷM
)

dΩ (3.36c)

with integrands defined by

bM
(
ŷM , zM

)
=

−
{
va µ̂

M
Li c

M
Li + vs µ̂

M
e− c

M
e− + ve

(
µ̂M

Li+
cM

Li+
+ µ̂MX− c

M
X−
)}

+

−
{
vs∇

[
φ̂Ms

]
· ~DM

s + ve∇
[
φ̂Me

]
· ~DM

e

}
+ ε̂M : σM

aM
(
ŷM , yM

)
=

va ∇
[
µ̂MLi

]
· ~hMLi + vs ∇

[
µ̂Me−

]
· ~hMe− + ve

(
∇
[
µ̂M

Li+
]
· ~hM

Li+
+∇

[
µ̂MX−

]
· ~hMX−

)
−
{
vs∇

[
φ̂Ms

]
· (−F ~hMe−) + ve∇

[
φ̂Me

]
· F

(
~hM

Li+
− ~hMX−

)}

fM
(
ŷM
)

= −
{
s γ̂M − r ξ̂M

}
under the stoichiometric constraints for the macroscopic supply rates:

s = va sLi = −vs se− = −ve sLi+ , r = −ve rLi+ = −vs re−

The pointwise thermodynamic excess and potential difference are defined as

γ̂M = µ̂MLi − µ̂Me− − µ̂
M
Li+

, ξ̂M = φ̂Ms − φ̂Me

Contributions at interfaces between electrodes, separator, and collectors are included in
jel
(
ŷM
)
, detailed in appendix 3.6 together with proofs.

13The weak form contributions in the separator and anode can be derived in a similar manner and are not
provided explicitly here.
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3.4 Scales transitions

3.4.1 Macro to micro scales transitions

Despite its recent application to a wide range of problems, as emphasized in section 1.4,
computational homogenization has been first adopted to characterize mechanical response
of material with non-homogeneous microstructure (see [30] for a review). Within this field,
the computational homogenization generally departs from the computation of a macroscopic
deformation tensor ∇

[
~uM

]
, which is evaluated at every material point of the macrostruc-

ture (e.g. the integration points within a macroscopic finite element domain). This tensor is
next used to formulate the boundary conditions to be imposed on the microstructural RVE
through proper macro-micro scale transition.
In classical approaches this is achieved either by assuming that all the microstructural con-
stituents undergo a uniform deformation identical to the macroscopic one (the Taylor or
Voigt assumption) or imposing a uniform stress (and additionally identical rotation) to all
the components (the Sachs or Reuss assumption) or by intermediate procedures. However,
these simplified methods provide only rough estimates of the effective material properties,
leading to overestimation (Taylor) or underestimation (Sachs) of the overall stiffness, sug-
gesting that different macro-micro scale transition condition have to be selected.

A first-order computational homogenization scheme stems on the classical linearization
of the microscopic displacement field

~um(~x) = ~um(~x ref) +∇
[
~uM

]
· (~x− ~x ref) + ~̃u(~x) , ~x ∈ V (3.37)

where ~x ref represents a reference point over the RVE domain V , necessary to eliminate rigid
body displacements, and ~̃u is the microfluctuation field, unknown at the microscale.

Assuming that ∇
[
~uM

]
is known, use is made of a scale transition relation that enforces

the macroscopic deformation gradient to be equal to the volume average of its microscopic
counterparts

∇
[
~uM

]
=

1

V

∫
V
∇ [ ~u m ] dV (3.38)

By making use of linear decomposition (3.37)∫
V
∇ [ ~u m ] dV = ∇

[
~uM

]
+

∫
V
∇
[
~̃u m

]
dV (3.39)

and enforcing (3.38) a boundary integral constraint arise for the microfluctuation (through
application of the divergence theorem)∫

V
∇
[
~̃u m

]
dV =

∫
∂V

~̃u m ⊗ ~n dΓ = 0 (3.40)

where ~n is the outward unit normal on the boundary of the RVE ∂V .
For the first-order CH, the solution, in terms of deformed shape of the RVE and stress

state extracted from it, does not depend on the choice of the reference point used to eliminate
rigid body displacements.

Different kinds of microscopic boundary conditions may arise from constraint (3.40).
Taylor conditions trivially satisfies (3.40) being the microfluctuation field zero on the entire
volume V . The position of all points at the boundary are determined through the macro-
scopic deformation, leading to a linear mapping of the RVE boundary. Notwithstanding
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their simplicity, these set of conditions is often too stiff.
The weakest way to impose requirement (3.40) is by applying traction-like boundary condi-
tions as discussed in [124, 125]. However they are a priori not appropriate in a deformation
driven procedure, as the one described here, generally yielding unsatisfactory results.

Periodic boundary conditions will be applied instead on the microfluctuation displace-
ment field ~̃u. They represent the best compromise between the limiting cases just mentioned,
providing a better estimation of the overall properties (see for example [35, 126]).

Denoting with l the length of the side of the square RVE, and with ∂LV and ∂BV its
left and bottom sides, the periodic boundary conditions read:

~̃u(~x) = ~̃u(~x+ l~e1) , ~x ∈ ∂LV (3.41a)

~̃u(~x) = ~̃u(~x+ l~e2) , ~x ∈ ∂BV (3.41b)

or, equivalently, in terms of the displacement field ~um

~um(~x+ l~e1)− ~um(~x) = l εM~e1 , ~x ∈ ∂LV (3.42a)

~um(~x+ l~e2)− ~um(~x) = l εM~e2 , ~x ∈ ∂BV (3.42b)

Due to microstructural equilibrium, tractions will be anti periodic on the opposite sides of
the RVE

~p
m

(~x) = −~pm(~x+ l~e1) , ~x ∈ ∂LV (3.43a)

~p
m

(~x) = −~pm(~x+ l~e2) , ~x ∈ ∂BV (3.43b)

resulting into a vanishing power expenditure along the boundary of the RVE for periodic
boundary conditions. Accordingly, displacement boundary conditions do not provide any
contribution to the right hand side f(ŷm) of the weak form (3.24). Conditions (3.42) and
(3.43) ensure that condition (3.40) is satisfied and that solution in terms of ∇ [ ~um ] and σm

is unique, as demonstrated by Suquet [96].
The extension to a three dimensional RVE is trivial.

The path of reasoning just illustrated is not limited to mechanical problems. Generaliza-
tion to multiphysic problems is straightforward with minor modifications.
As for the weak form (3.24), the problem will be formulated in terms of an independent
variable set y that includes displacements ~u, chemical µLi, µLi+ , µX− , µe− , and electric φs,
φe potentials. Scalar fields in y will be collectively bundled under the symbol π, and denoted
with πm at the micro-scale. The geometrical support of field π will be denoted with Vπ.

All micro-scale fields can be decomposed without loss of generality in a macroscopic
contribution linearized over the microscale domain and in a microfluctuation field, denoted
with the symbol ˜

πm(~x) = πm(~x ref
π ) +∇

[
πM

]
· (~x− ~x ref

π ) + π̃(~x) , ~x ∈ Vπ (3.44a)

~um(~x) = ~um(~x ref
u ) +∇

[
~uM

]
· (~x− ~x ref

u ) + ~̃u(~x) , ~x ∈ V (3.44b)

subscripts π and u identify quantities related to fields πm and ~um respectively. At the
microscale each phase occupies only a portion of the RVE, hence the variables are defined
on different domains for which it is possible to choose the proper reference point.
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Order one scale transition conditions on the average values of the gradients of the inde-
pendent variable fields are enforced

∇
[
πM

]
=

1

Vπ

∫
Vπ

∇ [πm ] dV (3.45a)

∇
[
~uM

]
=

1

V

∫
V
∇ [ ~u m ] dV (3.45b)

leading to a set of integral constraints on the microfluctuation fields:∫
Vπ

∇ [ π̃m ] dV =

∫
∂Vπ

π̃m ~n dΓ = ~0 (3.46)

which will be satisfied through the definition of proper boundary conditions for fields πm

along ∂Vπ and ~u m along ∂V .
As already discussed, if the choice falls on periodic boundary conditions for ~um restrictions

(3.42) are derived. In view of the assumption made (refer to equations (3.19)) displacements
are continuous over the whole RVE, justifying Vu = V .

The boundary conditions for the electrochemical and electric potentials have to be for-
mulated in a different way, because the boundary of each phase does not coincide with
the boundary of the RVE. Constraint (3.46-a) is imposed along the interfaces ∂Vj ∩ ∂Vi,
i, j = a, e, s as well as along the sides of the RVE, ∂Vj ∩ ∂V , j = a, e, s. The easiest way to
satisfy (3.46) is to set vanishing fluctuations along the interfaces and the RVE boundary

µ̃Li+ |∂Ve = µ̃X− |∂Ve = µ̃Li|∂Va = µ̃e− |∂Vs = φ̃s

∣∣∣
∂Vs

= φ̃e

∣∣∣
∂Ve

= 0 (3.47)

In terms of microscopic fields

µm
Li+

(~x) = ∇
[
µM

Li+
]
· (~x− ~xG(V )) + µM

Li+
, ~x ∈ ∂Ve (3.48a)

µmX−(~x) = ∇
[
µMX−

]
· (~x− ~xG(V )) + µMX− , ~x ∈ ∂Ve (3.48b)

µmLi(~x) = ∇
[
µMLi

]
· (~x− ~xG(V )) + µMLi , ~x ∈ ∂Va (3.48c)

µme−(~x) = ∇
[
µMe−

]
· (~x− ~xG(V )) + µMe− , ~x ∈ ∂Vs (3.48d)

φms (~x) = ∇
[
φMs

]
· (~x− ~xG(V )) + φMs , ~x ∈ ∂Vs (3.48e)

φme (~x) = ∇
[
φMe

]
· (~x− ~xG(V )) + φMe , ~x ∈ ∂Ve (3.48f)

As these scalar fields do not vanish along the boundary of the RVE, non-homogeneous
boundary terms arise. However they are of Dirichlet type and, in a formal setting, they
enter the definition of the functional space V [0,tf ] and have no impact on the right hand side
f(ŷm) in weak form (3.24). It is therefore concluded that f(ŷm) = 0.

In a finite element numerical approximation of the problem however, it is classical to look
for solutions in homogeneous functional spaces, by extending the Dirichlet boundary given
conditions into the whole domain. This approach, detailed for instance in [123], is not dis-
cussed here yet deferred to a companion publication focused on the numerical approximation
of the problem.

A scale transition of order zero is required by the interface condition (3.12), through which
the values assumed by variables along the electrode/electrolyte interface directly affect the
amount of charge and lithium that cross the boundary. This is a peculiarity of the model
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reported here. In classical computational homogenization problems only the gradient of the
unknowns (typically ∇ [ ~u ]) is relevant for scale transition conditions.

Order zero scale transition is enforced to variables π in two ways. The Hill-Mandel
extended equation in Section 3.4.2 requires the microscopic field at the reference point to
equate the corresponding macroscopic field:

πm(~x ref
π ) = πM (3.49)

Furthermore, the macroscopic and microscopic fields are enforced to satisfy the volume
average condition

πM =
1

Vπ

∫
Vπ

πmdV (3.50)

which implies the integral constraint

1

Vπ

∫
Vπ

∇
[
πM

]
· (~x− ~x ref

π ) + π̃(~x)dV = 0

in view of linearization (3.44-a). A simple way to satisfy the constraint above is to impose
that: i) the reference point ~x ref

π coincides with the centroid ~xG(Vπ) of Vπ; ii) the average of
the micro fluctuation over the domain is vanishing:

1

Vπ

∫
Vπ

π̃(~x)dV = 0

Statistically, the centroid of active and conductive particles is close to the centroid of any
“sufficiently large” domain in the light of randomness of the particle distribution. Accord-
ingly, for the RVE to be “representative” it is expected that the reference points for all
subdomains Vπ collapse in a single point located in the centroid ~xG(V ) = ~xG(Vπ) of the RVE.
Under this further assumption, the constraints on the microscopic fields read∫

Vπ

πm(~x)− πM −∇
[
πM

]
· (~x− ~xG(V ))dV = 0 (3.51)

An additional scale transition is enforced, based on the conservation of mass through the
scales:

cMLi =
1

Va

∫
Va

cmLi dV , cM
Li+

=
1

Ve

∫
Ve

cm
Li+

dV ,

cMX− =
1

Ve

∫
Ve

cmX− dV , cMe− =
1

Vs

∫
VE

cme− dV

(3.52)

The displacement field at reference point ~x ref
u is set to zero in order to eliminate rigid body

translations; the rigid body rotation will be suppressed through the microscopic boundary
conditions.



3.4. Scales transitions 47

3.4.2 Micro to macro scales transitions

The homogenized macroscopic quantities are extracted from the solution of the microscale
problem and upscaled. To do so, it is generally assumed that the internal expenditure of
virtual power Wint is preserved in the scale transition:

WM
int =Wm

int (3.53)

with superscripts M and m denoting macro and micro scale, as usual. Such a condition in
the mechanical context is named after Hill-Mandel [127].

As in the previous section, attention is first limited to the mechanics. Hill-Mandel con-
dition in the most classical feature reads:

σM : εM =
1

V

∫
V
σm : εmdV (3.54)

Postulating (3.54) for an RVE with kinematic boundary conditions, as the case of (3.42), the
volume average 1

V

∫
V σ

mdV equals the macroscopic stress tensor σM . Making use of (3.6)
and (3.37) and of divergence theorem the averaged microstructural work Wm

mech, appearing
in right hand side of (3.54), may be expressed as follows

Wm
mech =

∫
V
σm : εm dV =

∫
V
σm : ( εM +∇

[
~̃u
]

) dV =

=

∫
V
σm dV : εM +

∫
V

(
div
[
σm · ~̃u

]
− div [σm ] · ~̃u

)
dV =

=

∫
V
σm dV : εM +

∫
∂V

(σm · ~n) · ~̃udΓ =

∫
V
σm dV : εM

(3.55)

Anti-periodicity of tractions (3.43) over the boundary of the RVE has been considered,
leading to equality

σM =

∫
V
σm dV (3.56)

In the present work, assumption (3.53) is extended, so that the internal expenditure
of virtual power of mechanical forces, of charge and mass fluxes is preserved in the scale
transition.
As motivated in section 3.1.2, a concurrent time modeling between macro and micro scales
seems appropriate. In this regard, the expenditure of virtual power between the scales will
be preserved at all times t, for being t the same instant at both scales.

In view of the choice made to adopt as independent variable fields the potentials rather
than the concentrations, the power expenditure can be easily extracted from the weak forms
(3.24, 3.35). Taking an electrode as an example for equation (3.36), the extended Hill-Mandel
condition reads

1

V

[
d

dt
bm (zm(t), ŷm) + am(ym(t), ŷm)

]
=

d

dt
bM
(
zM (t), ŷM

)
+ aM (yM (t), ŷM )− fM

(
ŷM
) (3.57)

written extensively in appendix 3.7. In view of the arbitrariness of each variation ŷm, ŷM in
the virtual power, the mechanical, migration, and diffusion contributions can be separately
dealt with. The micro to macro scale transitions can be summarized as follows:

σM =
1

V

∫
V
σm dV (3.58a)
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va~h
M
Li =

1

V

[∫
Va

~hmLi dV −
∫
Va

ċmLi (~x− ~x ref) dV −
∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]
(3.58b)

vs~h
M
e− =

1

V

[∫
Vs

~hme− dV −
∫
Vs

ċme− (~x− ~x ref) dV +

∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]
(3.58c)

ve~h
M
Li+ =

1

V

[∫
Ve

~hmLi+ dV −
∫
Ve

ċmLi+ (~x− ~x ref) dV +

∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]
(3.58d)

ve~h
M
X− =

1

V

[∫
Ve

~hmX− dV −
∫
Ve

ċmX− (~x− ~x ref) dV

]
(3.58e)

s = − 1

V

∫
∂Va∩∂Ve

hBV dΓ (3.58f)

va ċ
M
Li =

1

V

∫
Va

ċmLi dV (3.58g)

ve ċ
M
X− =

1

V

∫
Ve

ċmX− dV (3.58h)

ve ċ
M
Li+ =

1

V

∫
Ve

ċmLi+ dV (3.58i)

vs ċ
M
e− =

1

V

∫
Vs

ċme− dV (3.58j)

r =
1

V

∫
∂Vs∩∂Ve

λm dΓ (3.58k)

ve
∂ ~DM

e

∂t
=

1

V

[ ∫
Ve

∂ ~Dm
e

∂t
dΩ + F

∫
Ve

(ċm
Li+
− ċmX−) (~x− ~x ref) dΩ+

−F
∫
∂Va∩∂Ve

hBV (~x− ~x ref)dΓ−
∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]
(3.58l)

vs
∂ ~DM

s

∂t
=

1

V

[ ∫
Va∪Vc

∂ ~Dm
s

∂t
dV − F

∫
Va∪Vc

ċme− (~x− ~x ref) dV+

+F

∫
∂Va∩∂Ve

hBV (~x− ~x ref)dΓ +

∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]
(3.58m)
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with all details collected in appendix 3.7.
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3.5 Appendix: Weak form at the micro scale

The weak form for the microscale problem can be given in terms of the potentials and
displacements in a time interval [0, tf ] as

Find ym ∈ V [0,tf ] such that

d

dt
bm (ŷm, zm(t)) + am(ŷm, ym(t)) = 0 ∀ŷm ∈ V

where

bm (ŷm, zm) =

−
∫
Va

µ̂mLi c
m
Li dV −

∫
Va∪Vc

µ̂me− c
m
e− dV −

∫
Ve

µ̂m
Li+

cm
Li+

+ µ̂mX− c
m
X− dV+

−
∫
Va∪Vc

∇
[
φ̂ms

]
· ~Dm

s dV −
∫
Ve

∇
[
φ̂me

]
· ~Dm

e dV +

∫
V
ε̂m : σm dV

am (ŷm, ym) =

+

∫
Va

∇ [ µ̂mLi ] · ~hmLi dV +

∫
Va∪Vc

∇ [ µ̂me− ] · ~hme− dV+

+

∫
Ve

∇
[
µ̂m

Li+
]
· ~hm

Li+
+∇ [ µ̂mX− ] · ~hmX− dV+

−
∫
Va∪Vc

∇
[
φ̂ms

]
· ~ime− dV −

∫
Ve

∇
[
φ̂me

]
· ~ime dV+

−
∫
∂Vs∩∂Ve

γ̂m hBV + ξ̂m λm + λ̂m
(
γm

F
+ ξm

)
dΓ

(3.59)

with ym = {µmLi, µ
m
e− , µ

m
Li+

, µmX− , φ
m
s , φ

m
e , ~u

m, λm}. The “hatted counterpart” of Gibbs reac-
tion energy is defined according to equations (3.9) as

γ̂m = µ̂mLi − µ̂me− − µ̂
m
Li+

(3.60)

the potential jump as ξ̂m = φ̂ms − φ̂me . Mass flux across the interface obeys to Butler-Volmer
equation

hBV =
i0
F

{
exp

[
(1− β)

RT
F χm

]
− exp

[
− β

RT
F χm

] }
(3.61)

with the surface over potential χm defined by equation (3.11) and imposing hBV to be zero
along interface ∂Vc ∩ ∂Ve

hBV = 0 ~x ∈ ∂Vc ∩ ∂Ve (3.62)

Finally, Faraday’s law imposed a priori by defining

~ime− = −F ~hme− , ~ime = F
(
~hm

Li+
− ~hmX−

)
(3.63)
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Proof - By applying the divergence theorem to mass contributions in a (ŷm, ym) it comes out:

∫
Va

∇ [ µ̂mLi ] · ~hmLi dV +

∫
Va∪Vc

∇ [ µ̂me− ] · ~hme− dV+

+

∫
Ve

∇
[
µ̂mLi+

]
· ~hmLi+ +∇ [ µ̂mX− ] · ~hmX− dV =

−
∫
Va

µ̂mLi div
[
~hmLi

]
dV −

∫
Va∪Vc

µ̂me− div
[
~hme−

]
dV+

−
∫
Ve

µ̂mLi+ div
[
~hmLi+

]
+ µ̂X− div

[
~hmX−

]
dV+

+

∫
∂Va

µ̂mLi
~hmLi · ~na dΓ +

∫
∂Vs

µ̂me−
~hme− · ~ns dΓ+

+

∫
∂Ve

µ̂mLi+
~hmLi+ · ~ne + µ̂mX− ~hmX− · ~ne dΓ

By virtue of the b (zm(t), ŷm) contribution to the weak form, the homogenous equations of mass
balances (3.3 - 3.4) are recovered. Let the boundary contribution be split into the sum of the terms
along interface ∂Va ∩ ∂Ve and the remaining parts ∂Vc ∩ ∂Ve and ∂Vc ∩ ∂Va. It turns out along
∂Va ∩ ∂Ve:

∫
∂Va∩∂Ve

µ̂mLi
~hmLi · ~na dΓ +

∫
∂Va∩∂Ve

µ̂me−
~hme− · ~na dΓ+

+

∫
∂Va∩∂Ve

µ̂mLi+
~hmLi+ · ~ne + µ̂mX− ~hmX− · ~ne dΓ+

−
∫
∂Va∩∂Ve

hBV (µ̂mLi − µ̂me− − µ̂
m
Li+)dΓ = 0

whence the interface conditions (3.23a-d) come out. On interface ∂Vc ∩ ∂Ve the following equality
holds:

∫
∂Vc∩∂Ve

µ̂me−
~hme− · ~nc dΓ +

∫
∂Vc∩∂Ve

µ̂mLi+
~hmLi+ · ~ne + µ̂mX− ~hmX− · ~ne dΓ+

−
∫
∂Vc∩∂Ve

hBV (µ̂mLi − µ̂me− − µ̂
m
Li+)dΓ = 0

In view of the arbitrariness of µ̂mLi the identity above is satisfied if and only if hBV = 0 along
∂Vc ∩ ∂Ve as stated by condition (3.62). Accordingly, conditions (3.21) comes out. Finally, along
interface ∂Vc ∩ ∂Va it holds

∫
∂Va∩∂Ve

µ̂mLi
~hmLi · ~na dΓ = 0

whence condition (3.20) immediately descends.
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By applying the divergence theorem to electric field contributions it comes out:

−
∫
Va∪Vc

∇
[
φ̂ms

]
·

(
∂ ~Dm

s

∂t
+~ime−

)
dV −

∫
Ve

∇
[
φ̂me

]
·

(
∂ ~Dm

e

∂t
+~ime

)
dV

−
∫
∂Vs∩∂Ve

ξ̂m λm dΓ =∫
Va∪Vc

φ̂ms div

[
∂ ~Dm

s

∂t
+~ime−

]
dV +

∫
Ve

φ̂me div

[
∂ ~Dm

e

∂t
+~ime

]
dV+

−
∫
∂Vs

φ̂ms

(
∂ ~Dm

s

∂t
+~ime−

)
· ~ns dΓ−

∫
∂Ve

φ̂me

(
∂ ~Dm

e

∂t
+~ime

)
· ~ne dΓ+

−
∫
∂Vs∩∂Ve

ξ̂m λm dΓ

Equations (3.5) are recovered in view of Faraday’s law constraints (3.63). Furthermore, one has along
∂Vs ∩ ∂Ve:

−
∫
∂Vs∩∂Ve

φ̂ms

[(
∂ ~Dm

s

∂t
+~ime−

)
· ~ns+λm

]
dΓ−

∫
∂Vs∩∂Ve

φ̂me

[(
∂ ~Dm

e

∂t
+~ime

)
· ~ne−λm

]
dΓ (3.64)

whence interface condition (3.23e) is recovered. Nernst equation (3.10) is also recovered from∫
∂Vs∩∂Ve

λ̂m
(
ξm +

γm

F

)
dΓ

in a weak form. By comparing equation (3.22) with (3.64), the meaning of the Lagrange multiplier
λm is apparent.

Faraday’s law (3.13) is also recovered from∫
∂Vs∩∂Ve

λ̂m [λm − F hBV (χm)] dΓ (3.65)

in a weak form. By comparing equation (3.22) with (3.64), the meaning of the Lagrange multiplier
λm is apparent.

By applying the divergence theorem to the mechanical contributions it comes out:∫
V

ε̂m : σ̇m dV = −
∫
V

~̂um · div [ σ̇m ] dV +

∫
∂V

~̂um · (σ̇m · ~n) dΓ

Force balance equation (3.6) and interface conditions come out. Finally, the boundary conditions on
the RVE must satisfy the constraints∫

∂RV E

~̂um · (σ̇m · ~n) dΓ−
∫
∂Vs∩∂RV E

φ̂ms

(
∂ ~Dm

s

∂t
+~ime−

)
· ~ns dΓ+

−
∫
∂Ve∩∂RV E

φ̂me

(
∂ ~Dm

e

∂t
+~ime

)
· ~ne dΓ +

∫
∂Va∩∂RV E

µ̂mLi
~hmLi · ~na dΓ+

+

∫
∂Vs∩∂RV E

µ̂me−
~hme− · ~ns dΓ +

∫
∂Ve∩∂RV E

µ̂mLi+
~hmLi+ · ~ne + µ̂mX− ~hmX− · ~ne dΓ = 0

The first term in the sum ∫
∂RV E

~̂um · (σ̇m · ~n) dΓ

vanishes in view of the periodic boundary conditions for displacements. All other terms vanish
because in view of (3.48) the boundary ∂RV E is of Dirichlet type and the functional space V is taken
homogeneous as usual. Boundary conditions (3.48) formally enter the definition of the functional
space V [0,tf ].
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3.6 Appendix: Weak form at the macro scale

The weak form for the macroscale balance equations and boundary conditions on an electrode
- in terms of the potentials and displacements in a time interval [0, tf ] - is here considered.
By denoting, as for the micro scale, yM = {µMLi , µ

M
e− , µ

M
Li+

, µMX− , φ
M
s , φ

M
e , ~u

M}, the weak form
reads

Any yM ∈ V [0,tf ] such that

d

dt
bel
(
ŷM , zM (t)

)
+ ael(ŷ

M , yM (t)) = fel(ŷ
M ) + jel(ŷ

M ) ∀ŷM ∈ V

where

bel
(
ŷM , zM

)
=

−
∫

Ω
va µ̂

M
Li c

M
Li + vs µ̂

M
e− c

M
e− + ve

(
µ̂M

Li+
cM

Li+
+ µ̂MX− c

M
X−
)

dΩ

−
∫

Ω
vs∇

[
φ̂Ms

]
· ~DM

s + ve∇
[
φ̂Me

]
· ~DM

e − ε̂M : σMdΩ

ael
(
ŷM ,yM

)
=∫

Ω
va ∇

[
µ̂MLi

]
· ~hMLi + vs ∇

[
µ̂Me−

]
· ~hMe− + ve

(
∇
[
µ̂M

Li+
]
· ~hM

Li+
+∇

[
µ̂MX−

]
· ~hMX−

)
dΩ

−
∫

Ω
vs∇

[
φ̂Ms

]
·~iMe− + ve∇

[
φ̂Me

]
· F

(
~hM

Li+
− ~hMX−

)
dΩ

fel
(
ŷM
)

= −
∫

Ω
s γ̂M − r ξ̂MdΩ

under the stoichiometric constraints s = va sLi = −vs se− = −ve sLi+ , r = −ve rLi+ =
−vs re− . The pointwise thermodynamic excess and potential difference are defined as γ̂M =
µ̂MLi − µ̂Me− − µ̂

M
Li+

and ξ̂M = φ̂Ms − φ̂Me . Specification along interfaces between electrodes,
separator, and collectors are included in

jel
(
ŷM
)

=∫
∂ccΩ

µ̂Me− h
M
e− dΓ +

∫
∂sepΩ

µ̂M
Li+

h
M
Li+ + µ̂MX− h

M
X− dΓ+

+

∫
∂Ω

~t · ~̂u̇M − φ̂ME i
M
E − φ̂Me i

M
e dΓ

Proof - By applying the divergence theorem to mass contributions in ael
(
ŷM , yM

)
it comes out:∫

Ω

va∇
[
µ̂MLi

]
· ~hMLi + vs∇

[
µ̂Me−

]
· ~hMe− + ve

(
∇
[
µ̂MLi+

]
· ~hMLi+ +∇

[
µ̂MX−

]
· ~hMX−

)
dΩ =

−
∫

Ω

va µ̂
M
Li div

[
~hMLi

]
+ vs µ̂

M
e− div

[
~hMe−

]
+ ve

(
µ̂MLi+ div

[
~hMLi+

]
+ µ̂MX− div

[
~hMX−

])
dΩ+

+

∫
∂Ω

va µ̂
M
Li
~hMLi · ~n+ vs µ̂

M
e−
~hMe− · ~n+ ve

(
µ̂MLi+

~hMLi+ · ~n+ µ̂MX− ~hMX− · ~n
)

dΓ

By virtue of the bel
(
ŷM , zM (t)

)
contribution to the weak form and of the given terms fel

(
ŷM
)
, the

equations of mass balances are recovered in the following form:

∂cMLi

∂t
+ div

[
~hMLi

]
=

s

va
, ~x ∈ Ω (3.66a)
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∂cM
Li+

∂t
+ div

[
~hMLi+

]
= − s

ve
, ~x ∈ Ω (3.66b)

∂cMX−

∂t
+ div

[
~hMX−

]
= 0 , ~x ∈ Ω (3.66c)

∂cMe−

∂t
+ div

[
~hMe−

]
= − s

vs
, ~x ∈ Ω (3.66d)

They coincide with (3.29) in view of the stoichiometric constraints. Along the boundary ∂Ω the
following boundary conditions are derived, owing to jel

(
ŷM
)
:

~hMLi · ~n = 0 , ~x ∈ ∂Ω (3.67a)

~hMe− · ~n = 0 , ~x ∈ ∂sepΩ ; ~hMe− · ~n =
h
M

e−

vs
, ~x ∈ ∂ccΩ (3.67b)

~hMLi+ · ~n = 0 , ~x ∈ ∂ccΩ ; ~hMLi+ · ~n =
h
M

Li+

ve
, ~x ∈ ∂sepΩ (3.67c)

~hMX− · ~n = 0 , ~x ∈ ∂ccΩ ; ~hMX− · ~n =
h
M

X−

ve
, ~x ∈ ∂sepΩ (3.67d)

By applying the divergence theorem to electric field contributions it comes out:∫
Ω

vs∇
[
φ̂Ms

]
·

(
∂ ~DM

s

∂t
+~iMe−

)
+ ve∇

[
φ̂Me

]
·

(
∂ ~DM

e

∂t
+ F

(
~hMLi+ − ~h

M
X−

))
dΩ =

−
∫

Ω

vs φ̂
M
s div

[
∂ ~DM

s

∂t
+~iMe−

]
+ ve φ̂

M
e div

[
∂ ~DM

e

∂t
+ F

(
~hMLi+ − ~h

M
X−

)]
dΩ+

+

∫
∂Ω

vs φ̂
M
s

(
∂ ~DM

s

∂t
+~iMe−

)
· ~n+ ve φ̂

M
e

(
∂ ~DM

e

∂t
+ F

(
~hMLi+ − ~h

M
X−

))
· ~ndΓ

Incremental Gauss’s laws are recovered in the following form:

div

[
∂ ~DM

s

∂t
+~iMe−

]
=

r

vs
, ~x ∈ Ω (3.68a)

div

[
∂ ~DM

e

∂t
+ F

(
~hMLi+ − ~h

M
X−

)]
= − r

ve
, ~x ∈ Ω (3.68b)

They coincide with (3.30) in view of the stoichiometric constraints. Along the boundary ∂Ω the
following boundary conditions are derived, owing to jel

(
ŷM
)
:(

∂ ~DM
s

∂t
+~iMe−

)
· ~n =

i
M
E

vs
, ~x ∈ ∂Ω (3.69a)(

∂ ~DM
e

∂t
+ F

(
~hMLi+ − ~h

M
X−

))
· ~n =

i
M
e

ve
, ~x ∈ ∂Ω (3.69b)

By applying the divergence theorem to the mechanical contributions in a
(
ŷM , yM

)
it comes out:∫

Ω

ε̂M : σ̇M dΩ = −
∫

Ω

~̂uM · div
[
σ̇M

]
dΩ +

∫
∂Ω

~̂uM ·
(
σ̇M · ~n

)
dΓ

Force balance equation (3.33) comes out, together with the incremental traction boundary conditions
along the Neumann part of the boundary.
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3.7 Appendix: Hill Mandel extended equation

Taking an electrode as an example for equation (3.36), the extended Hill-Mandel condition
(3.57) reads at full length:

1

V

[
−
∫
Va

µ̂mLi

∂

∂t
cmLi dV −

∫
Va∪Vc

µ̂me−
∂

∂t
cme− dV+

−
∫
Ve

µ̂m
Li+

∂

∂t
cm

Li+
+ µ̂mX−

∂

∂t
cmX− dV −

∫
Va∪Vc

∇
[
φ̂ms

]
· ∂

∂t
~Dm
s dV +

−
∫
Ve

∇
[
φ̂me

]
· ∂

∂t
~Dm
e dV +

∫
V
ε̂m :

∂

∂t
σm dV +

+

∫
Va

∇ [ µ̂mLi ] · ~hmLi dV +

∫
Va∪Vc

∇ [ µ̂me− ] · ~hme− dV +

+

∫
Ve

∇
[
µ̂m

Li+
]
· ~hm

Li+
+∇ [ µ̂mX− ] · ~hmX− dV +

+

∫
Va∪Vc

∇
[
φ̂ms

]
· F ~hme− dV −

∫
Ve

∇
[
φ̂me

]
· F

(
~hm

Li+
− ~hmX−

)
dV +

−
∫
∂Vs∩∂Ve

hBV γ̂m + ξ̂m λm dΓ

]
=

= −
{
va µ̂

M
Li

∂

∂t
cMLi + vs µ̂

M
e−

∂

∂t
cMe− + ve

(
µ̂M

Li+
∂

∂t
cM

Li+
+ µ̂MX−

∂

∂t
cMX−

)}
+

−
{
vs∇

[
φ̂Ms

]
· ∂

∂t
~DM
s + ve∇

[
φ̂Me

]
· ∂

∂t
~DM
e

}
+

+ ε̂M :
∂

∂t
σM + va ∇

[
µ̂MLi

]
· ~hMLi + vs ∇

[
µ̂Me−

]
· ~hMe− +

+ve

(
∇
[
µ̂M

Li+
]
· ~hM

Li+
+∇

[
µ̂MX−

]
· ~hMX−

)
+

+
{
vs∇

[
φ̂Ms

]
· F ~hMe− − ve∇

[
φ̂Me

]
· F

(
~hM

Li+
− ~hMX−

)}
+

+
{
s γ̂M − r ξ̂M

}
(3.70)

Term by term the different contributions will be analyzed. Mechanical contribution - The

micro to macro scale transition (3.70) implies:

1

V

∫
V
ε̂m : σ̇m dV = ε̂M : σ̇M

By means of linearization (3.44-a), applying the divergence theorem it comes out:∫
V
σ̇m : ε̂m dV =

∫
V
σ̇m : ( ε̂M +∇

[
~̃u
]

) dV =∫
V
σ̇m dV : ε̂M +

∫
V

(
div
[
σ̇m · ~̃u

]
− div [ σ̇m ] · ~̃u

)
dV =∫

V
σ̇m dV : ε̂M +

∫
∂V

(σ̇m · ~n) · ~̃u dΓ =

∫
V
σ̇m dV : ε̂M

(3.71)

due to the anti-periodicity of the tractions ~p
m

= σm · ~n over the boundary of the RVE and
to the assumption of vanishing body forces, that takes into account of electroneutrality. It
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finally holds:

σ̇M =
1

V

∫
V
σ̇m (3.72)

Diffusion contribution - For the neutral Lithium intercalation/extraction the micro to
macro scale transition (3.70) implies:

1

V

[∫
Va

∇ [ µ̂mLi ] · ~hmLi dΩ−
∫
Va

µ̂mLi ċ
m
Li dΩ−

∫
∂Va∩∂Ve

hBV µ̂mLi dΓ

]
=

va

(
∇
[
µ̂MLi

]
· ~hMLi − µ̂MLi ċ

M
Li

)
+ s µ̂MLi (3.73)

while linearization (3.44-a) specifies as:

µ̂mLi(~x) = µ̂mLi(~x
ref) +∇

[
µ̂MLi

]
· (~x− ~x ref) + ˆ̃µmLi(~x) , ~x ∈ Va (3.74)

Owing to the following identity∫
Va

∇
[

ˆ̃µmLi

]
· ~hmLi − ˆ̃µmLi(~x) ċmLi dΩ =∫

Va

− ˆ̃µmLi

(
div
[
~hmLi

]
+ ċmLi

)
︸ ︷︷ ︸

= 0 in view of (3.3)

dΩ +

∫
∂Va

ˆ̃µmLi
~hmLi · ~ndΓ︸ ︷︷ ︸

= 0 in view of (3.47)

= 0 (3.75)

the left hand side of eq. (3.73) can be rephrased as:∫
Va

(
∇
[
µ̂MLi

]
+ ∇

[
ˆ̃µmLi

])
· ~hmLi dΩ +

−
∫
Va

(
µ̂mLi(~x

ref) +∇
[
µ̂MLi

]
· (~x− ~x ref) + ˆ̃µmLi(~x)

)
ċmLi dΩ +

−
∫
∂Va∩∂Ve

hBV

(
µ̂mLi(~x

ref) +∇
[
µ̂MLi

]
· (~x− ~x ref) + ˆ̃µmLi(~x)

)
dΓ =

= ∇
[
µ̂MLi

]
·
[ ∫

Va

~hmLi dΩ−
∫
Va

ċmLi (~x− ~x ref) dΩ+

−
∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]
+

+ µ̂mLi(~x
ref)

[
−
∫
∂Va∩∂Ve

hBV dΓ−
∫
Va

ċmLi dΩ

]
+

+

∫
Va

∇
[

ˆ̃µmLi

]
· ~hmLi − ˆ̃µmLi(~x) ċmLi dΩ︸ ︷︷ ︸

= 0 in view of (3.75)

−
∫
∂Va∩∂Ve

hBV ˆ̃µmLi(~x) dΓ︸ ︷︷ ︸
= 0 in view of (3.47)

In view of constraints

µ̂mLi(~x
ref) = µ̂MLi

cMLi =
1

Va

∫
Va

cmLi
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imposed in (3.49) and (3.52), the averages:

va~h
M
Li = (3.76)

1

V

[∫
Va

~hmLi dΩ−
∫
Va

ċmLi (~x− ~x ref) dΩ−
∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]

s = − 1

V

∫
∂Va∩∂Ve

hBV dΓ (3.77)

va ċ
M
Li =

1

V

∫
Va

ċmLi dΩ (3.78)

finally come out.

Averages (3.76, 3.77, 3.78) extend to Li-ions and their counter-ions, as well as to electrons.
The path of reasoning here taken for neutral Lithium leads to the following identities:

ve~h
M
X− =

1

V

[∫
Ve

~hmX− dΩ−
∫
Ve

ċmX− (~x− ~x ref) dΩ

]
(3.79)

ve ċ
M
X− =

1

V

∫
Ve

ċmX− dΩ (3.80)

ve~h
M
Li+ = (3.81)

1

V

[∫
Ve

~hmLi+ dΩ−
∫
Ve

ċmLi+ (~x− ~x ref) dΩ +

∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]

ve ċ
M
Li+ =

1

V

∫
Ve

ċmLi+ dΩ (3.82)

vs~h
M
e− = (3.83)

1

V

[∫
Vs

~hme− dΩ−
∫
Vs

ċme− (~x− ~x ref) dΩ +

∫
∂Va∩∂Ve

hBV (~x− ~x ref) dΓ

]

vs ċ
M
e− =

1

V

∫
Vs

ċme− dΩ (3.84)

Migration contribution - For the migration processes in the electrolyte the micro to macro
scale transition (3.70) implies:

1

V

[
−
∫
Ve

∇
[
φ̂me

]
·

(
∂ ~Dm

e

∂t
+ F (~hm

Li+
− ~hmX−)

)
dΩ +

∫
∂Vs∩∂Ve

λm φ̂me dΓ

]
=

= −ve∇
[
φ̂Me

]
·

(
∂ ~DM

e

∂t
+ F

(
~hM

Li+
− ~hMX−

))
+ r φ̂Me

Linearization (3.44-a) specifies as:

φ̂me (~x) = φ̂me (~x ref) +∇
[
φ̂Me

]
· (~x− ~x ref) +

ˆ̃
φme (~x) , ~x ∈ Ve (3.85)
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Denoting with ℵme =
(
∂ ~Dme
∂t + F (~hm

Li+
− ~hmX−)

)
for the sake of shortness, for being

−
∫
Ve

∇
[

ˆ̃
φme

]
· ℵme dΩ =

−
∫
∂Ve

ˆ̃
φme ℵme · ~n︸ ︷︷ ︸

= 0 in view of (3.47)

dΩ +

∫
Ve

ˆ̃
φme div [ℵme ]︸ ︷︷ ︸

= 0 in view of (3.5)

dΩ = 0

it comes out:

−
∫
Ve

(
∇
[
φ̂Me

]
+∇

[
ˆ̃
φme

])
· ℵme dΩ +

+

∫
∂Vs∩∂Ve

λm
(
φ̂me (~x ref) +∇

[
φ̂Me

]
· (~x− ~x ref)

)
dΓ +

+

∫
∂Vs∩∂Ve

λm
ˆ̃
φme (~x)︸ ︷︷ ︸

= 0 in view of (3.47)

dΓ =

φ̂me (~x ref)

∫
∂Vs∩∂Ve

λm dΓ +

−∇
[
φ̂Me

]
·
[ ∫

Ve

ℵme dΩ−
∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]
In view of the constraint (3.49) in the form

φ̂me (~x ref) = φ̂Me

the average

r =
1

V

∫
∂Vs∩∂Ve

λm dΓ (3.86)

comes out together with the following identity:

ve

(
∂ ~DM

e

∂t
+ F

(
~hM

Li+
− ~hMX−

))
=

1

V

[∫
Ve

(
∂ ~Dm

e

∂t
+ F (~hm

Li+
− ~hmX−)

)
dΩ−

∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]
The latter can be rearranged taking into account averages (3.79, 3.81) and identity (3.13) as

ve
∂ ~DM

e

∂t
=

1

V

[ ∫
Ve

∂ ~Dm
e

∂t
dΩ + F

∫
Ve

(ċm
Li+
− ċmX−) (~x− ~x ref) dΩ

−F
∫
∂Va∩∂Ve

hBV (~x− ~x ref)dΓ−
∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]
(3.87)

The same path of reasoning can be applied to electrons. Average (3.86) again arises in
view of constraint

φ̂ms (~x ref) = φ̂Ms
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Furthermore, it holds:

vs
∂ ~DM

s

∂t
=

1

V

[ ∫
Va∪Vc

∂ ~Dm
s

∂t
dV − F

∫
Va∪Vc

ċme− (~x− ~x ref) dV (3.88)

+F

∫
∂Va∩∂Ve

hBV (~x− ~x ref)dΓ +

∫
∂Vs∩∂Ve

λm (~x− ~x ref)dΓ

]

3.8 Appendix: The hypothesis of steady motion of charges at
the interfaces

In battery modeling magnetic and electric problems are coupled by the interface conditions,
as shown in equation (3.22). Electro-quasi-statics requires the evaluation of the magnetizing
field along the interface between active particles and electrolyte. This drawback has been cir-
cumvented assuming that the curl of the magnetizing field is continuous across all interfaces
when projected in the normal direction. In order to simplify further the model and uncouple
the differential problem for the magnetic field from the other partial differential equations,
the magnetic field at the interface between active particles and electrolyte can be estimated
from the steady motion of charges (see [13], chapter 3). This approach is pursued in this
appendix.

At the micro scale, Ampère’s law without Maxwell’s correction properly describe the
magnetic field generated by a steady current.

curl
[
~Hm

]
· ~n =~im · ~n

At the interface between electrolyte and conductive particles, as no flow of charges take
place,

∂ ~Dm

∂t
· ~n = 0 ~x ∈ ∂Vc ∩ ∂Ve (3.89)

Noting that the direction of electric current is, by convention, opposite to the direction of
electron flow, at the interface between electrolyte and active particles ∂Ve ∩ ∂Va, interface
conditions read: (

∂ ~Dm
s

∂t
+~ime−

)
· ~na = iBV ~x ∈ ∂Va ∩ ∂Ve (3.90a)(

∂ ~Dm
e

∂t
+~ime

)
· ~ne = −iBV ~x ∈ ∂Va ∩ ∂Ve (3.90b)

In view of the conditions above, the micro scale weak form is slightly modified. The
micro and macro weak forms read:

Microscale:

Find ym ∈ V [0,tf ] such that
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d

dt
bm (ŷm, zm(t)) + am(ŷm, ym(t)) = 0 ∀ŷm ∈ V

where

bm (ŷm, zm) = −
∫
Va

µ̂mLi c
m
Li dV −

∫
Va∪Vc

µ̂me− c
m
e− dV −

∫
Ve

µ̂m
Li+

cm
Li+

+ µ̂mX− c
m
X− dV

−
∫
Va∪Vc

∇
[
φ̂ms

]
· ~Dm

s dV −
∫
Ve

∇
[
φ̂me

]
· ~Dm

e dV +

∫
V
ε̂m : σm dV

am (ŷm, ym) =

∫
Va

∇ [ µ̂mLi ] · ~hmLi dV +

∫
Va∪Vc

∇ [ µ̂me− ] · ~hme− dV

+

∫
Ve

∇
[
µ̂m

Li+
]
· ~hm

Li+
+∇ [ µ̂mX− ] · ~hmX− dV

−
∫
Va∪Vc

∇
[
φ̂ms

]
·~ime− dV −

∫
Ve

∇
[
φ̂me

]
·~ime dV

−
∫
∂Va∩∂Ve

hBV γ̂m − iBV ξ̂m dΓ

with ym = {µmLi, µ
m
e− , µ

m
Li+

, µmX− , φ
m
s , φ

m
e , ~u

m} and iBV = F hBV .

Macroscale:

Any yM ∈ V [0,tf ] such that

d

dt
bel
(
ŷM , zM (t)

)
+ ael(ŷ

M , yM (t)) = fel(ŷ
M ) + jel(ŷ

M ) ∀ŷM ∈ V

where

bel
(
ŷM , zM

)
= −

∫
Ω
va µ̂

M
Li c

M
Li + vs µ̂

M
e− c

M
e− + ve

(
µ̂M

Li+
cM

Li+
+ µ̂MX− c

M
X−
)

dΩ

−
∫

Ω
vs∇

[
φ̂Ms

]
· ~DM

s + ve∇
[
φ̂Me

]
· ~DM

e − ε̂M : σMdΩ

ael
(
ŷM ,yM

)
=

∫
Ω
va ∇

[
µ̂MLi

]
· ~hMLi + vs ∇

[
µ̂Me−

]
· ~hMe−

+ ve

(
∇
[
µ̂M

Li+
]
· ~hM

Li+
+∇

[
µ̂MX−

]
· ~hMX−

)
dΩ

−
∫

Ω
vs∇

[
φ̂Ms

]
·~iMe− + ve∇

[
φ̂Me

]
· F

(
~hM

Li+
− ~hMX−

)
dΩ

fel
(
ŷM
)

= −
∫

Ω
s γ̂M − r ξ̂MdΩ

The adjustments in the weak forms impact on some of the scale transition averages,
which now read:

r = − 1

V

∫
∂Va∩∂Ve

iBV dΓ (3.91a)

ve
∂ ~DM

e

∂t
=

1

V

[ ∫
Ve

∂ ~Dm
e

∂t
dV + F

∫
Ve

(ċm
Li+
− ċmX−) (~x− ~x ref) dV

]
(3.91b)

vs
∂ ~DM

s

∂t
=

1

V

[ ∫
Va∪Vc

∂ ~Dm
s

∂t
dV − F

∫
Va∪Vc

ċme− (~x− ~x ref) dV

]
(3.91c)
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In view of identity (3.13) and of average (3.58-f) - which does not change - terms r and
s turn out to be related as

r = F s (3.92)

and equations (3.30) and (3.31) are one and the same.





Part II

Constitutive equations and
validation





Chapter 4

Electrolyte Formulation

The formulation presented in section 3.2 outlines a framework for the description of multi-
phase microstructures of Li-ion batteries composite electrodes. Each component occupying
a subdomain of the overall microscale has been related to a proper set of balance equations.
Appropriate interface conditions (section 3.2.3) account for interactions among phases.
Nevertheless, each set of balance equations is self consistent. The weak form can be derived
(see (3.15), (3.16) and (3.17)) and solved independently if provided with suitable constitutive
equations and boundary conditions.
In view of these considerations it is reasonable to validate the formulation disclosed in section
3.2 focusing on a specific set of equations a time. This is the purpose of the chapters 4 and 5
that respectively focus on the electrolyte and active material. A study case has been chosen
for each of them that do not require a multiscale description and for which the set of balance
equations (3.3-3.6) is suitable.
Reciprocal interactions between electrolyte and active material will be investigated in chapter
6 in which a complete battery cell will be considered.

To validate the modeling of ionic transport in the electrolyte is the purpose of the
present chapter1. Diffusion and migration govern the process, while convection is disre-
garded. Maxwell’s equations have been used, coupled to Faraday’s law of electrochemical
charge transfer. The set of continuity equations for mass and Maxwell equations lead to a
consistent model, with distinctive energy characteristics.
The chapter does not focus on the double layer in which chemical reactions occur. The
formulation is limited to small displacements and strains.

Liquid electrolyte will be first investigated. Attention will be restricted to binary elec-
trolytes, that is, solutions of a binary salt, say LiX, plus a solvent, say a polymer. Both the
elements composing the salt are ions, a cation Li+ and an anion X− (PF−6 for instance).

Solid electrolyte will also be considered. Some minor, yet relevant, modifications to
transport model are required due to the so-called ionization reaction, by which a certain
amount of Li-ion is binded to other atoms and not free to flow any more.

General principles of non-equilibrium thermodynamics are presented in section 4.3 fol-
lowing the approach of [16, 17]. The electrochemical potential is defined based on the rate at
which power is expended on a material region, including mechanical contributions as well as
the power due to mass transport and electromagnetic interactions. All processes are taken
to be isothermal. The entropy imbalance with the Coleman-Noll procedure provides ther-
modynamic restrictions, satisfied by the usual Fickian description of diffusion and migration
in terms of the electrochemical potential, defined as in [18, 19]. Infinitely dilute solutions
(section 4.4) and solutions close to saturation (section 4.8) are both addressed.

1This chapter extends contents of [128–130]
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Two different one-dimensional models of ionic transport in the Li-ion batteries electrolyte,
inspired by [10, 21], have been numerically simulated. The results published in [10, 21]
in terms of concentrations and electric field are recovered, showing the robustness of the
approach. The small imbalance of concentration between anions and cations (ten orders of
magnitude smaller than the bulk concentration of salt in the electrolyte) is still capable to
produce a strong electric field particularly near the electrodes, as already described in [131].
By modeling Maxwell’s law explicitly, no theoretical contradictions arise.

4.1 Balance equations: liquid electrolyte

Diffusion is governed by transport of mass, which is a conserved quantity, and described by
the mass continuity equation, which is linked to the two ionic concentrations cLi+ and cX−

and to the mass fluxes of Li+ and X−. Nevertheless, the set of two mass balance equations
contains a further unknown, the electric field, because ionic transport entails movement of
mass as well as of charge. For that reason, coupling with an additional relation is mandatory
to model the migration process.

The most common selection for such an additional relation in battery modeling is the
electroneutrality condition

cLi+ − cX− = 0 (4.1)

which implies that charge separation is impossible and neutrality is maintained in the solu-
tion.

In several studies, originated by Newman [6] and collectively gathered in the terminology
“porous electrode theory”, condition (4.1) is used in lieu of Maxwell’s law - see among
others [28, 49–51, 90, 132, 133]. Other Authors describe migration via equation (4.1), e.g.
[10, 21, 134]. In all the aforementioned models, the electric field is not constrained in any way
to satisfy Maxwell’s equations. Remarkably, paradoxically as stated in [7], it does violate2

Maxwell’s equations (see for instance [10], fig. 3 and comments therein).

Equation (4.1) reflects physical properties of the processes in an average sense and has
to be considered as an approximation as pointed out in [7]. An excellent discussion on the
origin of equation (4.1) can also be found there in terms of the Debye length (see also section
2.3)

rD =

√
1

2

ε|
cbulk

RT

F 2

It assesses a charge electrostatic effect in the electrolyte solution, and measures how far that
effect persists. The Debye length is typically in the order of nanometers or even below in
battery cells electrolyte (see section 4.6).

In the present chapter, equation (4.1) is not used as a fundamental law. Instead, the
electro-magnetics is explicitly taken into account via the electro-quasi-static formulation [14]
of Maxwell’s equations, summarized in section 2.1. Inductive effects are not included, yet the
effect of the magnetizing field is taken into account by means of Maxwell’s correction within
Ampère’s law. This is major novelty of the proposed approach, in which electroneutrality
is an outcome of the problem solution. The numerical simulations performed in section 4.6,
where real battery data are considered, reveal that the deviation from electroneutrality is

2This is immediately accomplished in 1D, where in view of electroneutrality Gauss law reads ∂D
∂x

= 0, thus
leading to a constant electric field.
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as small as expected, ten orders of magnitude with respect to the equilibrium electrolyte
concentration, in agreement with the literature (see [6], page 286 and [131]).

Electroneutrality is used to identify the relevance of external actions, in order to simplify
the model (refer to section 2.3). For the balance of momentum, Lorentz’s forces are indeed
related to the deviation from electroneutrality. The effect of such forces appears to be of
second order compared to the effects of surface tractions of mechanical origin.

The balance equations underlying the formulation are briefly recalled (compare with
section 3.2.1).

The mass balance equations characterize the transport of Li+ and X− ions in the elec-
trolyte.

∂cLi+

∂t
+ div

[
~hLi+

]
= 0 ~x ∈ Ve (4.2a)

∂cX−

∂t
+ div

[
~hX−

]
= 0 ~x ∈ Ve (4.2b)

Taking into account Faraday’s law (2.3), the rate equation (2.14) govern the electric
displacement field

div

[
∂ ~De

∂t
+ F (~hLi+ − ~hX−)

]
= 0 ~x ∈ Ve (4.2c)

Neglecting Lorentz forces in view of electroneutrality assumption, the balance of forces
applies without any body forces:

div [σ ] = ~0 ~x ∈ Ve (4.2d)

It is worth pointing out that equations (4.2) are defined for ~x ∈ Ve (compare with 3.2.1)
to stress that only the electrolyte is taken into account in this context.

4.2 Weak form and boundary conditions

Following the approach pursued in section 3.2.3 the weak formulation is constructed in terms
of chemical and electric potentials y = {µLi+ , µX− , φ} in a time interval [0, tf ], thus entailing
the same energy meaning (consistent with [8, 9]). The contribution related to the mass
balance equations (4.2) for cations and anions reads (α = Li+,X−):∫

Ve

µ̂α

{
∂cα
∂t

+ div
[
~hα

]}
dV =

=

∫
Ve

µ̂α
∂cα
∂t

dV −
∫
Ve

∇ [ µ̂α ] · ~hα dV +

∫
∂Ve

µ̂α ~hα · ~n dΓ = 0

(4.3)

The last term at the right hand side of (4.3) is a contribution defined at the boundary
ΓBV ⊆ ∂V N

e of the electrolyte. ΓBV is the only portion of the boundary along which a non-
zero Neumann term is present, i.e. the location where the oxidation/reduction reaction takes
place within a battery cell. At that locus there is no intercalation of X−-anions, whereas
Faradaic reaction (1.2) converts the oxidized Lithium to its neutral state before it diffuses
into the electrodes or vice versa. Therefore, the electrolyte boundaries are discontinuity loci
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for the electric and chemical potentials within a cell, (they represent the electric and the
reaction Gibbs energies [118], respectively). As this chapter is restricted to the electrolyte
only, electrode kinetics is not detailed and the mass flux at the boundary, termed hBV , must
be derived from a Butler-Volmer equation, which is here considered as given. Mass flux
boundary conditions thus read:

~hLi+ · ~n = −hBV ~x ∈ ΓBV (4.4a)

~hLi+ · ~n = 0 ~x ∈ ∂NVe \ ΓBV (4.4b)

~hX− · ~n = 0 ~x ∈ ∂NVe (4.4c)

With a similar reasoning, balance law (4.2c) becomes∫
Ve

φ̂e div

[
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

)]
dV =

−
∫
Ve

∇
[
φ̂e

]
· ∂

~De

∂t
dV − F

∫
Ve

∇
[
φ̂e

]
·
(
~hLi+ − ~hX−

)
dV+

+

∫
∂Ve

φ̂e

{
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

)}
· ~n dΓ = 0

(4.5)

Ampère’s law (2.9) allows to extract boundary conditions for the electric potential{
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

) }
· ~n = curl

[
~H
]
· ~n ~x ∈ ∂Ve (4.6)

making the evaluation of the magnetizing field ~H unavoidable, as noticed in section 3.2.3.
To circumvent such a drawback it will be assumed henceforth that ~B along the boundary can
be estimated from the “steady current” theory (see [13], chapter 3 and appendix 3.8).

A different approach has been pursued in section 3.2.3 (according to [9]), where the curl
of the magnetizing field was assumed to be continuous across all interfaces when projected
in the normal direction. Such a continuity condition led to a formulation of the problem in
terms of Lagrange multipliers, that unfortunately cannot be rephrased for the case where
only the electrolyte is modeled. Ampère’s law without Maxwell’s correction describes the
magnetic field generated by a steady current

curl
[
~H
]
· ~n = −F hBV ~x ∈ ΓBV (4.7)

In view of (4.4) and (4.6), boundary conditions for the electric potential read:

∂ ~De

∂t
· ~n = 0 ~x ∈ ΓBV (4.8)

To make the solution of the problem unique, Dirichlet boundary conditions (usually homo-
geneous) for the potential need to be added.

Finally, for the equilibrium equations (4.2d) in rate form one writes∫
Ve

~̂u · div

[
∂σ

∂t

]
dV = −

∫
Ve

ε̂ :
∂σ

∂t
dV +

∫
∂Ve

~̂u · ∂σ
∂t
· ~n dΓ = 0 (4.9)
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The given tractions along the Neumann part of the boundary ∂NV will be denoted with ~p

σ · ~n = ~p ~x ∈ ∂NVe (4.10)

A Dirichlet boundary condition (usually homogeneous) for the displacements shall be added
along the Dirichlet part ∂DVe.

The extension of Neumann boundaries are defined for each field and differ from field to
field. In order to enlighten the notation however the field dependence has not been specified
in writing ∂NV and has been left backward. Same arguments apply to Dirichlet boundaries.

In conclusion, the weak form of the balance equations can be written in terms of the
potentials in time interval [0, tf ] as

Find y ∈ V [0,tf ] such that
d

dt
b (ŷ, z(t)) + a(ŷ, y(t)) = f(ŷ) ∀ŷ ∈ V (4.11)

where

b (ŷ, z) = −
∫
Ve

µ̂Li+ cLi+ + µ̂X− cX− dV −
∫
Ve

∇
[
φ̂e

]
· ~De dV +

∫
Ve

ε̂ : σ dV

a (ŷ, y) =

∫
Ve

∇ [ µ̂Li+ ] · ~hLi+ +∇ [ µ̂X− ] · ~hX− dV+

−
∫
Ve

∇
[
φ̂e

]
·
(
F
(
~hLi+ − ~hX−

))
dV

f (ŷ) =

∫
ΓBV

(Fφ̂e − µ̂Li+) hBV dΓ +

∫
∂NVe

~̂u · ∂
~p

∂t
dΓ

with z = { cLi+ , cX−}, y = {µLi+ , µX− , φe, ~u}. Columns z and y collect the time-dependent
unknown fields. Column ŷ collects the steady-state test functions that correspond to the
unknown fields in y. To computationally solve the (either weak or strong) problem, consti-
tutive equations must be specified, which is the subject of sections 4.4 and 4.8. Ellipticity
of operators, functional and numerical properties of the solution and of its approximation
depend on the constitutive assumptions and on the choice of the correct functional spaces
V [0,tf ],V, whose identification falls beyond the scope of the present paper.

Factor Fφ̂e − µ̂Li+ on the right hand side represents the contribution of the electrolyte
to Gibbs reaction energy at the interface.

The weak form (4.11) is remarkably different from the literature [48, 50, 51] and acquires
the usual physical meaning of power expenditure: for this reason it is written in terms of
chemical potentials rather than concentrations.

4.3 Thermodynamics: electrolyte

4.3.1 Energy balance

The first law of thermodynamics, in the assumption of small displacements, represents the
balance of the interplay between the internal energy of a material region P, the power
expended on P, the heat transferred in P, and the power due to mass and electromagnetic
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interactions exchanged on P. The energy balance for the problem at hand, for quasi-static
interactions, reads:

∂U(P)

∂t
=W(P) +Q(P) + T (P) + E(P) (4.12)

with U the net internal energy of P, W(P) the mechanical external power, Q the power
due to heat transfer, T the power due to mass transfer, E the power due to electromagnetic
interactions. It is assumed that any of these processes is accompanied with its own separate
energy contribution in the balance, in particular the energies due to charges and mass transfer
are additively treated as two separate processes. The individual contributions read:

W(P) =

∫
P
~b · ~v dΩ +

∫
∂P

~p · ~v dΓ (4.13a)

Q(P) =

∫
P
sq dΩ−

∫
∂P

~q · ~n dΓ (4.13b)

T (P) =
∑
α

{∫
P
µα sα dΩ−

∫
∂P

µα~hα · ~ndΓ

}
(4.13c)

E(P) = −
∫
∂P

( ~E × ~H) · ~n dΓ (4.13d)

The time variation of net internal energy corresponds to the power expenditure of external
agencies: a mechanical contribution due to body forces ~b and contact forces ~p that spend
power against velocities ~v; a heat contribution where the scalar sq is the heat supplied by
external agencies and ~q is the heat flux vector; a mass flux contribution with the scalar µ
denoting the chemical potential, the scalar sα the supply of species (α = Li+,X−) and ~hα
the mass flux vector; an electromagnetic contribution with the energy flux vector ~E × ~H
generated by the electric and magnetizing fields. It is not trivial to recognize ~E × ~H as an
energy flux vector, but it actually results from Poyinting’s theorem (see also [17, 18]).

As usual in thermodynamics of continua one can write the local form of the first principle
in terms of rates of the specific (i.e. per unit volume in the reference body, see [16]) internal
energy u3

U(P) =

∫
P
u dΩ

Standard application of the divergence theorem and of mass balances (4.2a-b) leads from
(4.13) to

W(P) =

∫
P
σ :

∂ε

∂t
dΩ (4.14a)

Q(P) =

∫
P
sq − div [ ~q ] dΩ (4.14b)

T (P) =
∑
α

∫
P
µα

∂cα
∂t
− ~hα · ∇ [µα ] dΩ (4.14c)

For the electromagnetic contribution one writes

E(P) = −
∫
∂P

( ~E × ~H) · ~ndΓ = −
∫
P

div
[
~E × ~H

]
dΩ =

= −
∫
P
~H · curl

[
~E
]
− curl

[
~H
]
· ~E dΩ

(4.15)

3No source of confusion between the internal energy density u and the displacement vector ~u should arise.
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After substitution of the curls from Maxwell’s equations, Poynting’s theorem comes out. In
the assumption of electro-quasi-statics and in view of Ampère’s-Maxwell’s law (2.9)

E(P) =

∫
P

(
∂ ~D

∂t
+~i

)
· ~E dΩ (4.16)

The local form of the first principle in terms of rates of the internal energy u arises since the
energy balance (4.12) must hold for all regions P. It reads:

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ] +

(
∂ ~D

∂t
+~i

)
· ~E +

∑
α

µα
∂cα
∂t
− ~hα · ∇ [µα ] (4.17)

The electromagnetic contribution (4.16) to the energy balance can be given a different
expression in the framework of electro-quasi-statics, keeping in mind that charges are con-
veyed together with mass and thus the processes of migration and diffusion are coupled. The
link between the two processes is Faraday’s laws of electrolysis (2.3). Exploiting it together
with Gauss’s law (2.8) and definition of ~Ee (2.13), (4.16) becomes

E(P) = −
∫
P

∂ ~D

∂t
· ∇ [φ ] +~i · ∇ [φ ] dΩ =

= −
∫
P

div

[
φ
∂ ~D

∂t

]
− φ div

[
∂ ~D

∂t

]
+ F

∑
α

zα~hα · ∇ [φ ] dΩ =

=

∫
P
φ
∂ζ

∂t
−
∑
α

(F zα∇ [φ ]) · ~hα dΩ−
∫
∂P

φ
∂ ~D

∂t
· ~ndΓ =

=
∑
α

∫
P

(F zα φ)
∂cα
∂t
− (F zα∇ [φ ]) · ~hα dΩ−

∫
∂P

φ
∂ ~D

∂t
· ~ndΓ

(4.18)

From (4.14, 4.18), the power expenditure due to mass transfer and electromagnetic interac-
tions specialize in the electrolyte as:

T (P) + E(P) =∑
α

∫
P

(µα + F zα φ)
∂cα
∂t
− ~hα · ∇ [µα + F zα φ ] dΩ−

∫
∂P

φ
∂ ~D

∂t
· ~ndΓ

(4.19)

In the absence of charged species, only diffusion takes place; the relevant constitutive theory
can be found in [16], section 66. In its dual way, in the absence of gradients of chemical
potential, diffusion cannot proceed and current is thus driven by migration only. When dif-
fusion is present, a current density rises due to Faraday’s law and both processes contribute
to the charge flux. It is therefore clear that concentration gradients and electric field act
contemporarily to generate ion mobility. This is the intimate nature of the energy contribu-
tion (4.19) and of the electrochemical potential µα that in the light of (4.19) will be defined
by the decomposition

µα = µα + F zα φ (4.20)

- see also [18], chapter XIII, section 3.4, formula (42). Accordingly, the local form of the first
principle in terms of rates of the referential internal energy u reads also:

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ]− div

[
φ
∂ ~D

∂t

]
+
∑
α

µα
∂cα
∂t
− ~hα · ∇ [µα ] (4.21)
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4.3.2 Entropy imbalance

A local form of the entropy imbalance can be derived from the Clausis-Duhem inequality in
terms of the referential entropy η and of the absolute temperature T [16]:

∂η

∂t
− q

T
+ div

[
~q

T

]
≥ 0 (4.22)

By noting that

div

[
~q

T

]
=

1

T
div [ ~q ]− 1

T 2
~q · ∇ [T ]

the entropy imbalance can be expressed in terms of internal energy in the form (4.17)

T
∂η

∂t
−

{
∂u

∂t
− σ :

∂ε

∂t
−

(
∂ ~D

∂t
+~i

)
· ~E+

−
∑
α

(
µα

∂cα
∂t
− ~hα · ∇ [µα ]

)}
− 1

T
~q · ∇ [T ] ≥ 0

(4.23)

Consider the internal energy u to be function of the entropy η, the concentrations cα, the
electric displacement field ~D, and the kinematic variables in terms of the small strain tensor
ε. One has therefore

∂u

∂t
=
∂u

∂η

∂η

∂t
+
∂u

∂ε
:
∂ε

∂t
+
∂u

∂ ~D
· ∂

~D

∂t
+
∑
α

∂u

∂cα

∂cα
∂t

(4.24)

to be inserted in (4.23). The entropy imbalance yields

∂η

∂t

(
T − ∂u

∂η

)
+
∂ε

∂t
:

(
σ − ∂u

∂ε

)
+
∂ ~D

∂t
·
(
~E − ∂u

∂ ~D

)
+

+
∑
α

∂cα
∂t

(
µα −

∂u

∂cα

)
+ ~i · ~E −

∑
α

~hα · ∇ [µα ]− 1

T
~q · ∇ [T ] ≥ 0

(4.25)

Term ~i · ~E is the Joule effect. In view of Faraday’s law, easy algebra allows to write:

~i · ~E −
∑
α

~hα · ∇ [µα ] = −F
∑
α

zα~hα · ∇ [φ ]−
∑
α

~hα · ∇ [µα ] =

−
∑
α

~hα · (∇ [µα ] + zα F ∇ [φ ]) = −
∑
α

~hα · ∇ [µα ]

taking into account (4.20). By applying the Coleman-Noll procedure, one requires that
inequality (4.25) holds for all constitutive processes [16, 135]. The following thermodynamic
restrictions thus arise:

T − ∂u

∂η
= 0 , σ − ∂u

∂ε
= 0 , µα −

∂u

∂cα
= 0 , ~E − ∂u

∂ ~D
= 0 ,

~hα · ∇ [µα ] ≥ 0 ,
1

T
~q · ∇ [T ] ≤ 0 (4.26)

Different thermodynamic potentials can be considered rather than the internal energy u. A
classical one is the specific Helmholtz free energy

ψ(T, ε, cα, ~E) = u(η, ε, cα, ~D)− T η − ~E · ~D

that will be used henceforth.



4.4. Constitutive theory: ideal solution 73

4.4 Constitutive theory: ideal solution

The constitutive specifications outlined in this section are essentially based on literature.
Recent scientific investigations provided significant progresses on the mechanical constitutive
behavior of energy storage materials. We here depart from these insights, aiming for simple,
yet efficient, models.

As in [128] the Helmholtz free energy density ψ that describes the isothermal processes
at hand is assumed to consist of three separate parts:

ψ(ε, cα, ~E) = ψdiff (cα) + ψel( ~E) + ψmech(ε) (4.27)

The mass transport process is described by ψdiff , adopting species concentrations cα as the
state variables. The contribution ψel models the electromagnetic interactions, in terms of the
electric field ~E. Finally, ψmech is the mechanical energy density. Noteworthy, the processes
are thermodynamically uncoupled: the electrolyte is made of materials whose properties are
insensitive to the deformations, the electric field, and the ionic concentrations. This feature
will not be replicated in the electrodes.

The electric displacement field is related to the electric field constitutively. In linear
media

ψel( ~E ) = −1

2
ε| ~E · ~E (4.28)

whence
~D = ε| ~E = −ε| ∇ [φ ] (4.29)

The chemical potential as well as the free energy ψdiff (cα) in a mixture depend on
the composition of the mixture itself. In ideal, infinitely diluted conditions4, the chemical
interactions between solutes are neglected. The electrostatic potential φ is the result of
moving idealized electric charges from one electrode to the other. Guided by restriction
(4.26), Fickian-diffusion suggests a linear dependence of the mass flux of species α on the
gradient of the electrochemical potential:

~hα = −Mα ∇ [µα ] (4.30)

by means of a positive definite mobility tensor Mα.

A classical case of the mobility tensor Mα for dilute solutions far from saturation is the
isotropic, linear choice

Mα(cα) = u|α cα 1 (4.31)

Definition (4.31) implies that the pure phase cα = 0 has a vanishing mobility. The amount
u|α > 0 is usually termed the ion mobility and represents the average velocity of species α in
the solution when acted upon by a force of 1 N/mol independent of the origin of the force5.

4Ideal conditions are conventionally met in infinitely dilute solutions [6]. Therefore, in writing constitu-
tive theories one firmly distinguishes the items of dilute and concentrated solutions in order to specify the
thermodynamic potentials.
The item of ideal diluted solutions will be considered in the following sections, while moderately non-ideal
diluted solution and concentrated solution theory are summarized in appendices 4.14 and 4.15.

5As the free energy density ψ has been selected as the thermodynamic potential, no source of confusion
between the ion mobility uα and the internal energy density u will arise henceforth.
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An ideal solution model (see [19]) provides the following free energy density for the con-
tinuum approximation of the mixing for dilute solutions far from saturation

ψiddiff (cLi+ , cX−) = µ0
Li+ cLi+ + µ0

X− cX− +RT (cLi+ ln[cLi+ ] + cX− ln[cX− ]) (4.32)

R is the universal gas constant; µ0
α is a reference value of the chemical potential of diffusing

species α; T is the absolute temperature. The chemical potential results in the form

µα = µ0
α +RT (1 + ln[cα]) (4.33)

and Fick’s law (4.30) equipped with definition (4.20) becomes

~hα = −u|αRT ∇ [ cα ]− zα F u|α cα ∇ [φ ] (4.34)

which is the usual form for the flux density of species α in absence of convection (see for
instance [6] ) in dilute solutions far from saturation. The diffusivity D|α is defined by D|α =
u|αRT (this equation is sometimes termed after Nernst-Einstein).

The simplest special case for the mechanical behavior of the separator/electrolyte system
is isotropic, linear elastic (the total strain being coincident with the elastic strain):

ψmech(ε) =
1

2
ε : C : ε =

1

2

(
K tr [ ε ]2 + 2G ||dev [ ε ] ||2

)
(4.35)

K, G are the bulk and shear modulus respectively. Symbol tr [− ] denotes the trace operator
whereas dev [− ] is the deviator operator. Thermodynamics restrictions (4.26) imply:

σ = K tr [ ε ] 1+ 2Gdev [ ε ] (4.36)

with the usual definition

ε =
1

2

(
∇ [ ~u ] +∇ [ ~u ]T

)
(4.37)

4.5 Governing equations and weak form: ideal solution

Governing equations can be derived by incorporating the constitutive equations (4.29),
(4.34), and (4.36) into the balance equations. The variable fields controlling the problem
result from the thermodynamic choices made, i.e. concentrations cα, displacements ~u, and
the electric potential φe. Governing equations hold at all points ~x ∈ V :

∂cLi+

∂t
+ div [−D|Li+ ∇ [ cLi+ ]− F u|Li+ cLi+ ∇ [φe ] ] = 0 (4.38a)

∂cX−

∂t
+ div [−D|X− ∇ [ cX− ] + F u|X− cX− ∇ [φe ] ] = 0 (4.38b)

div

[
− ε| ∇

[
∂φe
∂t

]
+ F (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ] + (4.38c)

−F (u|Li+ cLi+ + u|X− cX−) ∇ [φe ])

]
= 0

div [C : ε ] = ~0 (4.38d)
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whereas conditions (4.4), (4.7) and (4.10) are applied along Neumann boundaries ∂NVe. To
ensure uniqueness, Dirichlet boundary conditions have to be imposed along part ∂DVe, being
∂Ve = ∂DVe ∪ ∂NVe. It is typical in batteries to fully impose Neumann conditions (4.4) for
concentration, in terms of mass fluxes, during galvanostatic processes. Rigid body constraints
and zero electric potential are enforced through the Dirichlet boundary conditions.

Initial conditions are usually imposed for concentration of ions cLi+(~x, t = 0) and cX−(~x, t =
0) in the electrolyte solution. To comply with equilibrium thermodynamics they are uni-
form in volume Ve; furthermore initial concentrations are equal, obeying the electroneutrality
condition (4.1) exactly. Consistently, a positive constant cbulk will be defined as

cbulk = cLi+(~x, t = 0) = cX−(~x, t = 0) (4.39)

and will be used to scale concentration variables further on.

Initial conditions for electric potential and displacements should match the boundary
value problem at t = 0. In view of the perfect electroneutrality, at initial time Gauss law
(2.8) and balance of momentum (4.2d) provide the necessary and sufficient equations to be
solved for φe and ~u:

div [ ε| ∇ [φe ] ] = 0 ~x ∈ Ve, t = 0 (4.40a)

div [C : ε ] = ~0 ~x ∈ Ve, t = 0 (4.40b)

together with homogeneous boundary conditions for potential and current, in view of ther-
modynamic equilibrium at initial time, and usual given boundary conditions for displace-
ments and tractions.

The evolution problem can be formulated in a weak form as well. Following a Galerkin
approach, weak forms are built using “variations” of the same set of variables that rule the
problem6, namely concentrations ĉα, displacements ~̂u, and electric potential φ̂e. By doing
so however the energy interpretation of weak form (4.11) is lost. To give to the new weak
form at least the physical dimension of a power expenditure, the mass balance equations will
be scaled by suitable coefficients, inherited from constitutive equation (4.33). The following
identities are derived straightforwardly:

RT

cbulk

∫
Ve

ĉLi+
∂cLi+

∂t
+ D|Li+ ∇ [ ĉLi+ ] · ∇ [ cLi+ ] + F u|Li+ cLi+ ∇ [ ĉLi+ ] · ∇ [φe ] dV+

− RT

cbulk

∫
ΓBV

ĉLi+ hBV dΓ = 0 (4.41a)

RT

cbulk

∫
Ve

ĉX−
∂cX−

∂t
+ D|X− ∇ [ ĉX− ] · ∇ [ cX− ]− F u|X− cX− ∇ [ ĉX− ] · ∇ [φe ] dV = 0

(4.41b)∫
Ve

∇
[
φ̂e

]
·
{
ε| ∇

[
∂φe
∂t

]
+ F 2 (u|Li+ cLi+ + u|X− cX−) ∇ [φe ]

}
dV+

− F
∫
Ve

∇
[
φ̂e

]
· (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ] ) dV − F

∫
ΓBV

φ̂e hBV dΓ = 0

(4.41c)

6This is the approach usually pursued to set up numerical algorithm from the weak form. Weak forms
written of sections 3.2.3 - 4.2 have a different purpose and entail an energy meaning (required within a
computational homogenization framework, see section 3.4.2).
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∫
Ve

ε̂ : C :
∂ε

∂t
dV −

∫
∂NVe

~̂u · ∂
~p

∂t
dΓ = 0 (4.41d)

Boundary conditions (4.4), (4.7) and (4.10) have been used.

It is convenient to derive a dimensionless expression for equations (4.41). To this aim,
fields that govern the problem are scaled to dimension of unity - denoted with starred su-
perscripts from now on - via suitable scaling factors, namely:

c∗α =
cα
cbulk

, φ∗e =
F

RT
φe, ~u∗ =

~u

L
(4.42)

L standing for a given characteristic length. In view of (4.41), a weak form of governing
equations (4.38) can be given in a time interval [0, tf ] as

Find y∗(~x, t) ∈ V [0,tf ] such that

∂

∂t
b∗ (ŷ∗(~x), y∗(~x, t)) + a∗(ŷ∗(~x), y∗(~x, t)) = f∗(ŷ∗(~x)) ∀ŷ∗(~x) ∈ V

(4.43)

where

b∗ (ŷ∗(~x), y∗(~x, t)) =

RT cbulk

∫
Ve

ĉ∗
Li+

c∗
Li+

+ ĉ∗X− c
∗
X− dV + ε|

(
RT

F

)2 ∫
Ve

∇
[
φ̂e
∗ ] · ∇ [φ∗e ] dV+

+ L2

∫
Ve

ε̂∗ : C : ε∗ dV

a∗ (ŷ∗(~x), y∗(~x, t)) =

RT cbulk D|Li+

∫
Ve

∇
[
ĉ∗

Li+
]
· ∇
[
c∗

Li+
]

+ c∗
Li+
∇
[
ĉ∗

Li+
]
· ∇ [φ∗e ] dV+

RT cbulk D|X−
∫
Ve

∇ [ ĉ∗X− ] · ∇ [ c∗X− ]− c∗X− ∇ [ ĉ∗X− ] · ∇ [φ∗e ] dV+

RT cbulk D|Li+

∫
Ve

∇
[
φ̂∗e

]
· ∇ [φ∗e ] c∗

Li+
+∇

[
φ̂∗e

]
· ∇
[
c∗

Li+
]

dV+

RT cbulk D|X−
∫
Ve

∇
[
φ̂∗e

]
· ∇ [φ∗e ] c∗X− −∇

[
φ̂∗e

]
· ∇ [ c∗X− ] dV

f∗ (ŷ∗(~x)) = RT

∫
ΓBV

(φ̂∗e + ĉ∗
Li+

) hBV dΓ + L

∫
∂NVe

~̂u∗ · ∂
~p

∂t
dΓ

with y∗(~x, t) = {c∗
Li+

, c∗X− , φ
∗
e, ~u
∗ }. Ellipticity of operators, functional and numerical prop-

erties of the solution and of its approximation depend on the constitutive assumptions and
on the choice of the correct functional spaces V [0,tf ],V, whose identification falls beyond the
scope of the present paper.

4.6 One-dimensional modeling of ionic transport in a liquid
electrolyte: ideal solution

4.6.1 Description

This section deals with the case study analysed in [10], namely a LiPF6 electrolyte subject
to a galvanostatic process of charge at 1 C-rate at a temperature of 25oC, with current
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Figure 4.1: A one-dimensional model of a Li-ion battery, with separator of size l = 2.8× 10−4m highlighted
in gray. The flux of Li+ ions during charge is pointed out.

I1C = 0.72A corresponding to a storage capacity of 720mAh. In order to make initial and
boundary conditions compatible with thermodynamic equilibrium at t = 0, the current I(t)
is tuned in time as

I(t) = (1− e−t) I1C (4.44)

with t in seconds.
Boundary and initial conditions have been taken according to [10]. Initially (at t = 0)

the concentrations of ions across the electrolyte are uniform as in equation (4.39), because
no profiles have been developed yet.

cα(~x, 0) = cbulk = 1500 mol m−3 ~x ∈ Ve (4.45)

With no side reactions, the flux of Lithium ions at the electrodes/separator interfaces (of
net area A = 2 × 10−2m2) is related to the given current I(t) flowing through the battery.
A uniform ionic flow at the interfaces is considered, enabling a 1D description. Boundary
conditions (4.4) thus read:

hBV |(x=0) (t) = hBV |(x=l) (t) = −I(t)

FA
(4.46a)

~hX− · ~n
∣∣∣
(x=0)

(t) = ~hX− · ~n
∣∣∣
(x=l)

(t) = 0 (4.46b)

see also Figure 4.1. From identity (4.44) it comes out that the “steady” mass flux at t� 0
reads

h1C = − I1C

FA

Diffusivities amount at D|Li+ = 2× 10−11m2s−1, D|PF−6
= 3× 10−11m2s−1. The separator

thickness is l = 280µm. All data are taken from [10] apart from the relative permittivity,
assumed as ε|r = 2.25. The Debye length (2.19) is estimated to be rD = 4.20512× 10−11m.

4.6.2 Discretization and time advancing by finite differences

As in [10], mechanical effects are not described here. Balance equations are limited to mass
(4.2a-b) and Maxwell’s (4.2c). The weak form (4.43) can be transformed in a first order
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Ordinary Differential Equation (ODE) in time if discretization is performed via separated
variables, with spatial test ϕi(x) and shape functions ϕj(x) and nodal unknowns (collectively
gathered in column y with component yj(t)) that depend solely on time. For the sake of
readability the star superscript is omitted from the dimensionless quantities: for example, in
this section cLi+

j stands for the j-th nodal unknown for Li-ions dimensionless concentration at
time t. The usual Einstein summation convention is taken henceforth for repeated indexes.
The non linear ODE reads:

Find y(t) s.t. b∗i ·
∂y

∂t
(t) + a∗i [ y(t) ] = f∗i (t) for i = 1, 2, ..., N (4.47)

where

1

RT cbulk
b∗i ·

∂y

∂t
(t) =∫ l

0
ϕLi+

i ϕLi+

j dx
∂cLi+

j

∂t
+

∫ l

0
ϕX−
i ϕX−

j dx
∂cX

−
j

∂t
+

ε|
cbulk

RT

F 2

∫ l

0

∂ϕφi
∂x

∂ϕφj
∂x

dx
∂φej
∂t

a∗i [ y(t) ]

RT cbulk
=

D|Li+

∫ l

0

∂ϕLi+

i

∂x

∂ϕLi+

j

∂x
dx cLi+

j + D|Li+

∫ l

0
ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

dx cLi+

j φek +

+ D|X−
∫ l

0

∂ϕX−
i

∂x

∂ ϕX−
j

∂x
dx cX−

j − D|X−
∫ l

0
ϕX−
j

∂ϕX−
i

∂x

∂ϕφk
∂x

dx cX−
j φek +

+ D|Li+

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j dx cLi+

j φek + D|Li+

∫ l

0

∂ϕφi
∂x

∂ϕLi+

j

∂x
dx cLi+

j +

+ D|X−
∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕX−
j dx cX−

j φek − D|X−
∫ l

0

∂ϕφi
∂x

∂ϕX−
j

∂x
dx cX−

j

f∗i (t)

RT cbulk
=

1

cbulk

∫
ΓBV

(ϕφi + ϕLi+

i ) hBV dΓ

with yj(t) = {cLi+

j , cX−
j , φj , uj }. Form a∗i [ y(t) ] is clearly non linear. It can be split into the

sum of a non linear form na∗i [ y(t) ], which reads

na∗i [ y(t) ]

RT cbulk
=

D|Li+

∫ l

0
ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

dx cLi+

j φk + D|Li+

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j dx cLi+

j φk +

− D|X−
∫ l

0
ϕX−
j

∂ϕX−
i

∂x

∂ϕφk
∂x

dx cX−
j φk + D|X−

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕX−
j dx cX−

j φk

(4.49)

and a bilinear counterpart la∗i · y(t) defined by comparison.

A family of time-advancing methods based on the so-called θ-scheme can be set up for the
discrete problem (4.47). Assume that solution y(t) is given at time t, and that the algorithm
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is triggered at the initial time t = 0 by means of equations (4.40). The scheme seeks for
y(t+ ∆t) such that

b∗i ·
y(t+ ∆t)− y(t)

∆t
+ a∗i [ θ y(t+ ∆t) + (1− θ)y(t) ] = θ f∗i (t+ ∆t) + (1− θ)f∗i (t) (4.50)

for i = 1, 2, ..., N , where 0 ≤ θ ≤ 1, ∆t = tf/Nt is the time step, Nt is a positive integer.
θ-scheme includes the forward Euler scheme (θ = 0, linear in y(t + ∆t)), backward Euler
(θ = 1), and Crank-Nicholson (θ = 1/2). For bilinear forms a∗i = la∗i unconditional stability
is proved when 1/2 ≤ θ ≤ 1, whereas stability conditions when 0 ≤ θ < 1/2 can be found
for instance in [123].

In the numerical simulations that follow, backward Euler (θ = 1) has been selected, thus
searching for y(t+ ∆t) such that

b∗i ·
y(t+ ∆t)

∆t
+ la∗i · y(t+ ∆t) + na∗i [ y(t+ ∆t) ] = f∗i (t+ ∆t) + b∗i ·

y(t)

∆t
(4.51)

For the sake of a better readability, a linear operator li, a non linear operator ni[−], and
given terms ξi are defined as:

li =
b∗i
∆t

+ la∗i

ni[ y(t+ ∆t) ] = na∗i [ y(t+ ∆t) ]

ξi = f∗i (t+ ∆t) + b∗i ·
y(t)

∆t

so to write (4.51) as

li · y(t+ ∆t) + ni[ y(t+ ∆t) ] = ξi (4.52)

4.6.3 Non linear algorithms

Two iterative schemes have been implemented to solve non-linear problem (4.51). Denoting
with q = 1, 2, ... the iteration counter, the schemes proceed until a condition on the L2 norm
of the increment

δy = q+1y(t+ ∆t)− qy(t+ ∆t)

is satisfied. The linearized updated technique solves (4.51) for q+1y(t + ∆t) after having
linearized operator ni as ni[

qcLi+

j (t+ ∆t), qcX−
j (t+ ∆t), qφj(t+ ∆t) ]. The Newton-Raphson

strategy seeks for δy such that

li · δy +
d

dε
ni[

qy(t+ ∆t) + ε δy ]

∣∣∣∣
ε=0

= ξi − li · qy(t+ ∆t) + ni[
qy(t+ ∆t) ] (4.53)

The two numerical techniques have been implemented in a Wolfram Mathematica package
script7, provided solutions with 16 coincident digits and converged up to a tolerance of 10−9

in the L2 norm of the (relative) increment.

7The algorithm extending the formulation at hand to 2D problems have been implemented by means of
the Abaqus User Element (UEL) script. It is reported in appendix 4.16.
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Stability analyses for the non linear problem at hand will be considered in further pub-
lications, but simple considerations on operator li highlight four dimensionless groups that
govern the condition number of the “stiffness” matrix, namely:

∆tDLi+

L2
,

∆tDX−

L2
,

ε|
cbulk

RT

F 2

1

∆tDLi+
,

ε|
cbulk

RT

F 2

1

∆tDX−

where L is a characteristic length of the discretization, typically the element length for
uniform meshes. The last two numbers are related to the Debye length rD defined in (2.19).
The parameters that govern stability are expected to be the following three ratios

γLi+ =
∆tDLi+

L2
, γX− =

∆tDX−

L2
, γφ =

rD
L

4.6.4 Simulations

Single discharge

Several simulations have been carried out with different time steps and number of elements.
The outcomes here reported refer to 128 equal finite elements and a constant time step of 1
minute, for which

γLi+ = 250.776 , γX− = 376.163 , γφ = 1.92234× 10−5

At the initial time t = 0, concentration for ions is given according to (4.39, 4.45). For being
in thermodynamic equilibrium with neither current nor mass flowing, the electric potential
satisfies equations (4.40) and has to be homogeneous

φe(~x, 0) = 0 ~x ∈ Ve (4.54)

After a “sufficiently long” time has passed, the steady state configuration

c∞(x) = cbulk −
h1C

2DLI+
(x− l

2
) (4.55)

is approached. As reported in Figure 4.2, both the solution provided in [10] and the steady
asymptotic behavior are adequately recovered.

Figure 4.3 depicts the electric potential φ(x) as well as electric field ~E(x) and their
evolution in time. The figure shows a fictitious jump between the initial, homogeneous
condition and the first curve that refers to one minute. This is due to the chosen time step
∆t = 60s that is too large to follow the initial evolution in time of the current according to
(4.44); indeed at one minute the current I(t) basically amounts at I1C . A refined analysis
with time step ∆t = 0.05s has been carried out and φe(x) is depicted in the upper left corner
of Figure 4.3. It is worth noting that the electric potential is one of the unknowns of the
model at hand, whereas it is reconstructed a posteriori in the models based on the porous
electrode theory.

The flux of ions is plotted in Figure 4.4. The flux near the electrode interfaces is dictated
by the boundary conditions (4.46). The closer the regions to the electrodes the faster they
reach the steady state. As discussed in [10] the Li+ ionic current is mainly carried by migra-
tion at the beginning of the charging process, while under steady-state conditions diffusion
and migration contribute equally. The anionic mass flux reaches its peak rapidly, and to
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Figure 4.2: Ionic concentration profile at Anode (red) and Cathode (green). Steady state solutions are
reported for the Anode (c∞(0)) and for the Cathode (c∞(l)). Both are asymptotically achieved. The blue dots
refer to the solution provided by [10].

capture it correctly a small time step is required. Once the steady state is approached, the
flux of PF−6 tends to vanish, and no contribution is provided to the overall ionic conductivity.

Figure 4.5 assesses the electroneutrality condition (4.1), which is well approximated by
the numerical solution, in the sense that the difference in concentration is about nine to ten
orders of magnitude smaller than the equilibrium electrolyte concentration cbulk. The direct
difference of the two approximated fields however does not provide a reliable quantitative
account of the deviation from electroneutrality [131]. In terms of the accuracy in concentra-
tions cLi+ , cX− and potential φe the outcome appears satisfactory. Nevertheless, it might be
possible that the accuracy for cLi+ and cX− is insufficient in terms of the difference cLi+−cX− .
Indeed, the numerical approximations for cLi+ and cX− coincide by eight digits or more, and
the difference is obviously affected by numerical accuracy. Therefore, the obtained difference
in concentrations cLi+ − cX− should be interpreted as an upper bound for the concentration
unbalance.

A better estimate for the deviation from electroneutrality can be achieved from Gauss
law (2.8). The electric charge ζ is related by equation (2.2) to the gap of concentration by
Faraday’s constant. Since the ratio of Faraday’s constant and the permittivity amounts at
F

ε| ∼ 1.1 · 1017ε|r Vm mol−1, an extremely small deviation from electroneutrality may provide

a significant electric field contribution in the battery cell. A finite difference approximation
for the concentration imbalance shows

cLi+ − cX− = − ε|
F

∂2φ

∂x2
∼ − ε|

F

φ(x+ h)− 2φ(x) + φ(x− h)

h2
(4.56)

with h = l/128 the “element length”. Within the limit of its numerical accuracy8, approach

8It is well known however that second derivative estimation via finite differences may result in poor
accuracy.
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Figure 4.3: The electric potential φe(x) and electric field ~E(x) parametrized in time. The electric charge is
related to the unbalance of concentration by Faraday’s constant. Since the ratio of Faraday’s constant and the
permittivity amounts at F

ε| ∼ 1.1 · 1017ε|r V m mol−1, the observed deviation from electroneutrality generates a

non negligible electric field in the battery cell in view of Gauss’s law.

(4.56) provides estimations of deviation from electroneutrality two order of magnitudes less
than the simple difference of concentrations (see figure 4.6).

Discharge/charge cycle

A second test was carried out by ending the simulation at tf = 7200s and including a current
reversal after one hour, without relaxation. The current I(t) is therefore tuned in time as
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Figure 4.4: Three dimensional plots of ~hLi+(x, t), ~h
PF−

6
(x, t), with their zoom about the first minute.

follows:

I(t) = (1− e−t) I1C ×
{

1 if t ≤ 3600 s
−1 if 3600 < t ≤ 7200 s

(4.57)

with t in seconds. Initial (4.45) and boundary (4.46) conditions are unaffected, as well as all
material parameters, the time step and the number of finite elements.

After current reversal, the concentration eventually reaches a new steady state, which
has an opposite sign with respect to the one right before t = 3600s, see Figure 4.7. A similar
conclusion can be drawn for the electric potential.

Figure 4.8 allows to conclude that even under current reversal, electroneutrality condition
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Figure 4.5: Ionic concentration ratio
c
Li+
− c

X−
cbulk

at Anode (continuous line) and Cathode (dotted line). The
plot shows that the difference in concentration after the numerical solution is ten orders of magnitude smaller
than the equilibrium electrolyte concentration. Electroneutrality (4.1) is thus well approximated.

(4.1) is adequately approximated, i.e. nine to ten orders of magnitude smaller than the
equilibrium electrolyte concentration as for monotonic current. The analysis shows also that
a quantitative analysis cannot be performed by the direct difference cLi+ − cX− as already
argued. Figure 4.8 indeed does not show any sort of sign inversion for the deviation from
electroneutrality. On the contrary, making recourse to formula (4.56) appears to be more
accurate and robust, as pointed out again in figure 4.8.

4.7 Dilute solution accounting for saturation

From Figure 4.2 it is clear that the steady state concentration at the electrodes is in the order
of 2800 mol m−3. It can be argued from literature [136] that the saturation limit for LiPF6 in
the electrolyte solvent is between 4000 and 5000 mol m−3. The concentrations arising from
numerical simulations do not correspond to a solution far from saturation, amounting about
50% of such a limiting value. The usual and widespread usage of a simplified form of the
chemical Helmholtz free energy density due to mixing of the species (4.31-4.32) is not allowed.
The modifications induced by the saturation contribution extensively are investigated in
subsequent sections.

Balance laws (refer to section 4.1) are not at all affected by the saturation. Mass balance
(4.1) is kept homogeneous even while modeling the influence of saturation, which means
the degree of dissociation of the binary salt is still considered to be complete. The latter
condition may not be satisfied in reality when concentrations get close to the saturation limit,
thus requiring a bulk term in the mass balance equation of the ionic species accompanied
with a further mass balance equation for the undissociated salt [10]. Nevertheless, the
outcomes of the numerical analyses reported in section 4.6 (refer also to [128]) suggest that
concentrations are too high to neglect the role of saturation, but still sufficiently far from
saturation to exclude incomplete dissociation of the Li-salt.
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Figure 4.6: Concentration ratio
c
Li+
− c

X−
cbulk

at Anode (left) and Cathode (right) derived from equation (4.56).

According to thermodynamic restrictions of section 4.3, the so called “dilute solutions”
constitutive model has been implemented taking into account the saturation limit. The
formulation also applies to mixing with interactions (regular solutions), to moderately di-
luted solutions in terms of activity coefficients and to concentrated solutions modeled by the
Maxwell-Stefan equations of multicomponent diffusion.

One more time, a weak form has been derived for governing equations in terms of the
selected thermodynamic fields and the one-dimensional application to ionic transport in Li-
ion batteries electrolyte, illustrated in section 4.6, performed. Outcomes with and without
saturation are compared, and the role of the latter clearly identified.
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Figure 4.7: A three dimensional plot of concentration cLi+ and electric potential φ.

4.8 Constitutive theory: diluted solution accounting for sat-
uration

It is assumed the Helmholtz free energy density ψ can be decomposed in three separate parts,
as in section 4.4:

ψ(ε, cα, ~E) = ψdiff (cα) + ψel( ~E) + ψmech(ε)

Definitions (4.28 - 4.29 - 4.35 - 4.36) still hold for ψel, ~De, ψmech and σ respectively.

A classical [20] specialization of mobility tensor Mα for dilute solutions accounting for
saturation is isotropic yet non linear

Mα(cLi+ , cX−) = u|α cα (1− θLi+ − θX−) 1 (4.58)

θα is defined as the ratio θα = cα
cmax , where cmax stands for the cumulative saturation limit

for ions Li+ and X− in the solution, in condition of electroneutrality9. Definition (4.58)
represents the physical requirement that both the pure (cα = 0) and the saturated (θLi+ +

9In the simulation it has been taken as twice the saturation limit of the salt LiX.
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Figure 4.8: Concentration ratio
c
Li+
− c

X−
cbulk

at Anode (continuous line) and Cathode (dotted line) derived

from equation (4.56) and from direct difference of numerical solutions for cLi+ and cX− .

θX− = 1) phases have vanishing mobilities in the electrolyte. It can be seen as a special
case of the Maxwell-Stefan approach (see appendix 4.15). Exploiting the electroneutrality
condition10 (4.1) largely discussed in section 2.3, the specialization for the mobility tensor
simplifies as

Mα(cα) = u|α cα
(

1− 2
cα
cmax

)
1 (4.59)

Anions and cations are thus considered as non-interacting and no recourse is made to
regular solution. The free energy comes out of an ideal solution model as:

ψiddiff (cLi+ , cX−) =

µ0
Li+ cLi+ + µ0

X− cX− +RT cmax (θLi+ ln[θLi+ ] + θX− ln[θX− ]) +

+RT cmax (1− θLi+ − θX−) ln[(1− θLi+ − θX−)]

(4.60)

10No contradictions arise using this simplification which entirely fits within the discussion of section 2.3.
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By exploiting electroneutrality (4.1), the chemical potential results in the form

µα = µ0
α +RT ln

[
cα

cmax − 2cα

]
(4.61)

thus leading to the following expression for the mass flux:

~hα = −D|α ∇ [ cα ]− zα F u|α cα
(

1− 2
cα
cmax

)
∇ [φe ] (4.62)

By comparing (4.62) with the mass flux formula for infinitely diluted solutions (4.34) one
concludes that saturation has no effect on the diffusivity: in fact, the impact of saturation on
the mobility tensor (4.59) and on the chemical potential (4.61) act one against the other and
the effects cancel out in the evaluation of diffusivity11. Saturation does affect the electric
contribution in the mass flux (4.62) by changing the mobility, thus creating either a lower
mass flux at a given potential gradient or a higher potential gradient at a given flux.

4.9 Governing equations and weak form: dilute solution ac-
counting for saturation

Governing equations have been derived by incorporating constitutive equations (4.29), (4.62),
and (4.36) into balance equations (4.2). The variable fields that rule the problem are the
same as in section 4.5: concentrations cα, displacements ~u, and the electric potential φe.
Governing equations hold at all points ~x ∈ Ve in all instants of interval [0, tf ]:

∂cLi+

∂t
+ div

[
−D|Li+ ∇ [ cLi+ ]− F u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [φe ]

]
= 0 (4.63a)

∂cX−

∂t
+ div

[
−D|X− ∇ [ cX− ] + F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [φe ]

]
= 0 (4.63b)

div

[
−ε| ∇

[
∂φe
∂t

]
+ F (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ])

]
+

− F 2 div
[ (

u|Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

) )
∇ [φe ]

]
= 0 (4.63c)

div [C : ε ] = ~0 (4.63d)

The difference between equations (4.62) and (4.34) are echoed in the distinction between
this set of governing equations and the ones in section 4.5. Boundary conditions

~hLi+ · ~n = −hBV ~x ∈ ∂NVe (4.64a)

~hX− · ~n = 0 ~x ∈ ∂NVe (4.64b)

curl
[
~H
]
· ~n = −F hBV ~x ∈ ∂NVe (4.64c)

σ · ~n = ~p ~x ∈ ∂NVe (4.64d)

are imposed along Neumann boundaries12 ∂NVe. To ensure solvability to the problem,
Dirichlet boundary conditions have to be enforced along part ∂DVe as in section 4.5, being
∂Ve = ∂DVe ∪ ∂NVe.

11There is actually more to say: it is anticipated here that in view of electroneutrality the saturation has
no influence on the concentration field.

12Boundary conditions (4.64) have been derived in section 4.2.
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Initial conditions (4.39) are foisted on concentration of ions cLi+(~x, t = 0) and cX−(~x, t =
0) in the electrolyte solution and comply equilibrium thermodynamics and electroneutrality
condition (4.1).

Gauss law and balance of momentum in form (4.40) provide the necessary and sufficient
equations to be solved for φ and ~u at t = 0. Together with boundary conditions for displace-
ments and tractions and homogeneous boundary conditions for potential and current they
lead to the initial distribution of electric potential and displacements.

The evolution problem can be formulated in a weak form by multiplying the governing
equations (4.63) by a suitable set of test functions and performing an integration upon the
domain. As for (4.41) “variations” of the same set of variables that rule the problem have
been used. The mass balance equations have been scaled by coefficients inherited from
constitutive equation (4.61) to give to the new weak form the physical dimension of a power
expenditure. The following identities are derived straightforwardly:

RT

cbulk

∫
Ve

ĉLi+

{
∂cLi+

∂t
+ div

[
~hLi+

]}
dV = (4.65a)

RT

cbulk

∫
Ve

ĉLi+
∂cLi+

∂t
+ D|Li+ ∇ [ ĉLi+ ] · ∇ [ cLi+ ] dV+

+
RT

cbulk

∫
Ve

F u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [ ĉLi+ ] · ∇ [φe ] dV+

− RT

cbulk

∫
ΓBV

ĉLi+ hBV dΓ = 0

RT

cbulk

∫
Ve

ĉX−

{
∂cX−

∂t
+ div

[
~hX−

]}
dV = (4.65b)

RT

cbulk

∫
Ve

ĉX−
∂cX−

∂t
+ D|X− ∇ [ ĉX− ] · ∇ [ cX− ] dV+

− RT

cbulk

∫
Ve

F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [ ĉX− ] · ∇ [φe ] dV = 0

∫
Ve

φ̂e div

[
∂ ~D

∂t
+ F

(
~hLi+ − ~hX−

)]
dV = (4.65c)∫

Ve

ε| ∇
[
φ̂e

]
· ∇
[
∂φe
∂t

]
dV+

+

∫
Ve

F 2
(

u|Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

))
∇
[
φ̂e

]
· ∇ [φe ] dV+

− F
∫
Ve

∇
[
φ̂e

]
· (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ] ) dV − F

∫
ΓBV

φ̂e hBV dΓ = 0

−
∫
Ve

~̂u · div

[
∂σ

∂t

]
dV =

∫
Ve

ε̂ : C :
∂ε

∂t
dV −

∫
∂NVe

~̂u · ∂
~p

∂t
dΓ = 0 (4.65d)

Boundary conditions (4.64) have been used.

By scaling the fields that govern the problems according to (4.42) a dimensionless weak
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form can be given in a time interval [0, tf ] as

Find y∗(~x, t) ∈ V [0,tf ] such that

∂

∂t
b∗ (ŷ∗(~x), y∗(~x, t)) + a∗(ŷ∗(~x), y∗(~x, t)) = f∗(ŷ∗(~x)) ∀ŷ∗(~x) ∈ V

(4.66)

where subequations

b∗ (ŷ∗(~x), y∗(~x, t)) =

RT cbulk

∫
Ve

ĉ∗
Li+

c∗
Li+

+ ĉ∗X− c
∗
X− dV+

+ ε|
(
RT

F

)2 ∫
Ve

∇
[
φ̂∗e

]
· ∇ [φ∗e ] dV + L2

∫
Ve

ε̂∗ : C : ε∗ dV

a∗ (ŷ∗(~x), y∗(~x, t)) =

RT cbulk D|Li+

∫
Ve

∇
[
ĉ∗

Li+
]
· ∇
[
c∗

Li+
]

+ c∗
Li+

(
1− 2

c∗
Li+

c∗max

)
∇
[
ĉ∗

Li+
]
· ∇ [φ∗e ] dV+

+RT cbulk D|X−
∫
Ve

∇ [ ĉ∗X− ] · ∇ [ c∗X− ]− c∗X−

(
1− 2

c∗X−

c∗max

)
∇ [ ĉ∗X− ] · ∇ [φ∗e ] dV+

+RT cbulk D|Li+

∫
Ve

∇
[
φ̂∗e

]
· ∇ [φ∗e ]

(
1− 2

c∗
Li+

c∗max

)
c∗

Li+
+∇

[
φ̂∗e

]
· ∇
[
c∗

Li+
]

dV+

+RT cbulk D|X−
∫
Ve

∇
[
φ̂∗e

]
· ∇ [φ∗e ]

(
1− 2

c∗X−

c∗max

)
c∗X− −∇

[
φ̂∗e

]
· ∇ [ c∗X− ] dV

f∗ (ŷ∗(~x)) = RT

∫
ΓBV

(φ̂∗e + ĉ∗
Li+

) hBV dΓ + L

∫
∂NVe

~̂u∗ · ∂
~p

∂t
dΓ

subequations with y∗(~x, t) = {c∗
Li+

, c∗X− , φ
∗
e, ~u
∗ }.

4.10 One-dimensional modeling of ionic transport in a liquid
electrolyte accounting for saturation

This section develops further the case studied in section 4.6. A battery with a storage
capacity of 720mAh is dealt with, which undergoes a galvanostatic process of charge at
different C-rates (0.25, 0.5, 1, 2, and 4). The electrolyte is supposed to have a saturation
limit for LiPF6 of 5000mol m−3 (whence cmax = 104mol m−3). The impact of saturation on
the modeling of battery performances is analyzed.

Temperature of 25oC is kept constant. Initial and boundary conditions are one and the
same as section 4.6. The current I(t) (with t in seconds) is tuned in time as

I(t) = (1− e−t) InC (4.67)

InC stands for the steady current at a C-rate equal to n. The concentration of ions across
the electrolyte is uniform at t = 0 and amounts at cbulk = 1500 mol m−3. All other material
and geometrical parameters are left unchanged with respect to the ones in section 4.6.
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4.10.1 Discretization and time advancing by finite differences

Discretization is performed via separated variables, with spatial test ϕi(x) and shape func-
tions ϕj(x) and nodal unknowns (collectively gathered in column y with component yj(t))
that depend solely on time. Weak form (4.66) is accordingly transformed in a first order
Ordinary Differential Equation (ODE) in time13, which reads:

Find y(t) s.t. b∗i · ẏ(t) + la∗i · y(t) + na∗i [ y(t) ] = f∗i (t) for i = 1, 2, ..., N (4.68)

Linear operators b∗i and la∗i are not influenced by the saturation of the electrolyte and coincide
with the same operators in section 4.6.2. Non linear form na∗i [ y(t) ] on the contrary must
be updated. It reads

na∗i [ y(t) ]

RT cbulk
= D|Li+

∫ l

0
ϕLi+

j cLi+

j

(
1− 2

cmax
ϕLi+

n cLi+

n

)
∂ϕLi+

i

∂x

∂ϕφk
∂x

φek dx +

+ D|Li+

∫ l

0
ϕLi+

j cLi+

j

(
1− 2

cmax
ϕLi+

n cLi+

n

)
∂ϕφi
∂x

∂ϕφk
∂x

φek dx +

− D|X−
∫ l

0
ϕX−
j cX−

j

(
1− 2

cmax
ϕX−
n cX−

n

)
∂ϕX−

i

∂x

∂ϕφk
∂x

φek dx +

+ D|X−
∫ l

0
ϕX−
j cX−

j

(
1− 2

cmax
ϕX−
n cX−

n

)
∂ϕφi
∂x

∂ϕφk
∂x

φek dx

A family of time-advancing methods based on the so-called θ-scheme can be set up for
the discrete problem (4.68). In the numerical simulations that follows, the backward Euler
scheme (θ = 1) has been selected, thus seeking for y(t+ ∆t) such that

b∗i ·
y(t+ ∆t)

∆t
+ la∗i · y(t+ ∆t) + na∗i [ y(t+ ∆t) ] = f∗i (t+ ∆t) + b∗i ·

y(t)

∆t
(4.69)

As in 4.6, the linearized updated and the Newton-Raphson strategies have been implemented
to solve non-linear problem (4.69).

4.10.2 Simulations

Several simulations of a single charge process have been carried out with different time steps
and number of elements. An account of outcomes that refer to 150 equal finite elements and
a constant time step of 1 second is here given. At the initial time the electric potential solves
equations (4.40) and has to be homogeneous for being in thermodynamic equilibrium with
neither current nor mass flowing.

φe(~x, 0) = 0 ~x ∈ Ve (4.70)

A symmetric ionic concentration profile arose in the electrolyte, initiated at the bulk
concentration cbulk that reflects thermodynamic equilibrium at time t = 0. Such a symmetry,
emerged in section 4.6 (see also [128]) at a unit C-rate, is clearly envisaged also at different
charging speeds, as emphasized in Figure 4.9.

13As in section 4.6.2 the star superscript is omitted from the definition of dimensionless quantities and the
usual Einstein convention of sum is taken for the sake of readability.
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Figure 4.9: Lithium ions concentration profiles cLi+(x, t) at different C-rates. In all cases the concentration
at the initial time amounts at cbulk, thus satisfying thermodynamic equilibrium.
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Figure 4.10: Concentration profiles with saturation for a galvanostatic process at different C-rates at Cathode
(upper, shadowed area) and Anode.

After a “sufficiently long” time has passed, the steady state configuration has been ap-
proximated at C-rates less than 2. Analyses at higher C-rates have been quit before achieving
the steady state configuration, because the limit concentration cLi+ = 0 was reached at the
anode. In particular, for C-rate=2 the final time was tf = 210s, whereas for C-rate=4 the
analyses have been terminated at tf = 54s. Concentration profiles in the presence of satura-
tion at different C-rates are represented in Figure 4.10. The upper part of the picture, which
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is shadowed, refers to the cathode, where concentration of Li+ ions increase during charge
processes. The lowest part of the same picture refers to the anode. The concentration profiles
are symmetric respect to the bulk concentration cbulk = 1500mol m−3. As it was shown in
Figure 4.2 for a unit C-rate, the steady asymptotic behaviors are recovered well, but steady
state concentrations c∞(0) and c∞(l) have not been represented to the sake of readability.
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Figure 4.11: Difference in concentration along the electrolyte between the solutions with and without satu-
ration for a galvanostatic process at unit C-rate.

Figure 4.11 depicts the difference in concentration ∆c(x, t) along the electrolyte 0 ≤ x ≤
0.28mm between the solutions with and without (section 4.6) saturation for a galvanostatic
process at a unit C-rate. The difference ranges between 10−15 < ∆c(x, t) < 10−12 mol m−3

depending on time 0 ≤ t ≤ tf = 1000s. It can be assessed from Figure 4.2 that ionic
concentrations are in the order of 103mol m−3 along the electrolyte in the whole time frame.
Accordingly, the impact of the saturation on concentration appears completely negligible.
This effect has to be ascribed to electroneutrality.

To prove this assert, consider mass balance equations (4.63a) and (4.63b), here rewritten
when electroneutrality condition (4.1) holds14

∂c

∂t
+ div

[
−D|Li+ ∇ [ c ]− F u|Li+ c

(
1− 2

c

cmax

)
∇ [φe ]

]
= 0 (4.71a)

∂c

∂t
+ div

[
−D|X− ∇ [ c ] + F u|X− c

(
1− 2

c

cmax

)
∇ [φe ]

]
= 0 (4.71b)

By multiplying the Li+ balance equation for the mobility u|X− and the X− balance equation
for the mobility u|Li+ the two equations (4.71) can be subtracted to form

(u|X− + u|Li+)
∂c

∂t
− 2RT u|X− u|Li+ ∆ [ c ] = 0 (4.72)

Ionic concentrations in the assumption of electroneutrality are therefore independent upon
the electric potential even in the case of saturation modeled via Fick’s law (4.62). As the

14so to identify cLi+ = cX− = c



94 4. Electrolyte Formulation

deviation from electroneutrality is small (see discussions in 2.3) the analysis above provides
an acceptable rationale to the numerically observed independence of ionic concentrations
upon saturation.

Denote with φnosat(x, t) the solution for the electric potential when concentrations are far
from saturation, i.e. assuming cmax →∞ in governing equations (4.63), and with φe(x, t) the
solution for the electric potential of governing equations (4.63) with cmax = 10000mol m−3.
Electric potential profiles at the cathode whether in the presence of saturation or not at
different C-rates are represented in figure 4.12.
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Figure 4.12: Potential profile with and without saturation for a galvanostatic process at different C-rates at
cathode. The electric potential at the anode is arbitrarily set to zero.

Figure 4.13 depicts the evolution in time of the difference

∆φ(x, t) = φe(x, t)− φnosat(x, t)

in the electric potential φ(x). The picture clearly shows that saturation does influence the
electric potential and that the difference increases with time for all C-rates. The relative
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difference
∆φ(x, t)× φ−1

nosat(x, t)

is plot in Figure 4.14. The latter shows that the saturation may increase the electric potential
by about 40% near the cathode for all C-rates, and appears to be particularly significant at
small C-rates even though in such cases concentrations may not be as close to the saturation
limit at the end of the analyses tf as they are for high C-rates.
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Figure 4.13: Evolution in time of the difference ∆φ(x, t) = φ(x, t) − φnosat(x, t) for several C-rates. The
trend of the evolution in time is also depicted.

Owing to Clausius-Planck inequality, the internal entropy production (shortened in IEP)
cannot be negative. Following the approach of rational thermodynamics of Coleman and
Noll, it can be written as:

IEP(x, t) = − 1

T

∑
α

~hα · ∇ [µα ] ≥ 0 (4.73)

for isothermal processes with no inelastic mechanical effects. After replacing Fick’s law
(4.30-4.59) into (4.73), the total internal entropy production amounts at

1

T

∑
α

∫ tf

0

∫ L

0

1

uα cα
(
1− 2 cα

cmax

) ~hα · ~hα dxdt (4.74)
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Figure 4.14: Evolution in time of the ratio ∆φ(x, t) × φ−1
nosat(x, t) for several C-rates. The trend of the

evolution in time is also depicted.

with ~hα as in equation (4.62). Integration in time can be approximated in every time step by
means of a trapezoidal rule. Furthermore, having used linear shape functions to approximate
the concentration and potential fields, gradients result in constant amounts in each finite
element. The scalar product ~hα ·~hα turns out to be a polynomial of degree four in the space
variable x, which is of trivial integration. The amount

1

T

∫ t

0

∫ L

0

1

uα cα
(
1− 2 cα

cmax

) ~hα · ~hα dxdτ (4.75)

is plotted in Figure 4.15 as a function of time t. It represents the buildup of internally
generated entropy for Li+ (continuous curve) and for PF−6 (dashed curve), respectively, at
different C-rates in the presence of saturation. At low C-rates, the flux of ions PF−6 abates
with time (Figure 4.4) and the slope of the IEP gets flatter and flatter with time15. Similarly,

15The flux near the electrode interfaces is dictated by the boundary conditions. The closer the regions to
the electrodes the faster they reach the steady state - see Figure 5 in [128]). As discussed in [10] the Li+ ionic
current is mainly carried by migration at the beginning of the charging process, while under steady-state
conditions diffusion and migrations contribute equally. The anionic mass flux reaches its peak very rapidly,
and once the steady state is approached, the flux of PF−6 tends to vanish, and no contribution is provided
further to the overall ionic conductivity.
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the flux of ions Li+ tends to a constant while approaching the steady state conditions. The
two effects combined providing to the IEP a linear trend with time at low C-rates. A similar
behavior would be expected at higher C-rates, but the limit concentration is reached well
before the steady state configuration.
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Figure 4.15: Buildup of internally generated entropy for Li+ (continuous curve) and for PF−6 (dashed curve)
at different C-rates in the presence of saturation.

Figure 4.16 compares the total internal entropy production (4.74) with and without
saturation. The increment of internally generated entropy due to the saturation is in the
order of 40% of the unsaturated electrolyte IEP. The higher the C-rate the higher the rate
of internally generated entropy. Nevertheless, as the limit concentration is reached at high
charge rates, it is not allowed to conclude that the total accumulation of IEP is larger at
high C-rates.

4.10.3 Remarks: liquid electrolyte

Either when C-rates are high (say 2 or more), or when the charge duration allows to reach
a steady-state configuration at moderate C-rates (say about 1), the concentration near the
electrodes gets close to the limit concentration cLi+ = 0 at one side and close to the symmetric
concentration cLi+ = 2cbulk at the other electrode. In real batteries the latter concentration
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Figure 4.16: Total internal entropy production (4.74) with (continuous curve) and without (dashed curve)
saturation.

can be higher than half of the saturation limit of the Li salt in the electrolyte solvent.
Accordingly, it calls into question the assumption of ideal solutions far from saturation.

Such an assumption as been investigated in the further hypothesis that concentrations
are too high to neglect the role of saturation but still sufficiently low to exclude incomplete
dissociation of the Li-salt. This conjecture is confirmed indeed by the data and the numerical
simulations on real batteries.

Constitutive specification (4.62) accounts for the saturation contribution. By comparing
it with the mass flux constitutive equation adopted in [128], here reprinted in formula (4.62),
one notices that saturation has no effect on the diffusivity. Under the assumption of elec-
troneutrality, it can be assessed that saturation does not impact the concentration profiles
either. Indeed, the electroneutrality condition (4.1) is well approximated during the simula-
tions and the influence of saturation on the concentration profiles is actually negligible, see
Figure 4.11.

Saturation does affect the electric potential in view of the mass flux equation (4.62)
because it acts as to modify the ionic mobility, in turn inducing a higher potential gradient
in the carried out simulations. Figures 4.13-4.14 confirm that the saturation may increase
the electric potential by about 40% near the cathode for all C-rates. Saturation impacts by
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a similar magnitude in the internal entropy production, as conveyed in Figure 4.16.

In conclusion, saturation appears to be an unavoidable feature in a multi scale and
multi physics approach to battery modeling [8, 9]. Furthermore, the fully three-dimensional
formulation proposed herein (see [8, 9, 128, 129]) and the numerical algorithms that emanate
from the consequent weak forms have shown to be robust and capable to include the new
constitutive specifications required to take into account of the saturation.
Moreover, the weak forms (4.43-4.66) are three-dimensional in nature, i.e. no 1D character
influence the modeling at all: a 2D simulation will be provided in chapter 7. Nevertheless,
one dimensional models can be formulated as a restriction of the general framework, as for
example shown in sections 4.6-4.10.

Computations, based on Backward Euler and Newton Raphson schemes, show that the
proposed methodology is efficient and reliable. Outcomes match the ones derived in [10].

4.11 Solid electrolyte

All-solid-state battery have a large beneficial impact on many applications, such as au-
tonomous devices for ambient intelligence and medical implants [21].
The ionically conductive solid-state electrolytes play an important role in the solid-state
battery design [21]. Construction of a consistent mathematical model describing the con-
ductivity in the solid-state electrolyte therefore forms an essential component.
To this end, the novel approach presented, considering Maxwell’s law explicitly, will be re-
shaped in the following sections to account for peculiar phenomena of solid-state electrolytes.

4.11.1 Balance equations

In Li3PO4 based solid-state electrolyte, Lithium atoms may occupy two states in the hosting
matrix, namely immobile, oxygen-binded Lithium (denoted with Li0) and mobile Li+ ions.
The total concentration of Lithium atoms in the solid electrolyte hosting material will be
defined by ctotLi and will henceforth assumed to be independent upon position ~x and time t.
Whereas ctotLi is a given amount assigned once for all for the electrolyte, ionic concentration
cLi+ changes during the process with position ~x and time t. So does the oxygen-binded
Lithium, according to balance

cLi0(~x, t) = ctotLi − cLi+(~x, t) (4.76)

The ionization reaction

Li0
kd

�
kr

Li+ + X− (4.77)

describes the transfer process of oxygen-binded Lithium to mobile Li+ ions leaving un-
compensated negative charges X− behind, which are chemically associated with the closest
nonbridging oxygen atoms. In isothermal processes, as the ones that are assumed to take
place in the present work, factors kd and kr are taken to be constant during the whole pro-
cess. They are not independent: under equilibrium conditions the rates of the forward and
backward reactions are equal. By equating the two rate equations for the chemical reaction
(4.77) it comes out

kd c
eq
Li0

= kr c
eq

Li+
ceq

X− (4.78)
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Equilibrium concentrations ceq
Li0

, ceq
Li+

, and ceq
X− do not depend on the state of charge of the

electrodes and are constant during the battery operation: therefore equation (4.78) is indeed
a relationship between kd and kr. To further stress this statement, the two constants can be
related to the total amount of Lithium atoms in the solid electrolyte hosting material ctotLi by
a constant 0 ≤ δ ≤ 1, which is calibrated against experimental analysis.

ceq
Li+

= ceq
X− = δ ctotLi , ceq

Li0
= (1− δ) ctotLi (4.79)

Statement (4.79) stems from eq. (4.76) and from observing that under equilibrium conditions
electroneutrality holds strictly. Eq. (4.78) relates kd to kr , ctotLi and δ as

kd = kr c
tot
Li

δ2

1− δ
(4.80)

Equilibrium does not take place in batteries during charge, discharge or relaxation. It is in
fact a limit condition. Accordingly equation (4.78) does not hold when actual concentrations
replace equilibrium concentrations. During batteries operation reaction (4.77) is therefore
unbalanced and Li+ ions are either generated or consumed. The ionization reaction acts
as a rate controller: at all points ~x where Li+ accumulates during battery operations (see
for instance the simulations in [10, 21, 128, 129]) more immobile, oxygen-binded Lithium is
created, and vice versa. This results in a mass supply/sink within the mass balance equation
(2.1) for ionic species. The amount of generated ions (either Li+ or X−) is:

sLi+(~x, t) = sX−(~x, t) = kd cLi0(~x, t)− kr cLi+(~x, t) cX−(~x, t) (4.81)

By making use of equation (4.76), the mass balance equations that characterize the transport
of Li+ ions and X− uncompensated negative charges in the electrolyte read:

∂cLi+

∂t
+ div

[
~hLi+

]
+ kd cLi+ + kr cLi+ cX− = kd c

tot
Li ~x ∈ Ve (4.82a)

∂cX−

∂t
+ div

[
~hX−

]
+ kd cLi+ + kr cLi+ cX− = kd c

tot
Li ~x ∈ Ve (4.82b)

The electric displacement field is governed by the rate equation

div

[
∂ ~De

∂t
+ F (~hLi+ − ~hX−)

]
= 0 ~x ∈ Ve (4.82c)

The balance of forces is taken homogeneous

div [σ ] = ~0 ~x ∈ Ve (4.82d)

skw[σ ] = 0 ~x ∈ Ve

4.11.2 Weak form and boundary conditions

The weak formulation of balance equations (4.82) results from multiplication by a suitable
set of test functions and from an integration upon the domain, exploiting Green’s formula
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to reduce the order of differentiation. Take the mass balance equation (4.82a, 4.82b) in the
following abstract formalism (α = Li+,X−):∫

Ve

µ̂α

{
∂cα
∂t

+ div
[
~hα

]
+ kd cLi+ + kr cLi+ cX−

}
dV = (4.83)

=

∫
Ve

µ̂α
∂cα
∂t

dV +

∫
Ve

div
[
µ̂α ~hα

]
−∇ [ µ̂α ] · ~hα dV+

+

∫
Ve

kd µ̂α cLi+ + kr µ̂α cLi+ cX− dV

=

∫
Ve

µ̂α
∂cα
∂t

dV −
∫
Ve

∇ [ µ̂α ] · ~hα dV +

∫
Ve

kd µ̂α cLi+ + kr µ̂α cLi+ cX− dV

+

∫
ΓBV

µ̂α ~hα · ~ne dΓ

=

∫
Ve

µ̂α kd c
tot
Li dV

Within (4.83) a contribution is defined at the boundary ΓBV ⊆ ∂V N
e of the electrolyte, i.e.

at the location ΓBV where the oxidation/reduction reaction takes place. At that locus there
is no intercalation of X− charges, whereas a Faradaic reaction converts the oxidized Lithium
to its neutral state before its diffusion into the electrode lattice or vice versa. The mass flux
at the interface ΓBV satisfies the following boundary conditions:

~hLi+ · ~ne = −hBV ~x ∈ ΓBV (4.84a)

~hLi+ · ~ne = 0 ~x ∈ ∂NVe \ ΓBV (4.84b)

~hX− · ~ne = 0 ~x ∈ ∂NVe (4.84c)

As in section 4.2 the mass flux at the boundary hBV is here considered as given.

With a similar path of reasoning one deals with balance law (4.82c)∫
Ve

φ̂e div

[
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

)]
dV =

−
∫
Ve

∇
[
φ̂e

]
· ∂

~De

∂t
dV − F

∫
Ve

∇
[
φ̂e

]
·
(
~hLi+ − ~hX−

)
dV+

+

∫
ΓBV

φ̂e

{
∂ ~De

∂t
+ F

(
~hLi+ − ~hX−

)}
· ~ne dΓ = 0

(4.85)

Ampère’s law {
∂ ~D

∂t
+ F ~hLi+

}
· ~ne = curl

[
~He

]
· ~ne ~x ∈ ΓBV (4.86)

allows to devise boundary conditions for the electric potential in terms of the projection of
the curl of magnetizing field across the interface. They will be considered later in section
6.1.3.

Finally, for the equilibrium equations (4.82d) in rate form, one writes∫
Ve

~̂u · div

[
∂σ

∂t

]
dV = −

∫
Ve

ε̂ :
∂σ

∂t
dV +

∫
ΓBV

~̂u · ∂σ
∂t
· ~ne dΓ = 0 (4.87)
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Tractions across the interface are supposed to be continuous, and no displacement jumps are
taken into account.

4.11.3 Thermodynamics and constitutive theory: solid electrolyte

Thermodynamic restrictions, formulated as in (4.26), still apply. The first and the second
law of thermodynamics are in fact unaffected by the nature of the source terms sLi+ and
sX− in the balance equations (4.82). Since internal energy balance (4.12), entropy imbalance
(4.22) and Coleman-Noll will procedure would present no novelties with respect to section
4.3 they will not be repeated here.

By considering dilute solutions accounting for saturation, under the assumption of non-
interacting species (refer to section 4.8), constitutive relation for ~De, ~hα and σ in terms of
{cα, φe, ~u} read

~De = −ε| ∇ [φe ] (4.88a)

~hα = −D|α ∇ [ cα ]− zα F u|α cα
(

1− 2
cα
cmax

)
∇ [φe ] (4.88b)

σ = K tr [ ε ] 1+ 2Gdev [ ε ] (4.88c)

4.11.4 Governing equations: solid electrolyte

Governing equations can be derived by incorporating the constitutive equations (4.88) into
balance equations (4.82). The variable fields that rule the problem, resulting from the choice
made for thermodynamic prescriptions, are concentrations cα, displacements ~u, and the
electric potential φe. Governing equations hold at all points ~x ∈ Ve at all instants:

∂cLi+

∂t
+ div

[
−D|Li+ ∇ [ cLi+ ]− F u|Li+ cLi+

(
1− 2

∂cLi+

∂cmax

)
∇ [φe ]

]
+ (4.89a)

+ kd cLi+ + kr cLi+ cX− = kd c
tot
Li

∂cX−

∂t
+ div

[
−D|X− ∇ [ cX− ] + F u|X− cX−

(
1− 2

∂cX−

∂cmax

)
∇ [φe ]

]
+ (4.89b)

+ kd cLi+ + kr cLi+ cX− = kd c
tot
Li

div

[
−ε| ∇

[
∂φe
∂t

]
+ F (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ])

]
+

− F 2 div
[{

u|Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

) }
∇ [φe ]

]
= 0 (4.89c)

div [C : ε ] = ~0 (4.89d)

Initial conditions are usually imposed for concentration of ions cLi+(~x, t = 0) and cX−(~x, t =
0) in the electrolyte solution. To comply with equilibrium thermodynamics they are con-
stant in volume Ve; furthermore initial concentrations are equal, obeying the electroneutrality
condition. Consistently, a positive constant cbulk will be defined as

cbulk = cLi+(~x, t = 0) = cX−(~x, t = 0) (4.90)

and will be used to scale concentration variables henceforth.
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Initial conditions for electric potential and displacements solve a boundary value problem
at t = 0. In view of the perfect electroneutrality, at initial time Gauss law (2.8) and balance
of momentum (2.11) provide the necessary and sufficient equations to be solved for φe and
~u:

div [ ε| ∇ [φe ] ] = 0 ~x ∈ Ve, t = 0 (4.91a)

div [C : ε ] = ~0 ~x ∈ Ve, t = 0 (4.91b)

together with homogeneous boundary conditions for current, in view of thermodynamic
equilibrium at initial time, and usual given boundary conditions for displacements and trac-
tions.

4.12 Weak form: solid electrolyte

Following the same path of reasoning of sections 4.5 and 4.9 the evolution problem can be
formulated in a weak form. In Galerkin approaches weak forms are built using “variations”
of the same set of variables that rule the problem, namely “virtual” concentrations ĉLi+ , ĉX− ,

displacements ~̂u, electric potential φ̂e. By doing so however the energy meaning of (4.83),
(4.85) and (4.87) is lost. To give to the new weak form at least the physical dimension
of a power expenditure, equations will be scaled by suitable coefficients, that follow from
constitutive equations. A weak form of governing equations can be given in a time interval
[0, tf ] as

Find y(~x, t) ∈ V [0,tf ] such that

∂

∂t
b ( ŷ(~x), y(~x, t) ) + a( ŷ(~x), y(~x, t) ) = f( ŷ(~x) ) ∀ŷ(~x) ∈ V

(4.92)

where

b (ŷ, y) = − RT

cbulk

∫
Ve

ĉLi+ cLi+ + ĉX− cX− dV

+ ε|
∫
Ve

∇
[
φ̂e

]
· ∇ [φe ] dV +

∫
Ve

ε̂ : σ(ε) dV

a (ŷ, y) = − RT

cbulk

∫
Ve

D|Li+ ∇ [ ĉLi+ ] · ∇ [ cLi+ ] + D|X− ∇ [ ĉX− ] · ∇ [ cX− ] dV +

− RT

cbulk

∫
Ve

F u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [ ĉLi+ ] · ∇ [φe ] dV +

+
RT

cbulk

∫
Ve

F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [ ĉX− ] · ∇ [φe ] dV +

− RT

cbulk

∫
Ve

kd ĉLi+ cLi+ + kr ĉLi+ cLi+ cX− dV +

− RT

cbulk

∫
Ve

kd ĉX− cLi+ + kr ĉX− cLi+ cX− dV +

+ F

∫
Ve

∇
[
φ̂e

]
· (D|Li+ ∇ [ cLi+ ]−D|X− ∇ [ cX− ]) dV +

+ F 2

∫
Ve

u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇
[
φ̂e

]
· ∇ [φe ] dV +
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+ F 2

∫
Ve

u|X− cX−

(
1− 2

cX−

cmax

)
∇
[
φ̂e

]
· ∇ [φe ] dV +

f (ŷ) =

∫
ΓBV

(
F φ̂e −

RT

cbulk
ĉLi+

)
hBV dΓ + L

∫
∂NVe

~̂u · ∂
~̄p

∂t
dΓ +

−
∫
Ve

ĉLi+ kd c
tot
Li dV −

∫
Ve

ĉX− kd c
tot
Li dV

with list y(~x, t) = {cLi+ , cX− , φe, ~u }. Owing to the scaling, a characteristic length L and a
characteristic time ∆t appear in the weak form. They will be given a neat identification in
what follows. The proof descends from the same path of reasoning of the weak form for the
balance equations provided in appendix 3.5 and will not be replicated.

4.13 One-dimensional modeling of ionic transport in a solid
electrolyte

4.13.1 Description

This Section deals with the sole solid electrolyte of the case study analyzed in [21], namely
a 1.5µm thick Li3PO4 solid electrolyte of a 10µAh planar thin film all solid state Li-ion
battery. The cell was charged and discharged according to the following regime: constant
current with a 51.2 C-rate, followed by a 60 s relaxation period; a galvanostatic discharge and
charge at 51.2 C-rate follows and a final relaxation period of 30 s have been left at the end.
The reader may also refer to equation (4.98) for a schematic of the path. Several discharge
rates were applied in [21] to reproduce experimental evidences. With the aim of validating
the model here proposed, only a discharge rate of 51.2C is considered at temperature of
25oC, with current density I51.2C = 5.12Am−2.

As this Section is restricted to the electrolyte only, interfaces and electrode kinetics do
not enter the governing equations. The interface ΓBV becomes a Neumann boundary for
the mass flux, which is taken as a given datum yet is still termed hBV to point out that in
principle it must derive from a Butler-Volmer equation. Mass flux boundary conditions thus
read:

~hLi+ · ~n = −hBV ~x ∈ ∂NV (4.93a)

~hX− · ~n = 0 ~x ∈ ∂NV (4.93b)

In order to make initial and boundary conditions compatible with thermodynamic equilib-
rium at t = 0, the mass flux at the boundary hBV is tuned in time as

hBV |(x=0) (t) = hBV |(x=l) (t) = (1− e−10t)
I51.2C

F
= (1− e−10t) 5.306× 10−5mol m−2s−1

(4.94)

with t in seconds.
Initially (at t = 0) the system is in thermodynamic equilibrium and the concentration of

ions in the electrolyte is uniform and corresponds to equation (4.79). Data have been taken
according to [21], namely

δ = 0.18 , ctotLi = 6.01× 104 mol m−3 , cα(~x, 0) = cbulk = 10818 mol m−3 ~x ∈ Ve (4.95)

Diffusivities amount at DLi+ = 9× 10−16m2s−1, DX− = 5.1× 10−15m2s−1. Relative permit-
tivity has been assumed as ε|r = 2.25.
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Figure 4.17: A one-dimensional model of a Li-ion battery, with a 1.5µm thick Li3PO4 solid electrolyte layer
highlighted in gray. The flux of Li+ ions during discharge is pointed out.

4.13.2 Discretization and time advancing by finite differences

It is convenient to derive a dimensionless expression for weak form (4.92). To this aim,
fields that govern the problem are made quantity of dimension one - denoted with starred
superscripts from now on - via suitable scaling factors, namely:

c∗α =
cα
cbulk

, φ∗e =
F

RT
φe, ~u∗ =

~u

L
(4.96)

L standing for a given characteristic length.
Weak form (4.92) can be transformed in a first order Ordinary Differential Equation

(ODE) in time if discretization is performed via separated variables, with spatial test ϕi(x)
and shape functions ϕj(x) and nodal unknowns (collectively gathered in column y with
component yj(t)) that depend solely on time. For the sake of readability the star superscript
is omitted from the definition of dimensionless quantities (4.96) and of cmax: for example, in
this section cLi+

j stands for the j-th nodal unknown for Li-ions dimensionless concentration
at time t. The usual Einstein convention of sum is taken henceforth: when an index variable
appears twice in a single term it implies summation of that term over all the values of the
index. The non linear ODE reads:

Find y(t) s.t. b∗i · ẏ(t) + a∗i [ y(t) ] = f∗i (t) for i = 1, 2, ..., N (4.97)

where

b∗i · ẏ(t)

RT cbulk
= −

∫ l

0
ϕLi+

i ϕLi+

j dx ċLi+

j −
∫ l

0
ϕX−
i ϕX−

j dx ċX−
j +

+
ε|

cbulk

RT

F 2

∫ l

0

∂ϕφi
∂x

∂ϕφj
∂x

dx φ̇j

a∗i [ y(t) ]

RT cbulk
= −DLi+

∫ l

0

∂ϕLi+

i

∂x

∂ϕLi+

j

∂x
dx cLi+

j +

− DLi+

∫ l

0
ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

(
1− 2

ϕLi+
n cLi+

n

cmax

)
dx cLi+

j φk +



106 4. Electrolyte Formulation

−DX−

∫ l

0

∂ϕX−
i

∂x

∂ ϕX−
j

∂x
dx cX−

j +

+ DX−

∫ l

0
ϕX−
j

∂ϕX−
i

∂x

∂ϕφk
∂x

(
1− 2

ϕX−
n cX−

n

cmax

)
dx cX−

j φk +

− kd

∫
Vel

ϕLi+

i ϕLi+

j dx cLi+

j − kr cbulk

∫
Vel

ϕLi+

i ϕLi+

j ϕX−
n dx cX−

n cLi+

j +

− kd

∫
Vel

ϕX−
i ϕLi+

j dx cLi+

j − kr cbulk

∫
Vel

ϕX−
i ϕLi+

j ϕX−
n dx cX−

n cLi+

j +

+ DLi+

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j

(
1− 2

ϕLi+
n cLi+

n

cmax

)
dx cLi+

j φk +

+ DLi+

∫ l

0

∂ϕφi
∂x

∂ϕLi+

j

∂x
dx cLi+

j +

+ DX−

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕX−
j

(
1− 2

ϕX−
n cX−

n

cmax

)
dx cX−

j φk +

− DX−

∫ l

0

∂ϕφi
∂x

∂ϕX−
j

∂x
dx cX−

j

f∗i (t)

RT cbulk
= − kd

cbulk

∫ l

0
ϕLi+

i ctotLi dV − kd

cbulk

∫ l

0
ϕX−
i ctotLi dV +

+
1

cbulk
(ϕφi − ϕ

Li+

i ) hBV

∣∣∣l
0

Note that ctotLi and hBV have not been scaled.

Form a∗i [ y(t) ] is clearly non linear. It can be split into the sum of a non linear form
na∗i [ y(t) ], which reads

na∗i [ y(t) ]

RT cbulk
= −DLi+

∫ l

0
ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

(
1− 2

ϕLi+
n cLi+

n

cmax

)
dx cLi+

j φk +

+ DX−

∫ l

0
ϕX−
j

∂ϕX−
i

∂x

∂ϕφk
∂x

(
1− 2

ϕX−
n cX−

n

cmax

)
dx cX−

j φk +

− kr cbulk

∫
Vel

ϕLi+

i ϕLi+

j ϕX−
n dx cX−

n cLi+

j +

− kr cbulk

∫
Vel

ϕX−
i ϕLi+

j ϕX−
n dx cX−

n cLi+

j +

+ DLi+

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j

(
1− 2

ϕLi+
n cLi+

n

cmax

)
dx cLi+

j φk +

+ DX−

∫ l

0

∂ϕφi
∂x

∂ϕφk
∂x

ϕX−
j

(
1− 2

ϕX−
n cX−

n

cmax

)
dx cX−

j φk

and a bilinear counterpart la∗i · y(t) defined by comparison.

Following the same procedure pursued in sections 4.6.2 and 4.6.3 a backward Euler time-
advancing method as been set up. Both linearized update and Newton-Raphson iterative
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schemes have been implemented to solve the numerical problem at hand. The two numerical
techniques have been implemented in a Wolfram Mathematica package script, and provided
the same solution up to the given accuracy threshold.

The same considerations raised in section 4.6.3 lead to the identification of six dimen-
sionless groups that govern the condition number of the “stiffness” matrix, namely:

∆tDLi+

L2
,

∆tDX−

L2
,

ε|
cbulk

RT

F 2

1

∆tDLi+

ε|
cbulk

RT

F 2

1

∆tDX−
, kd ∆t ,

kr cbulk
kd

where L is a characteristic length of the discretization, typically the element length for
uniform mesh. The last two numbers are related to the Debye length rD defined in (2.19).
The parameters that govern stability are expected to be the following ratios

γLi+ =
∆tDLi+

L2
, γX− =

∆tDX−

L2
, γφ =

rD
L

γd = kd ∆t , γr =
kr cbulk

kd

4.13.3 Simulations

Several simulations have been carried out with different time steps and number of elements.
The outcomes here reported refer to 150 equal finite elements and a constant time step of
0.01 seconds, for which

γLi+ = 0.09 , γX− = 0.51 , γφ = 0.00156585 ,

γd = 2.13721× 10−7 , γr = 4.55556

Discharge/charge cycle

The test was carried out by imposing the following charge/discharge path:

I(t) = (1− e−t) I51,2C ×


1 if t ≤ 60 s
0 if 60 < t ≤ 120 s
−1 if 120 < t ≤ 180 s
1 if 180 < t ≤ 240 s
0 if 240 < t ≤ 270 s

(4.98)

with t in seconds. A current reversal have been imposed after 180s without relaxation, here
identified by I(t) = 0. The simulation was ended at tf = 270s.

Figure 4.18 represents both the mobile cLi+ and the oxigen-binded cLi0 Lithium dis-
tribution along the solid electrolyte domain, respectively fluctuating around the values
cbulk = 10818molm−3 and ctotLi − cbulk = 49282molm−3. All the steps of charge/discharge
path (4.98) have been represented. From the picture it is apparent that cLi+ and cLi0 satisfy
restriction (4.76).

Figure 4.18 also shows that a symmetric ionic concentration profile, with respect to the
initial distribution, arose in the electrolyte during all the processes. The same behavior was
observed from the outcomes of simulations concerning liquid electrolyte (refer to sections
4.6.4 and 4.10.2).
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Figure 4.18: Concentration distribution for mobile cLi+ and oxigen-binded cLi0 Lithium along the solid
electrolyte. cLi+ fluctuating around the value cbulk = 10818molm−3 and cLi0 fluctuating around the value
ctotLi − cbulk = 49282molm−3.

A good agreement is found between ionic distribution in the solid electrolyte during
discharge at 51,2 C-rate, time interval 120 < t ≤ 180 s of Figure 4.18, and the results
reported in Danilov et al. [21], Figure 12.

Concentration profiles at the anode (red) and cathode (green) are represented in Figure
4.19. Symmetry of the concentration profiles with respect to the bulk concentration cbulk =
10818molm−3 is testified one more time.

As it was for the liquid electrolyte models (sections 4.6.4 and 4.10.2), an electroneutral
regime is always established, as testified by Figure 4.20, being the difference among Li+ and
X− concentrations about six order of magnitude smaller with respect to the initial value
cbulk.

4.13.4 Remarks: solid electrolyte

Also in the case of solid-state-electrolyte, the formulation adopted appears a reliable choice
for modeling the processes driving the ionic conduction.
It is here anticipated that an all-solid-state battery will be the focus of chapter 6, inspired by
[21], for which the formulation detailed from section 4.11 would be suitable. Nevertheless,
due to lack of time, simulations have been carried therein using a liquid electrolyte. The
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Figure 4.19: Ionic concentration profile at anode (red) and cathode (green). The blue line refer to the initial
concentration distribution.
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Figure 4.20: Difference in concentration along the electrolyte between cLi+ and cX− for a galvanostatic
process at 52 C-rate.

same numerical analysis will be replicated in the future by using a solid-state electrolyte
model to guarantee more accurate comparison with the results in Danilov et al. [21].
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4.14 Appendix: Moderately diluted solutions

In non ideal yet moderately diluted solutions it is assumed a linear dependency of the mass
flux of species α upon the gradient of the electrochemical potential of the same species, as
in (4.30), ignoring cross-effects.

The main advantage of the splitting

µα = µα + F zα φ (4.99)

stands in its ability to characterize the electric state of a phase by means of an electric
potential φ, that has the usual meaning of an electrostatic potential. According to Newman,
see [6] section 3.5, to characterize the electrical state of a phase several definitions can be
adopted for the electrical potential. In the simplest way, one assumes that a term ψdev(cα)
is added to the ideal free energy density for moderately diluted solutions:

ψdiff (cα) = ψiddiff (cα) + ψdev(cα)

as in [6] section 3.5 formula (3.16). The contribution ψdev(cα) expresses a deviation from
ideality, in terms of the so called ionic activity coefficient fα. Assuming as customary the
following definition of activity coefficients:

∂ψdev
∂cα

= RT ln[fα]

easy algebra leads to the following expression for Fick’s law:

~hα = −Dα ∇ [ cα ]− zα F uα cα
(

1− 2
cα
cmax

)
∇ [φ ]−Dα cα ∇ [ ln[ fα(cα) ] ] (4.100)

that extends (4.62) to moderately diluted solutions. It is evident that it is the activity co-
efficient that expresses the deviation from ideality of the chemical interactions. A proper
definition of the free energy ψdev can be given after the activity coefficients and their depen-
dency upon the concentration are constitutively defined.

4.15 Appendix: Concentrated solutions

According to Ficks law (4.30) there is no influence of other phases on the flux of species α, i.e.
cross-effects are ignored although they may appear in reality. To account for interactions be-
tween phases, the standard approach [137] within the theory of Irreversible Thermodynamics
replaces Fickian fluxes by linear combinations of the gradients of all involved electrochemical
potentials. In the case of binary electrodes:

~hα = −
2∑

β=1

Mαβ(c1, c2) ∇
[
µβ
]

α = 1, 2 (4.101)

Mobility tensors Mαβ(c1, c2) on turn depend on the concentration of all phases. A classical
specialization of such mobility tensors is an isotropic choice

Mαβ(c1, c2) = Mαβ(c1, c2) cα 1

whereas linearity is not usually assumed for Mαβ(c1, c2). The full matrix of mobility coef-
ficients Mαβ has to be positive semi-definite in order to be consistent with thermodynamic
restriction (4.26) and symmetric due to the Onsager reciprocal relations. The approach that
provides specifications for Mαβ is usually known as Maxwell-Stefan approach [138].
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4.16 Appendix: Implemented formulation for 2D electrolyte

The semi-discrete weak form for a liquid electrolyte (ideal solution model without the effect
of saturation) outlined in section 4.6 is here extended to two dimensional case. Explicit
expressions for the residual force vectors and consistent tangents for the Newton–Raphson
iteration, inspired by [75], are listed below.

KLi+ Li+

ab δcb
Li+

+KLi+ φe
ab δφbe = RLi+

a

KX− X−
ab δcbX− +KX− φe

ab δφbe = RX−
a

Kφe φe
ab δφbe +Kφe Li+

ab δcb
Li+

+Kφe X−

ab δcbX− = Rφea

(4.102)

In what follows, the variables within the integrals represent the values updated with the
outcomes of the previous iteration, for example cb

Li+
represent qcb

Li+
(t + ∆t) according to

formula (4.53). The usual Einstein summation convention is taken for repeated indexes i
and apexes a, b.

RLi+

a = − 1

L

∫
V
Na
(
N b cb

Li+

)
dV +

∆tD|Li+

L2

∫
V

∂Na

∂xi

(
∂N b

∂xi
cb

Li+

)
dV+

+
∆tD|Li+

L2

∫
V

∂Na

∂xi

(
∂Nd

∂xi
φde

)(
N bcb

Li+

)
dV +

∆t

cbulk L2

∫
V
Na hBV dV

RX−
a = − 1

L

∫
V
Na
(
N b cbX−

)
dV +

∆tD|X−
L2

∫
V

∂Na

∂xi

(
∂N b

∂xi
cbX−

)
dV+

+
∆tD|X−
L2

∫
V

∂Na

∂xi

(
∂Nd

∂xi
φde

)(
N bcbX−

)
dV

Rφea = − ε|RT
cbulk F 2 L2

∫
V

∂Na

∂xi

(
∂N b

∂xi
φbe

)
dV+

−
∆tD|Li+
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(
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∂Nd
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φde
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N bcbX−
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KLi+ Li+

ab = − 1
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∫
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N bNadV −

∆tD|Li+
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∂N b

∂xi

∂Na
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KLi+ φe
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∂Na
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Nd cd

Li+
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−
∆tD|X−
L2
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KX− φe
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Kφe φe
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∂xi

(
Nd cd

Li+

)
dV

+
∆tD|X−
L2

∫
V

∂N b

∂xi

∂Na

∂xi

(
Nd cdX−

)
dV

Kφe Li+

ab =
∆tD|Li+

L2

∫
V

∂N b

∂xi

∂Na

∂xi
dV

+
∆tD|Li+

L2

∫
V

∂Na

∂xi

(
∂N b
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4.17 Appendix: Steady state solutions

The porous electrode theory developed by Newman and coworkers [6] stems from the mass
balance equation (4.2a,b) and from electroneutrality condition

cLi+ = cX− = c

It has been indeed an easy exercise to derive equation (4.72,) which is independent upon the
electric potential even in the case of saturation modeled via Fick’s law (4.62). At steady state,
the laplacian vanishes thus leading to a linear form c∞(x) = ax+ b for the concentration in
1D problems. The two parameters a and b can be determined by imposing the galvanostatic
flux h1C at x = 0 and by imposing the mass conservation through time, namely∫ l

0
c(x, t)dx =

∫ l

0
c(x, 0)dx

that at steady state leads to

a
l2

2
+ b l = cbulk l

and finally to the steady state concentration

c∞(x) = cbulk −
h1C

2DLI+
(x− l

2
) (4.105)

Steady state solution is useful to envisage the role played by the non linear mobility
tensor and by the free energy density at saturation in modeling Fick’s law (4.62). If one, for
instance, takes the linear isotropic mobility tensor

Mα(cα) = uα cα 1 (4.106)
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together with the ideal solution model (4.60), mass balance equation (4.72) restates in 1D
as:

(uX− + uLi+)
∂c

∂t
− 2RT uX− uLi+

{
f(c) ∆ [ c ] + f ′(c) (c′(x))2

}
= 0 (4.107)

having defined

f(c) = 1 +
c

cmax
2

1− 2 c
cmax

At steady state, one is left with the non linear ordinary differential equation

f(c) ∆ [ c ] + f ′(c) (c′(x))2 = 0

which admits the following solution:

c∞(x) =
e2a(b+x) + a cmax

2a

with parameters a and b to be evaluated again by imposing the galvanostatic flux h1C at
x = 0 and by imposing the mass conservation through time. The effect of the saturation
within the free energy density is clearly envisaged in figure 4.21. It corresponds to a higher
diffusivity, in turn dependent upon the concentration, which favors the diffusion into the
electrolyte and decreases both the concentration at the electrodes and the concentration
gradient within the electrolyte. On the contrary, the non linear isotropic mobility tensor
itself causes a decrease of the diffusivity, with opposite effects. Indeed, they cancel out in
the final Fick’s law (4.62).

Figure 4.21: The effect of the saturation within the free energy density resolves in favoring the diffusion into
the electrolyte and decreasing both the deployment of concentration at the electrodes and the concentration
gradient.





Chapter 5

Active material formulation

To validate the modeling of electro-chemo-mechanical interaction in the electrodes is the
purpose of the present chapter1. Thermodynamical coupling arise between neutral Lithium
diffusion and stress distribution. Time independent Ohm’s law govern the electric potential
distribution in the electrodes, under the assumption they are perfect conductive materials.

Active particles embedded in lithium batteries composite electrodes will be investigated.
Conductive particles and binders (refer to chapter 3) will not be detailed in this thesis.

General principles of non-equilibrium thermodynamics are presented in section 5.3 fol-
lowing the approach of [16, 17]. The chemical potential is defined based on the rate at which
power is expended on a material region, including mechanical contributions as well as the
power due to mass transport and electromagnetic interactions. All processes are taken to
be isothermal. The entropy imbalance with the Coleman-Noll procedure provides thermo-
dynamic restrictions, satisfied by the usual Fickian description of diffusion in terms of the
chemical potential.

Hydrogen diffusion modeling is also considered in the present chapter. Similarities with
the item of neutral Lithium diffusion in the electrodes arise for the balance equations involved
and the constitutive theory selected.

A two-dimensional model of mass transport within a solid material have been numerically
simulated. The analytical solutions both in terms of concentrations and displacements are
recovered, showing the robustness of the approach.

5.1 Balance equations: active material

One mass balance equation is required to model the transport of neutral Li in the active
materials. The following is selected:

∂cLi

∂t
+ div

[
~hLi

]
= 0 ~x ∈ Va (5.1a)

The lithiation mechanism in active materials is extremely complex and the selection of the
mass balance equation reflects the modeling assumptions. In the equation above, no mass
supply due to chemical reactions in the bulk of the active materials appears. This view
is shared with several approaches (to quote but a few: [139–141]). Perhaps though the
model that intrigues Authors the most [80] considers that part of the neutral Li flowing into
the electrodes becomes immobilized, making alloys with the hosting atoms in the lattice
and transforming the crystal structure into an amorphous phase. The proper model for this

1This chapter extends contents of [130]
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process is in fact adopted from hydrogen embrittlement [82, 142] and considers a mass supply
that corresponds to the Lithium that looses its mobility. As the target of the present thesis
is to present a whole cell paradigm based on an alternative model for electroneutrality, which
is well suited to welcome mutliphysics contributions within a rigorous multiscale technique,
a simple model for lithiation is consciously taken via equation (5.1a).
Some insight on Hydrogen transport within a solid material will be also given in sections 5.6
and 5.7.

Although alternative descriptions have been proposed [121], the electron flow in electrodes
is here modeled by Ohm’s law as in several publications ([28, 48, 50, 143]).

div
[
~ie−

]
= 0 ~x ∈ Va (5.1b)

with ~ie− denoting the electric current in the electrodes.

The balance of forces is taken as homogeneous,

div [σ ] = ~0 ~x ∈ Va (5.1c)

skw[σ ] = 0 ~x ∈ Va

The restriction ~x ∈ Va emphasize that equations (5.1) refer to active material only,
according to 3.2.1. A description of conductive particles (occupying Vc, section 3.2.1) would
require the removal of equation (5.1a) from the set of balance equations, but it will not be
carried out in this work.

5.2 Weak form and boundary conditions

The weak formulation of the mass balance equation (5.1a) can be achieved following the
same path of reasoning used for the electrolyte in 4.2. It comes out∫

Va

µ̂Li

{
∂cLi

∂t
+ div

[
~hLi

]}
dV =

=

∫
Va

µ̂Li
∂cLi

∂t
dV −

∫
Va

∇ [ µ̂Li ] · ~hLi dV +

∫
∂Va

µ̂Li
~hLi · ~n dΓ = 0

(5.2)

The boundary of the electrode2 is the union of the interface ΓBV , of the Neumann part ∂V N
a ,

and of the Dirichlet part ∂V D
a . The mass flux across the interface satisfies the following

condition:

~hLi · ~na = hBV ~x ∈ ΓBV (5.3)

where ΓBV ⊆ ∂V N
a represents the location where oxidation/reduction reaction takes place.

No Lithium flows across the remaining boundaries

~hLi · ~n = 0 ~x ∈ ∂V N
a \ ΓBV (5.4)

2The splitting of the boundary in Dirichlet and Neumann parts applies to each field separately. The
Neumann part where tractions are imposed is generally different from the Neumann part where fluxes are
given. As for 4.2, it is just to simplify the notation that it is assumed here that the Dirichlet and Neumann
parts are one and the same for all fields. The extension to separated boundaries is just a useful yet boring
exercise.
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With a similar path of reasoning one deals with balance law (5.1b)∫
Va

φ̂s div
[
~ie−

]
dV = −

∫
Va

∇
[
φ̂s

]
·~ie− dV +

∫
∂Va

φ̂s ~ie− · ~n dΓ = 0

The usage of φs for the identification of the electric potential is consistent with section 3.2,
in which the subscript s was used for any solid component of the porous electrode.

The current density at the interface satisfies the following boundary condition:

~ie− · ~n = iBV ~x ∈ ΓBV (5.5)

Current density iBV and mass flux hBV have been studied in detail and related constitutively,
formula 3.13. Across the remaining part of the Neumann boundaries the current flux is
generally given

~ie− · ~n = ie− ~x ∈ ∂NVa \ ΓBV (5.6)

and a Dirichlet boundary condition that sets the location of the zero of the electric potential
is mandatory to the problem definite.

Finally, for the equilibrium equations (5.1c) in rate form, one simply rewrites (4.9) with
respect to Va∫

Va

~̂u · div

[
∂σ

∂t

]
dV = −

∫
Va

ε̂ :
∂σ

∂t
dV +

∫
∂Va

~̂u · ∂σ
∂t
· ~n dΓ = 0 (5.7)

Tractions-type boundary conditions are given along ∂NVa and displacements are imposed on
the Dirichlet part ∂DVa.

σ · ~n = ~p ~x ∈ ∂NVa (5.8a)

~u = ~u ~x ∈ ∂DVa (5.8b)

In conclusion, a weak form can be given in a time interval [0, tf ] as:

Find y ∈ V [0,tf ] such that
d

dt
b (ŷ, z(t)) + a(ŷ, y(t)) = f(ŷ) ∀ŷ ∈ V (5.9)

where

b (ŷ, z) = −
∫
Va

µ̂Li cLi dV +

∫
Va

ε̂ : σ dV

a (ŷ, y) =

∫
Va

∇ [ µ̂Li ] · ~hLi dV −
∫
Va

∇
[
φ̂s

]
·~ie− dV

f (ŷ) =

∫
ΓBV

µ̂Li hBV dΓ−
∫

ΓBV

φ̂s iBV dΓ−
∫
∂V Na \ΓBV

φ̂s~ie− dΓ

+

∫
∂V Na

~̂u · ∂
~p

∂t
dΓ

with z = {cLi}, y = {µLi, φs, ~u}. The right hand side f (ŷ) is a functional on V [0,tf ] that
accounts for non-homogeneous Neumann boundary conditions.

Weak form (5.9) entails the physical meaning of power expenditure, which will be kept
also in the weak form of the governing equations, after the specification of the constitutive
equations.
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5.3 Thermodynamics: active material

5.3.1 Energy balance

The energy balance (4.12) detailed for the electrolyte applies with slight modifications to the
electrodes as well. Material region P now refers to active materials within the electrodes,
and as such it still experiments the interactions energetically described by equations (4.13).
Power T (P) is due to mass transfer of neutral Lithium, that is either oxidized or reduced
at the interface ΓBV before intercalation. Power due to electromagnetic interactions E(P) is
due to electrons flow in the actve particles, assumed to be conductive materials. The main
difference therefore is the separation between transport of mass and transport of charges,
that take place with two different carriers. Equation (4.14c) refers to a single species

T (P) =

∫
P
µLi

∂cLi

∂t
− ~hLi · ∇ [µLi ] dΩ (5.10a)

and Ampère’s-Maxwell’s law (4.16) simplifies as

E(P) =

∫
P
~i · ~E dΩ (5.11)

finally leading to the following local form of the first principle

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ] +~i · ~E + µLi

∂cLi

∂t
− ~hLi · ∇ [µLi ] (5.12)

5.3.2 Additive decomposition of strains

As customary, the total strain ε will be additively decomposed in three contributions: an
elastic recoverable part after unloading εel, a swelling contribution due to the intercalation
of Lithium in the hosting material εs and a distortion, usually of plastic nature εp:

ε =
1

2

(
∇ [ ~u ] + ∇ [ ~u ]T

)
(5.13a)

ε = εel + εs + εp (5.13b)

The swelling contribution is taken as proportional to the concentration, by means of factors
ωLi termed chemical expansion coefficients of Lithium in the host material, which equal one
third of the partial molar volumes of Lithium in the host material at a given temperature:

εs = ωLi cLi 1 (5.14)

denoting with 1 the identity matrix.

5.3.3 Entropy imbalance

As for equation (4.23), entropy imbalance may be derived in its local form as usual from
energy balance (5.12):

T
∂η

∂t
−
{
∂u

∂t
− σ :

(
∂εel

∂t
+
∂εp

∂t

)
− ωLi

∂cLi

∂t
tr [σ ]−~i · ~E+

−µLi
∂cLi

∂t
− ~hLi · ∇ [µLi ]

}
− 1

T
~q · ∇ [T ] ≥ 0

(5.15)
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in view of definition (5.14).

Thermodynamic prescriptions will be expressed in terms of the Helmholtz free energy
ψ() = u() − T η rather than internal energy u. The selection of the free energy density
reflects the assumptions made to model lithiation mechanism in electrodes. In the model
proposed in [80], for instance, it is necessary to split the Lithium concentration in the mobile
and immobilized parts, and for each of them a proper free energy density contribution has
to be defined. As already remarked in section 5.1 a simple model for lithiation is consciously
taken.

Collect in vector ~ξ a set of internal variables that account for the past history [144]. The
Helmholtz free energy per unit volume is selected as follows:

ψ(T, cLi, ε
el, ~ξ ) = ψtemp(T ) + ψdiff (cLi) + ψmech(cLi, ε

el, ~ξ ) (5.16)

with the mechanical free energy density that is further split in an elastic and in an inelastic
part following [145]

ψmech(cLi, ε
el, ~ξ ) = ψelmech(cLi, ε

el) + ψpmech(~ξ) (5.17)

It finally holds

∂ψ(T, cLi, ε
el, ~ξ )

∂t
=

∂ψtemp
∂T

∂T

∂t
+

(
∂ψdiff
∂cLi

+
∂ψelmech
∂cLi

)
∂cLi

∂t
+
∂ψelmech
∂εel

:
∂εel

∂t
+
∂ψpmech

∂~ξ
· ∂

~ξ

∂t

(5.18)

By means of (5.18), the entropy imbalance yields:

−
(
η +

∂ψ

∂T

)
∂T

∂t
+

(
σ −

∂ψelmech
∂εel

)
:
∂εel

∂t
+

+

(
µLi + ωLi tr [σ ]−

∂ψdiff
∂cLi

−
∂ψelmech
∂cLi

)
∂cLi

∂t
+ (5.19)

+~i · ~E − ~hLi · ∇ [µLi ]− 1

T
~q · ∇ [T ] + σ :

∂εp

∂t
−
∂ψpmech

∂~ξ
· ∂

~ξ

∂t
≥ 0 (5.20)

After applying the Coleman-Noll procedure, the following thermodynamic prescriptions come
out taking into account of assumption (2.13):

η +
∂ψtemp
∂T

= 0 , σ −
∂ψelmech
∂εel

= 0 , µLi + ωLi tr [σ ]−
∂ψdiff
∂cLi

−
∂ψelmech
∂cLi

= 0 ,

~i · ∇ [φ ] ≤ 0 , ~hLi · ∇ [µLi ] ≤ 0 , ~q · ∇ [T ] ≤ 0 , σ :
∂εp

∂t
+ ~χ · ∂

~ξ

∂t
≥ 0 (5.21)

where

~χ = −
∂ψpmech

∂~ξ
(5.22)

is the thermodynamic force vector conjugated to internal variables ~ξ.
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5.4 Constitutive theory: active material

The constitutive specifications outlined in this section bestow no novelties with respect to
the up-to-date literature on the field. Remarkable advances have been brought forth by
recent investigations [55, 58, 67, 73, 75–77] on the constitutive behavior of energy storage
materials, with respect to which some assumptions are here consciously taken as simplistic.
More elaborated prescriptions will be considered in the future.

Guided by Joule effect in restriction (5.21) a linear law is set as usual for the electron
flow, by means of a material property termed conductivity κ > 0.

~i = κ ~E = −κ∇ [φ ] (5.23)

Restriction (5.21) is satisfied by a linear Fickian-diffusion law, which is drew up for the
Lithium diffusion in the electrodes by means of a positive definite mobility tensor MLi

~hLi = −MLi ∇ [µLi ] (5.24)

In the presence of high C-rates, which are indeed expected in real batteries or super capaci-
tors, the Lithium concentration in the electrodes is often locally high. Recourse to saturation
specialization of mobility tensor MLi is mandatory, in the still isotropic yet non linear form
MLi(cLi) = u|Li MLi(cLi) 1, with

MLi(cLi) = cLi

(
1− cLi

cmaxLi

)
(5.25)

As for (4.58), definition (5.25) represents the physical requirement that both the pure and
the saturated phases have vanishing mobilities.

The Helmholtz free energy density that model the isothermal processes at hand entails
the separate contributions ψdiff and ψmech summarized in equation (5.16). Mass transport
is described by ψdiff , adopting the neutral Lithium concentrations as the state variable. The
mechanical energy density ψmech is made dependent upon the neutral Lithium concentra-
tions, the elastic tensor, and a set of internal variables. Differently from the electrolyte, the
processes are thermodynamically coupled both in terms of constitutive prescriptions (5.21)
and of free energy density, as the mechanical properties may vary with the concentration.

The mechanical free energy density ψelmech(cLi, ε
el) is taken as

ψelmech(cLi, ε
el) =

1

2

(
K(cLi) tr

[
εel
]2

+ 2G(cLi) ||dev
[
εel
]
||2
)

(5.26)

where K, G are the bulk and shear modulus respectively. Thermodynamics restrictions
(5.21) yield the stress tensor as the gradient of the free energy density with respect to the
elastic tensor, namely:

σ = K(cLi) tr
[
εel
]
1+ 2G(cLi) dev

[
εel
]

(5.27)

Owing to the additive decomposition of strains (5.13) and under the usual assumption of
plastic incompressibility tr [ εp ] = 0, the identities

tr
[
εel
]

= tr [ ε ]− 3ωLi cLi
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dev
[
εel
]

= dev [ ε ] + dev [ εp ]

ensue, to be further inserted into (5.27) to finally derive the stress tensor in terms of the
total strain and the concentration as

σ = K(cLi) tr [ ε ] 1+ 2G(cLi) dev [ ε ]− 3K(cLi)ωLi cLi 1+ 2G(cLi) ε
p (5.28a)

In what follows a standard J2 flow theory with isotropic hardening is used. Accordingly,
only one internal variable ξ̆ is used and it has been taken Kp ≥ 0 and

ψpmech(ξ) =
1

2
Kpξ̆2 (5.28b)

together with a von Mises yield criterion

ϕ(σ, χ̆) = ||dev [σ ] || −
√

2

3
σY + χ̆ (5.28c)

and associative flow rule

ε̇p =
∂ϕ

∂σ
λ̇ ,

˙̆
ξ =

∂ϕ

∂χ̆
λ̇ (5.28d)

Definition (5.22) of thermodynamic force χ̆ and Kuhn-Tucker conditions

λ ≥ 0 , ϕ ≤ 0 , λ ϕ = 0 (5.28e)

complete the incremental form of the mechanical constitutive equations. The thermody-
namic consistency of J2 flow theory with isotropic hardening can be proved as usual

σ : ε̇p + ~χ · ~̇ξ ϕ=0
= (||dev [σ ] ||+ χ̆) λ̇

ϕ=0
=

√
2

3
σY λ̇ ≥ 0

as it is not influenced by the diffusive contributions to σ.

Free energy density (per unit volume) of mobile guest atoms interacting with a host
medium is described by a regular solution model [19, 20], which provides the following free
energy density for the continuum approximation to mixing

ψdiff (cLi) = µ0
Li cLi +RT cmax {θLi ln[θLi] + (1− θLi) ln[(1− θLi)] + χ| θLi(1− θLi)}

(5.29)

having defined θLi = cLi
cmaxLi

and cmaxLi the saturation limit for neutral Li. Real valued χ| -

termed exchange parameter - characterizes energy of interaction between mobile guest atoms
and empty intercalation sites. If all of the interactions between mobile atoms and empty
sites are the same, then χ| = 0 and there is no energy of mixing: mixing is ideal and purely
entropic in nature. The contribution χ| θLi(1−θLi) provides the free energy density with a non
convex behavior with respect to cLi for χ| > 2, which in turn may lead to phase segregation
[80, 141].

From the thermodynamic restriction (5.21), the chemical potential results in the form

µLi = µ0
Li +RT {ln[θLi]− ln[1− θLi] + χ| (1− 2θLi)}+
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+
1

2

∂K(cLi)

∂cLi
tr
[
εel
]2

+
∂G(cLi)

∂cLi
||dev

[
εel
]
||2+

− ωLi tr [σ ] (5.30)

Even in the simple theory here dealt with, the chemical potential is quite complex and consist

in three separate contributions. The first arises from
∂ψdiff
∂cLi

, is non-convex in general and has
a purely transport origin. The second contribution has a mechanical nature and conveys the
effect of the mechanical parameters on the chemical potential. Finally, the last contribution
measures the effects of the swelling deformation on the chemical potential.

By defining as usual the diffusivity by D|Li = u|LiRT , Fick’s law (5.24) becomes

~hLi = −D|Li

(
1− 2χ|

cmaxLi

MLi(cLi)

)
∇ [ cLi ] +

− u|Li MLi(cLi) ∇
[

1

2

∂K(cLi)

∂cLi
tr
[
εel
]2

+
∂G(cLi)

∂cLi
||dev

[
εel
]
||2
]

+ ωLi u|Li MLi(cLi) ∇ [ tr [σ ] ] (5.31)

with the trace of the stress tensor to be evaluated stemming from equation (5.28a) and the
elastic strain tensor from decomposition (5.13) in terms of total strain and concentration of
Lithium.

5.5 Governing equations and weak form: active material

Numerical simulations in this thesis do not include phase segregation. Therefore, governing
equations will be deployed in the easier case of material parameters independent upon cLi

when χ| = 0. The general framework is postponed in appendix 5.10. Governing equations
can be derived by incorporating the constitutive equations (5.23), (5.28), and (5.31) into
balance equations. They will be written in terms of the following new field:

µmechLi (cLi, ε) = −ωLi tr [σ ] = −3K ωLi (tr [ ε ]− 3ωLi cLi) (5.32)

that designates how the chemical potential (5.30) depends upon mechanical factors. The
variables that rule the problem are thus concentrations cLi, displacements ~u, the electric
potential φs, and µmechLi . Governing equations hold at all points ~x ∈ Va at all instants, and
write

∂cLi

∂t
+ div [−D|Li ∇ [ cLi ] ] + div

[
−u|Li MLi(cLi) ∇

[
µmechLi

] ]
= 0 (5.33a)

div [−κ∇ [φs ] ] = 0 (5.33b)

div [σ ] = ~0 (5.33c)

µmechLi − µmechLi (cLi, ε) = 0 (5.33d)

with σ defined constitutively by equations (5.28).

Boundary conditions (5.3), (5.4), (5.5), (5.6) and (5.8) are applied along Neumann bound-
aries ∂NVa. To ensure solvability to the problem, Dirichlet boundary conditions have to be
imposed along part ∂DVa, being ∂Va = ∂DVa∪∂NVa. Rigid body motion inhibition and zero
electric potential have to be included amidst Dirichlet boundary conditions.
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Initial conditions are usually imposed for concentration of neutral Lithium cLi(~x, t = 0).
To comply with equilibrium thermodynamics it is constant in volume Va. Initial conditions
for electric potential and displacements solve a boundary value problem at t = 0, made
of equations (5.33b-c-d) together with homogeneous boundary conditions for current, in
view of thermodynamic equilibrium at initial time, and usual given boundary conditions for
displacements and tractions.

Following the same path of reasoning of sections 4.5 and 4.9, the evolution problem can be
formulated in a weak form. In Galerkin approaches weak forms are built using “variations”
of the same set of variables that rule the problem, namely “virtual” concentrations ĉLi,
displacements ~̂u, electric potential φ̂s, chemical potential µ̂mechLi . By doing so however the
energy meaning of weak form (5.9) is lost. To give to the new weak form at least the
physical dimension of a power expenditure, the mass balance equations and definition (5.32)
will be scaled by suitable coefficients, that follow from constitutive equations. A weak form
of governing equations can be given in a time interval [0, tf ] as

RT

cbulk

∫
Va

ĉLi
∂cLi

∂t
+ D|Li ∇ [ ĉLi ] · ∇ [ cLi ] + u|Li MLi (cLi) ∇ [ ĉLi ] · ∇

[
µmechLi

]
dV+

+
RT

cbulk

∫
ΓBV

ĉLi hBV dΓ = 0 (5.34a)

κ

∫
Va

∇
[
φ̂s

]
· ∇ [φs ] dV +

∫
ΓBV

F φ̂s hBV dΓ +

∫
∂NVa\ΓBV

φ̂s ie− dΓ = 0 (5.34b)∫
Va

ε̂ :
∂σ

∂t
dV −

∫
∂NVa

~̂u · ∂
~p

∂t
dΓ = 0 (5.34c)

cbulk
RT ∆t

∫
Va

µ̂mechLi

(
µmechLi − µmechLi (cLi, ε)

)
dV = 0 (5.34d)

Boundary conditions (5.3), (5.4), (5.5) ,(5.6),(5.8) and relation (3.13) have been used.

It is convenient to derive a dimensionless expression for equations (5.34). To this aim,
fields that govern the problem are scaled to dimension of unity, denoted with starred super-
scripts from now on, via suitable scaling factors, namely:

c∗Li =
cLi

cbulk
, φ∗s =

F

RT
φs, µmechLi

∗
=
µmechLi

RT
, ~u∗ =

~u

L
(5.35)

L standing for a given characteristic length. In view of (5.34), a weak form of governing
equations (5.33) can be given in a time interval [0, tf ] as

Find y(~x, t) ∈ V [0,tf ] such that

∂

∂t
b ( ŷ(~x), y(~x, t) ) + a( ŷ(~x), y(~x, t) ) = f( ŷ(~x) ) ∀ŷ(~x) ∈ V

(5.36)

where

b (ŷ, y) = RT cbulk

∫
Va

ĉ∗Li c
∗
Li dV + L

∫
Va

ε̂∗ : σ(cLi, ε) dV

a (ŷ, y) = RT cbulk D|Li

∫
Va

∇ [ ĉ∗Li ] · ∇ [ c∗Li ] dV +
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+ RT D|Li

∫
Va

MLi(cLi) ∇ [ ĉ∗Li ] · ∇
[
µmechLi

∗ ]
dV

+ κ

(
RT

F

)2 ∫
Va

∇
[
φ̂∗s

]
· ∇ [φ∗s ] dV

+
cbulk
RT ∆t

∫
Va

µ̂mech
∗

Li

(
µmechLi

∗ − µmechLi

∗
(cLi, ε)

)
dV

f (ŷ) = −RT
∫

ΓBV

(
ĉ∗Li + φ̂∗s

)
hBV dΓ− RT

F

∫
∂NVa\ΓBV

φ̂∗s ie− dΓ

+ L

∫
∂NVa

~u∗ · ∂
~̄p

∂t
dΓ

with list y(~x, t) = {cLi, φs, ~u, µ
mech
Li }. Owing to the scaling, a characteristic length L and a

characteristic time ∆t appear in the weak form. Within finite elements analysis they can
be taken as the characteristic length of the element of the mesh and the interval of time
adopted for the time stepping procedure.

5.6 Hydrogen embrittlement

There are noticeable analogies between neutral Lithium and Hydrogen diffusion through a
solid lattice.
Within the wide literature on Hydrogen-embrittlement, some publications propose models
for Hydrogen transport in metals assuming it diffuses without interactions with the defects of
the hosting material lattice (refer for example to [146]). In this case, balance equations (5.1a)
and (5.1c) and constitutive equations (5.28), (5.24) and (5.30) can be used to describe the
phenomena. If such an approach is adopted, the Hydrogen and Lithium diffusion models in
hosting materials only differs because of Ohm’s law (5.1b), required in batteries electrodes
to account for the presence of the electric current ~ie− . Moreover, it is worth noting that
the electric potential φs is uncoupled from the other thermodynamic variables cLi+ , ~u and
µmech, section 5.4, thus making the impact of such an equation minor within a numerical
framework.

Other approaches have been pursued [82, 83, 142] in which the total Hydrogen concen-
tration in the hosting material has been split into immobile trapped Hydrogen and mobile
interstitial lattice Hydrogen to account for energetic binding of atoms. The so-called Oriani’s
approach [119] is usually used to relate the above-mentioned quantities.

The immobilization of diffusing species has been experimentally observed [147] also for
Lithium atoms into Silicon electrode, that causes changes in the elastic moduli of the host
medium.
Moving from these considerations, separation of guest atoms into mobile and immobilized,
according to the models of [82, 83, 142], has been recently pursed for neutral Lithium diffu-
sion modeling into electrodes [81, 148] as well. The mechanical response of active particles
subjected to propagation of a sharp interphase between regions rich and poor in Lithium
guest atoms have been analysed therein.

The model of Krom et al. [82], accounting for concentration splitting, is summarized in
the following sections.
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5.7 Krom’s model in brief

The Hydrogen transport model of Krom ey al. [82] emanates from the previous work of
Sofronis and McMeeking [142]. Both models investigate the effect of the hydrostatic stress
and trapping on the Hydrogen distribution in a plastically deforming steel, assuming that
Hydrogen atoms diffuse through lattice sites and that trap sites are filled by lattice diffusion.

Krom’s model enhances [142] by including a strain rate factor in the Hydrogen transport
equation. It stems on the equilibrium theory presented by Oriani [119]. The latter assumes
that traps3 are isolated, i.e. do not form an extended network. For this reason, on any
subpart VH of a system, the flux of Hydrogen ~hH across the boundary ∂VH is assumed to
be purely interstitial, following Larchè and Cahn [15, 149]. Part of the Hydrogen (say sH)
flowing into VH is trapped in the bulk and cannot contribute to Hydrogen transport by lattice
diffusion. Only saturable and reversible traps are considered, such as dislocation cores.

5.7.1 Balance equations: Krom’s model

Based on the above, the local mass balance equation at point ~x reads

∂cL
∂t

+ div
[
~hH

]
= sH ~x ∈ VH (5.37)

where: cL is the molarity (i.e. the number of moles per unit volume) of lattice hydrogen; ~hH
is the mass flux in terms of moles, i.e. the number of moles of hydrogen measured per unit
area per unit time; sH is the mass trapped, i.e. the number of moles of hydrogen trapped
per unit volume and unit time.

The trapped hydrogen obeys a trivial equation, stating that its concentration cT is altered
by the mass supply sH :

∂cT
∂t

= −sH ~x ∈ VH (5.38)

The principle of virtual power (with the two requirements: Power balance Wext = Wint

in any sub part, frame indifference for Wint in any sub part for any virtual velocity) leads to
the usual balance of forces, in absence of body forces:

div [σ ] = ~0 ~x ∈ VH (5.39)

and to the symmetry of tensor σ in the framework of small displacements and strains, in
which this work stands.

5.7.2 Additive decomposition of strains

As customary, the total strain ε will be additively decomposed in three contributions: an
elastic recoverable part after unloading εel, a swelling contribution due to the intercalation
of hydrogen in the hosting material εs and a distortion, usually of plastic nature εp:

ε =
1

2

(
∇ [ ~u ] + ∇ [ ~u ]T

)
(5.40a)

ε = εel + εs + εp (5.40b)

The swelling contribution is taken as proportional to the concentration, by means of factors
ωL and ωT termed chemical expansion coefficients of hydrogen in the host material, which

3The subscript L refers to lattice (interstitial) sites and the subscript T to trap sites from now on.
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equal one third of the partial molar volumes of hydrogen in the host material at a given
temperature:

εs = (ωL cL + ωT cT ) 1 (5.41)

denoting with 1 the identity matrix.

5.7.3 Essentials of thermodynamics

The balance of energy, in its local form, can be readily written as (see [16] for details)

∂u

∂t
= σ :

∂ε

∂t
+ sq − div [ ~q ] + µL

∂cL
∂t
− ~hH · ∇ [µL ] + µT

∂cT
∂t

(5.42)

In the formula above, sq is the heat supply and ~q the heat flux. The lack of a “trapping”

flux ~hT descends from the assumption of traps not forming a network, so rather then ~hL the
flux of Hydrogen will be henceforth simply denoted with ~hH . Fickian-diffusion conjectures
a linear dependency of such a mass flux from the gradient of the chemical potential of the
Hydrogen in the lattice sites µL:

~hH = −MH ∇ [µL ] (5.43)

A classical specialization of mobility tensor MH(cL) is the isotropic, yet non linear choice

MH(cL) = u|L cL
(

1− cL
cmaxL

)
1 (5.44)

denoting with u|L the mobility of the Hydrogen in lattice sites.

Entropy η imbalance may be derived in its local form as usual from energy balance (5.42):

T
∂η

∂t
− ∂u

∂t
+ σ :

(
∂εel

∂t
+
∂εs

∂t
+
∂εp

∂t

)
+ (5.45a)

+ µL
∂cL
∂t
− ~hH · ∇ [µL ] + µT

∂cT
∂t
− 1

T
~q · ∇ [T ] ≥ 0

taking into account of decomposition (5.40). In view of definition (5.41), imbalance (5.45)
rewrites as

T
∂η

∂t
− ∂u

∂t
+ σ :

(
∂εel

∂t
+
∂εp

∂t

)
+

(
ωL

∂cL
∂t

+ ωT
∂cT
∂t

)
tr [σ ] + (5.46a)

+ µL
∂cL
∂t
− ~hH · ∇ [µL ] + µT

∂cT
∂t
− 1

T
~q · ∇ [T ] ≥ 0

Thermodynamic prescriptions are usually expressed in terms of the Helmholtz free energy
ψ() = u() − T η rather than internal energy u. Collecting in vector ~ξ the set of internal
variables, the free energy density accounts additively for hardening contribution as

ψ(T, cL, cT , ε
el, ξ) = ψtemp(T ) + ψdiff (cL, cT ) + ψelmech(εel) + ψpmech(~ξ) (5.47)
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and it holds

∂ψ(T, cL, cT , ε
el, ξ)

∂t
=

∂ψtemp
∂T

∂T

∂t
+
∂ψdiff
∂cL

∂cL
∂t

+
∂ψdiff
∂cT

∂cT
∂t

+
∂ψelmech
∂εel

:
∂εel

∂t
+
∂ψpmech

∂~ξ
· ∂

~ξ

∂t

(5.48)

By means of (5.48), the entropy imbalance yields:

−
(
η +

∂ψtemp
∂T

)
∂T

∂t
+

(
σ −

∂ψelmech
∂εel

)
:
∂εel

∂t
+

(
µL + ωL tr [σ ]−

∂ψdiff
∂cL

)
∂cL
∂t

+

+

(
µT + ωT tr [σ ]−

∂ψdiff
∂cT

)
∂cT
∂t

+

+ ~hH · ∇ [µL ] + σ :
∂εp

∂t
−
∂ψpmech

∂~ξ
· ∂

~ξ

∂t
− 1

T
~q · ∇ [T ] ≥ 0 (5.49)

After applying the Coleman-Noll procedure, the following thermodynamic prescriptions come
out:

η +
∂ψtemp
∂T

= 0 , σ −
∂ψelmech
∂εel

= 0 ,

µL + ωL tr [σ ]−
∂ψdiff
∂cL

= 0 , µT + ωT tr [σ ]−
∂ψdiff
∂cT

= 0 ,

~hH · ∇ [µL ] ≥ 0 , ~q · ∇ [T ] ≤ 0 , σ · ∂ε
p

∂t
+ ~χ · ∂

~ξ

∂t
≥ 0 (5.50)

where

~χ = −
∂ψpmech

∂~ξ
(5.51)

is the internal force vector, conjugated to ~ξ.

A regular solution model [19] provides the following free energy density for the ideal
continuum approximation to mixing

ψdiff (cα) = µ0
α cα +RT cmaxα (θα ln[θα] + (1− θα) ln[1− θα]) (5.52)

having defined θα = cα
cmaxα

and cmaxα the saturation limit for species α = L , T . Specialization

(5.52) of Helmholtz’ free energy density represents the entropy of mixing for an ideal solution,
with no energetic interactions. µ0

α is a reference value of the chemical potential of species α.

The chemical potential results in the form

µα =
∂ψ

∂cα
=
∂ψdiff
∂cα

− ωα tr [σ ] = µ0
α +RT (ln[θα]− ln[1− θα])− ωα tr [σ ] (5.53)

with ωα denoting the coefficient of chemical expansion of Hydrogen in the host material,
which equals one third of the partial molar volume of Hydrogen in the host material at a
given temperature.
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The second logarithmic contribution in (5.53) is usually neglected far from saturation,
when θα << 1. This is generally the case for the interstitial Hydrogen, for which Fick’s law
(5.43) becomes

~hH = −D|L ∇ [ cL ] + ωL u|L cL ∇ [ tr [σ ] ] (5.54)

by substituting D|L = u|LRT .

As it was assumed that traps do not form an extended network, there is no flux of
trapped Hydrogen. The kinetics of trapped Hydrogen has to be described on a different basis.
Oriani postulated that within a continuum-level material point the microstructure affects
the local distribution of Hydrogen keeping the Hydrogen in trapping sites in thermodynamic
equilibrium with lattice sites. This implies

µL = µT (5.55)

i.e. under the usual assumption of ωL = ωT

µ0
L − µ0

T = RT (ln[θT ]− ln[1− θT ])−RT (ln[θL]− ln[1− θL]) (5.56)

The left hand side is related to the trap binding energy −∆Eτ with respect to the lattice
site, and in turn related to the equilibrium constant Keq:

µ0
L − µ0

T = −∆Eτ = RT ln[Keq] (5.57)

Easy algebra leads to:

Keq =
θT
θL

1

1− θT
(5.58)

which can easily inverted for θT

θT =
1

1 + 1
KeqθL

(5.59)

Equation (5.59) governs the problem together with (5.37, 5.38, 5.39, and 5.54). By
inserting (5.38) into (5.37)

∂cL
∂t

+
∂cT
∂t

+ div
[
~hH

]
=
∂cL
∂t

+
∂cmaxT

∂t
θT +

∂θT
∂t

cmaxT + div
[
~hH

]
=

∂cL
∂t

+
1

1 + 1
KθL

∂cmaxT

∂t
+ cmaxT

∂θT
∂θL

∂θL
∂t

+ div
[
~hH

]
=

∂cL
∂t

+
1

1 + 1
KθL

∂cmaxT

∂t
+
cmaxT (t)

cmaxL

K

(1 +KθL)2

∂cL
∂t

+ div
[
~hH

]
= 0 (5.60)

The term
∂cmaxT
∂t was not taken into account in the model of Sofronis and McMeeking [142].

Krom et al. [82] adopt a fit of data from Kumnick and Johnson [150] to follow the history
variation of traps. The latter carried out permeation tests on pure iron with Hydrogen gas
charging and found that the trap density in iron increases sharply with deformations at low
deformation levels and then increases more gradually with further deformation. They also
estimated a trap binding energy of −60kJ/mol independent of deformation level within the
range of 0− 80% cold work and independent of temperature within the range of 288− 343K
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suggesting one type of trap. A fit of the number of trap sites against the equivalent plastic
strain ε̄p

ε̄p =

∫ t

0

√
2

3
ε̇p : ε̇p dt (5.61)

which is close to their experimental observations is

log[cmaxT NA] = 23.26− 2.33e−5.5ε̄p (5.62)

with NA denoting Avogadro’s number. From equation (5.62) one gets

∂cmaxT

∂t
= ln[10] cmaxT (t) (log[cmaxT NA]− 23.26) (−5.5)

∂ε̄p

∂t
(5.63)

Substitution of equation (5.63) and of constitutive law (5.54) into mass balance (5.60) pro-
vides a new equation that governs the problem together with (5.39) in terms of Hydrogen
concentration cL and displacements ~u after a suitable constitutive law

σ = C : (ε− (ωL cL + ωT cT )1− εp) (5.64)

is selected for the elastoplastic behavior of the hosting metal. Equations (5.28b-e) complete
the formulation if standard J2 flow theory with isotropic hardening is used.

5.8 Two-dimensional modeling of species diffusion

In the sections that follow, a two dimensional example accounting for mechanical/diffusion
coupling will be used to validate the numerical algorithm descending from the formulations
detailed in the present chapter. Strong simplifying assumptions have been introduced. An
analytical solution for the steady state is available for comparison against the numerical
outcomes.

The formulations detailed in sections 5.5 and 5.7 only differ because of the Ohm’s law
(5.1b), peculiar of the electrode model, and the splitting between trapped, cT , and lattice,
cL, species peculiar of Hydrogen models, equations (5.37-5.38).

A simplified version of Krom’s model 5.7 is here considered by making the assumption
that Hydrogen trapping does not occur. Since all the Hydrogen is available for diffusion at
any instant of time, the source term in equation (5.37) and the equation (5.38) itself do not
come into play [146]. The set of equations governing the problem is thus the same of section
5.5 without (5.33b).
From weak form (5.34) it is apparent that Ohm’s law is uncoupled from the other equations
and therefore φs does not impact the remaining unknowns. Being the main goal of the
present section to validate the numerical algorithm dealing with (simple) mechanical/diffu-
sion coupling, it seems an acceptable choice to focus on a numerical benchmark tailored on
Hydrogen diffusion problems.
Validation of the active material formulation described in 5.5 accounting for Ohm’s law is
postponed to chapter 6.

5.8.1 Description

Geometry and boundary conditions have been chosen so that the problems is suitable for
an axisymmetric description. This allows to test the two-dimensional numerical algorithm4

4A general two-dimensional formulation has been used for the numerical algorithm which does not take
advantage of axisymmetry.



130 5. Active material formulation

(implemented within an Abaqus User element script) and to compare the results against an
analytical solution. The problem can indeed be rephrased as a first order non-linear ODE
allowing for explicit solution.

Geometry, material parameters and constants

  

r
µ

rout

rin

x2

x1

Figure 5.1: Cross section of a tube and related nomenclature

The body is a cylinder of inner radius rin = 1 × 10−2 m and outer radius rout = 1, 2 ×
10−2 m, Figure 5.1, containing gaseous Hydrogen. Empty space surrounds the cylinder.
A linear elastic constitutive model is used to characterize the material composing the cylinder.
A Young’s modulus E = 207 × 109 Nm−2, Poisson’s ratio ν = 0, 3 and chemical expansion
coefficient ωH = 6, 67× 10−5 m3mol−1 have been adopted. It is assumed that the transport
of Hydrogen is characterized by a diffusivity coefficient D|H = 1, 27 × 10−8 m2s−1 and that
the processes take place at a constant temperature T = 300 K. Material parameters and
constants have been taken according to [82, 83, 142].

Initial and boundary conditions

It is assumed the cylinder is initially unaffected by the presence of Hydrogen

cH(r, t = 0) = 0 r ∈ [rin, rout] (5.65)

Expansion of the cylinder along the radial direction (subscript r) is constrained at any
time t ∈ [0, tf ]

ur(rin, t) = ur(rout, t) = 0 t ∈ [0, tf ] (5.66a)

Hydrogen concentration along the external radius rout has also been kept constant

cH(rout, t) = 0 t ∈ [0, tf ] (5.66b)

while along the inner radius rin concentration has been tuned, using a linear ramp5, from
cH(rin) = 0 to a non-zero value

cH(rin) = cbound = 3, 46 × 10−3 mol

m3
(5.66c)

5This allows to avoid a sharp discontinuity from t = 0 and the next time step.
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and kept constant.
The author is aware conditions (5.66) are somehow simplistic. More realistic boundary

conditions for the Hydrogen concentration would require constraints on chemical potential
at both edges. This would reflect the thermodynamic equilibrium condition [83] achieved
among intercalated Hydrogen and gaseous Hydrogen on one side and intercalated Hydrogen
and empty space on the other.
A stress free boundary condition would also be more suitable in correspondence of the outer
edge.

Once again, the intent of this section is to identify an example allowing for analytical
solution. The set of boundary conditions (5.66) has been chosen to this purpose and used
for comparison against the outcomes of numerical analyses (section 5.9.3).

5.9 Simplified governing equations

Governing equations will be deployed without Hydrogen concentration splitting. It is as-
sumed that the whole amount of Hydrogen is available for diffusion within the lattice, here
shortly denoted with cH. Neither saturation nor energetic interaction (χ| = 0) are accounted
for.

The governing equations that rule the problem are summarized as follows

∂cH
∂t
− div [ D|H ∇ [ cH ] ]− div

[
u|H cH ∇

[
µmechH

] ]
= 0 (5.67a)

div [σ ] = ~0 (5.67b)

µmechH = −3K ωH (tr [ ε ]− 3ωH cH) (5.67c)

with

σ = Cps : (ε − ωH cH 1)

where Cps identifies the elastic modulus tensor tailored for the plane strain case.
The weak form descending from equations (5.67) can be transformed in a first order

ODE in time if discretization is performed via separated variables, with spatial test Ni(x)
and shape functions Nj(x) and nodal unknowns (collectively gathered in column y with
component yj(t)) that depend solely on time6.
Adimensionalization of variables has been pursued according to (5.35). For the sake of
readability the star superscript is omitted from the dimensionless quantities as in section
4.6.2. The usual Einstein summation convention is taken henceforth for repeated indexes.

The non linear ODE reads:

Find y(t) such that b∗i ·
∂y

∂t
(t) + a∗i [ y(t) ] = 0 for i = 1, 2, ..., N (5.68)

where

b∗i ·
∂y

∂t
(t) =

6Test and shape function are denoted with N instead of ϕ (refer to 4.6.2, 4.10.1 and 4.13.2) to emphasize
that the weak form refers to a two-dimensional problem [151]. The m-th component of vector ~u is here
discretized as

∑
j N

um
j umj
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RT cbulk

∫
VH

NH
i NH

j dV
∂cHj
∂t

+

− L2

∫
VH

Cpsklmn
∂Nuk

i

∂xl

∂Num
j

∂xn
dV

∂umj
∂t

+

+ 3K ωH cbulk L

∫
VH

∂Nuk
i

∂xk
NH
j dV

∂cHj
∂t

a∗i [ y(t) ] =

RT cbulk D|H
∫
VH

∂NH
i

∂xk

∂NH
j

∂xk
dV cH

j +

+ RT cbulk D|H
∫
VH

NH
j

∂NH
i

∂xk

∂Nµ
d

∂xk
dV cH

j µ
mech
d +

+
RT cbulk

∆t

∫
VH

Nµ
i N

µ
j dV µmechj +

+
3K ωH cbulk L

∆t

∫
VH

Nµ
i

∂Nuk
j

∂xk
dV ukj +

−
9K ω2

H c
2
bulk

∆t

∫
VH

Nµ
i N

H
j dV cH

j

with yj(t) = {cH
j , µ

mech
j , ~uj } and for k, l,m, n = 1, 2. The fourth order tensor Cpsijkl reads

Cps1111 = Cps2222 = E (1−ν)
(1+ν) (1−2ν)

Cps1122 = Cps2211 = E ν
(1+ν) (1−2ν)

Cps1212 = Cps1221 = Cps2112 = Cps2121 = E
2 (1+ν)

0 elsewhere

(5.70)

where E identifies the Young’s modulus and ν the Poisson’s ratio.

The ODE (5.68) is homogeneous since only Dirichlet boundary conditions (5.66) have
been set.
Form a∗i [ y(t) ] is clearly non linear. It can be split into the sum of a non linear form
na∗i [ y(t) ], which reads

na∗i [ y(t) ] = RT cbulk D|H
∫
VH

NH
j

∂NH
i

∂xk

∂Nµ
d

∂xk
dV cH

j µ
mech
d (5.71)

and a bilinear counterpart la∗i · y(t) defined by comparison.

A backward Euler scheme have been chosen as time-advancing method. Due to nonlin-
earity, a Newton-Raphson iterative scheme have been implemented to solve the problem at
hand, analogously to sections 4.6.2-4.6.3.

The same considerations raised in section 4.6.3 lead to the identification of three dimen-
sionless groups that govern the condition number of the “stiffness” matrix, namely:

γH =
∆tDH

L2
, γµu =

K ωH

RT
, γµ cH = ωH cbulk
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where L is a characteristic length of the discretization and K is the bulk modulus. These
parameters are expected to govern the stability of the numerical system.

5.9.1 Polar Coordinates Formulation: Axisymmetry

The features of the example allows to rewrite the governing equations (5.67) by using polar
coordinates r and θ (refer to Figure 5.1). Subscripts r and θ will be used from now on to
identify the radial and tangential components of vectors accordingly.
Due to axisymmetry, the displacements field along tangential direction uθ = 0, shear strain
εrθ = 0 and stresses σrθ = 0 have to vanish. For the same reason, the mass flux ~hH has
non-zero radial component only, being hHθ = 0.

The equations governing the problem can be rewritten as follows:

Strain tensor

εr =
∂ur
∂r

εθ =
1

r
ur

εz = εrθ = 0

(5.72)

Elastic strain

εelr = εr − cH ωH

εelθ = εθ − cH ωH

εelz = −cH ωH

εelrθ = 0

(5.73)

Balance equations

force
∂σr
∂r

+
σr − σθ

r
= 0 (5.74)

mass
∂cH
∂t

+
1

r

(
hHr + r

∂hHr

∂r

)
= 0 (5.75)

Constitutive equations

stresses

σr =
E

(1 + ν)(1− 2ν)
[(1− ν)εr + νεθ]−

E

(1− 2ν)
cH ωH

σθ =
E

(1 + ν)(1− 2ν)
[(1− ν)εθ + νεr]−

E

(1− 2ν)
cH ωH

σz =
Eν

(1 + ν)(1− 2ν)

(
εr + εθ −

1 + ν

ν
cH ωH

)
τrθ = 0

(5.76)
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molar flux

hHr = −D|H
∂cH
∂r
−

D|H
RT

cH
∂

∂r

[
−3KωH

(
∂ur
∂r

+
1

r
ur

)
+ 9K ω2

H cH

]
(5.77)

Once expressed in polar coordinates, it is apparent that all the variables merely depend
on the radial coordinate r.

From equations (5.72), (5.74) and (5.76) easy algebra leads to a relation between the
trace of strain tensor εr + εθ and concentration cH

∂

∂r
(εr + εθ) =

1 + ν

1− ν
ωH

∂cH
∂r

(5.78)

By defining

α| = 2
D|H
RT

E

1− ν
ω2
a (5.79)

mass conservation equation (5.75) becomes

∂cH
∂t
−D|H

(
1

r

∂cH
∂r

+
∂2cH

∂r2

)
− α|

[
1

r
cH
∂cH
∂r

+
∂

∂r

(
cH
∂cH
∂r

)]
= 0 (5.80)

The concentration cH is the only unknown of the problem. Once its distribution along r
and evolution in time t are know, other variables (~u, ε and σ) can be easily detected.

5.9.2 Steady state analytical solution

From equation (5.80) one gets that the steady state concentration distribution satisfies the
second order non-linear ordinary differential equation in cH

D|H
(
∂cH
∂r

+ r
∂2cH

∂r2

)
+ α|

[
cH

∂cH
∂r

+ r
∂

∂r

(
cH
∂cH
∂r

)]
= 0 r ∈ [rin, rout] (5.81)

Solutions to equation (5.81) are not unique, but the only one admissible for the problem
considered, according to boundary conditions (5.66b-c) and for cbulk ≥ 0, reads

cH(r) =

√(
D|H
α|

)2

+

(
2

D|H
α|

+ cbound

)
cbound

log r − log rout
log rin − log rout

−
D|H
α|

r ∈ [rin, rout] (5.82)

The radial displacement ur can be determined straightforwardly from equations (5.78),
(5.72) and (5.82) by seeking for the solution of the non-homogeneous ODE

∂ur
∂r

+
1

r
ur =

1 + ν

1− ν
ωH cH(r) + k1 (5.83)

satisfying boundary conditions (5.66a)

Solution to equation (5.83) has been determined using the analytical solver Wolfram
Mathematica, its plot within the range [rin, rout] is shown in Figure 5.5.
The distribution of stresses, computed using equations (5.72) and (5.76), are reported in
Figures 5.6-5.8.
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5.9.3 Simulations

Several simulations have been carried out with different time steps and number of elements.
The outcomes here reported refer to the 1200 elements mesh depicted in Figure 5.2. Taking
advantage of axisymmetry, the numerical analyses have been carried out by restricting the
attention on one fourth of the overall cross section. A constant time step of 10 seconds has
been used, for which:

γH = 12.7 , γµu = 4612.75 , γµ cH = 2.30782× 10−7

Figure 5.2: One fourth of the tube cross section used for numerical analyses. The mesh depicted here is
made up by 1200 elements.

The numerical analyses have been run for an interval of time t ∈ [0 , 300 sec], during
which the steady state condition is reached.

In Figure 5.3 the outcomes of numerical analyses in terms of Hydrogen concentration
cH and radial displacements ur at the steady state are reported. It is worth pointing out
that although the finite element algorithm implemented accounts for general 2D problems,
axisymmetric solutions are perfectly recovered in both cases. The contour have been plotted
on the undeformed configuration.

cH steady state ur steady state

Figure 5.3: Contour plot of Hydrogen concentration cH and radial displacement ur at the steady state within
the cross section.

The steady state cH distribution determined from numerical analyses has been compared
in Figure 5.4 with the analytical solution corresponding to equation (5.82). The good agree-
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ment achieved denote the robustness of the algorithm implemented.
The trend of the radial displacements ur is also recovered, as the overlapping of the numerical
results and the analytical solution testifies in Figure 5.5.

Also the numerical outcomes in terms of stresses have been compared against the ana-
lytical solution - descending from equations (5.72) and (5.76) - for completeness. They have
been depicted in Figures 5.6-5.8.
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Figure 5.4: Analytical (continuus) and numerical (squared) solutions for the steady state concentration
distribution cH along the radius r.
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Figure 5.5: Analytical (continuus) and numerical (squared) solutions for the steady state radial displacement
distribution ur along the radius r.

5.9.4 Remarks

In this chapter, balance equations for active materials, discussed in 3.2, have been completed
by a set of constitutive equations fulfilling thermodynamic restrictions (5.21).

The numerical algorithm that descend form the weak form (5.36) leads to satisfactory
results, see 5.9.3. The constitutive theory implemented for two-dimensional problems may
appear simplistic, but it has to be intended as a step forward into a complex numerical
framework that descends from the model described in chapter 3. In chapter 6 an all-solid-
state battery cell will be simulated. To this end, the formulation that describes the electrolyte
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Figure 5.6: Analytical (continuus) and numerical (squared) solutions for the steady state radial stress dis-
tribution σr along the radius r.
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Figure 5.7: Analytical (continuus) and numerical (squared) solutions for the steady state tangential stress
distribution σθ along the radius r.
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Figure 5.8: Analytical (continuus) and numerical (squared) solutions for the steady state out of plane stress
distribution σz along the radius r.

(chapter 4) and the electrodes (active materials, chapter 5) will be coupled through the
interface reactions (see 3.2.2), giving rise to further complications.
The one-dimensional simulation that will be discussed in chapter 6 will anyway take into
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account inelastic effects.
Thanks to the analogy between neutral Lithium diffusion within electrodes material and

Hydrogen diffusion in metal lattice, the possibility of pursuing different approaches in future
works is envisaged [81, 148].
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5.10 Appendix: General form of governing equations for elec-
trodes

Governing equations can be derived by incorporating the constitutive equations (5.23),

(5.28), and (5.31) into balance equations. They will be written as usual in terms of µmechLi as

µmechLi (cLi, ε) = (5.84a)

1

2

∂K(cLi)

∂cLi
(tr [ ε ]− 3ωLi cLi)

2 +
∂G(cLi)

∂cLi
||dev [ ε ] + dev [ εp ] ||2 − ωLi tr [σ ]

that designates how the chemical potential (5.30) depends upon mechanical factors. The
variables that rule the problem are thus concentrations cLi, displacements ~u, the electric
potential φ, and µmechLi . Governing equations hold at all points ~x ∈ Va at all instants, and
write

∂cLi

∂t
+ div

[
−D|Li

(
1− 2χ|

cmaxLi

MLi(cLi)

)
∇ [ cLi ]

]
+ div

[
−u|Li MLi(cLi) ∇

[
µmechLi

] ]
= 0

(5.84b)

div [−κ∇ [φ ] ] = 0 (5.84c)

div [σ ] = ~0 (5.84d)

with σ defined constitutively by equations (5.28).

Following the same path of reasoning of (5.9), the evolution problem can be formulated
in a general weak form in a time interval [0, tf ] as

Find y(~x, t) ∈ V [0,tf ] such that

d

dt
b ( ŷ(~x), y(~x, t) ) + a( ŷ(~x), y(~x, t) ) = f( ŷ(~x) ) ∀ŷ(~x) ∈ V

(5.85)

where

b (ŷ, y) =
RT

cbulk

∫
Va

ĉLi cLi dV +

∫
Va

ε̂ : σ(cLi, ε) dV

a (ŷ, y) =
RT

cbulk

∫
Va

D|Li

(
1− 2χ|

cmaxLi

MLi(cLi)

)
∇ [ ĉLi ] · ∇ [ cLi ] dV +

+
RT

cbulk

∫
Va

u|Li MLi(cLi) ∇ [ ĉLi ] · ∇
[
µmechLi

]
dV +

+
cbulk
RT ∆t

∫
Va

µ̂mechLi

(
µmechLi − µmechLi (cLi, ε)

)
dV

+ κ

∫
Vs

∇
[
φ̂a

]
· ∇ [φs ] dV +

f (ŷ) = −
∫

ΓBV

(
RT

cbulk
ĉLi + F φ̂s

)
hBV dΓ−

∫
∂V Na \ΓBV

φ̂s i
−
e dΓ +

∫
∂NVa

~̂u · ∂
~p

∂t
dΓ

with list y(~x, t) = {cLi, µ
mech
Li , φs, ~u}. Owing to the scaling, a characteristic length L and a

characteristic time ∆t appear in the weak form.





Chapter 6

Complete cell: Microscale formulation validation

The purpose of the present chapter is to validate the model detailed in chapter 3 for the
microscale1.
To this end, the case of an all-solid-state battery studied in Danilov et al. [21], also depicted
in Figure 6.1, will be considered. The battery is made up by three layers: a Lithium anode,
a solid-electrolyte, and a LiCoO2 cathode. This simple geometry makes it is suitable for a
one-dimensional modeling.

The formulation describing the electro-chemo-mechanical processes in the active material
exposed in chapter 5 is adopted for both the homogeneous electrodes.
The liquid electrolyte model of chapter 4 is here used to model ionic transport within the
electrolyte. This approach is an approximation to simplify the numerical burden. The solid
electrolyte model described in section 4.11 would lead to more accurate evaluations and will
be considered for future works.
Interface reactions are explicitly modeled, extending the formulation anticipated in section
3.2.2.

Figure 6.1: An example of SEM image of an as-produced solid-state Li-ion battery [21].

6.1 Electroneutral formulation

6.1.1 Electrolyte

The framework detailed in chapter 4 for liquid electrolyte modeling is here adopted. The same
set of balance equations and weak forms of sections 4.1 and 4.2 have been used. Subscript e

denotes quantities that refer to the electrolyte.
The boundary of the electrolyte is the union of the Neumann part ∂NVe and of the

Dirichlet part ∂DVe. According to section 4.2, ΓBV ⊆ ∂NVe is the location where the

1This chapter extends contents of [130]
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oxidation/reduction reaction takes place. At that locus there is no intercalation of X−

charges, whereas a Faradaic reaction converts the oxidized Lithium to its neutral state before
its diffusion into the electrode lattice or vice versa. The mass flux along the boundary ∂NVe
satisfies the following conditions:

~hLi+ · ~ne = −hBV ~x ∈ ΓBV (6.1a)

~hLi+ · ~ne = 0 ~x ∈ ∂NVe \ ΓBV (6.1b)

~hX− · ~ne = 0 ~x ∈ ∂NVe (6.1c)

Electrode kinetics detailed in section 3.2.2 will be recalled in 6.1.3, where hBV will be
defined as the mass flux in the outward normal direction at the surface of an electrode. It
will be constitutively defined in terms of Butler-Volmer equation in formulae (6.10, 6.14), as
its suffix asserts.

Ampère’s law {
∂ ~De

∂t
+ F ~hLi+

}
· ~ne = curl

[
~He

]
· ~ne ~x ∈ ΓBV (6.2)

allows to devise boundary conditions for the electric potential in terms of the projection of
the curl of magnetizing field across the interface. They will be considered later in section
6.1.3.

Tractions across the electrode/electrolyte interface are supposed to be continuous, no
displacement jumps are taken into account.

6.1.2 Electrodes

In this section and henceforth, to shorten notation, the subscript a will stand collectively for
the anode and the cathode2. When necessary, the subscripts an and cath will identify anode
and cathode, respectively.

The framework detailed in chapter 5 for the active material modeling will be adopted in
the following for homogeneous material electrodes interested by neutral Lithium intercala-
tion. The same set of balance equations and weak forms of sections 5.1 and 5.2 will be used,
they are thus not reported here.

The boundary of the electrode is the union of the Neumann part ∂NVa and of the Dirichlet
part ∂DVa. The mass flux across the interface ΓBV ⊆ ∂NVa satisfies the following condition:

~hLi · ~na = hBV ~x ∈ ΓBV (6.3)

whereas no Lithium flows across the remaining boundaries

~hLi · ~na = 0 ~x ∈ ∂NVa \ ΓBV (6.4)

The current density at the interface satisfies the following boundary condition:

~ie− · ~na = iBV ~x ∈ ΓBV (6.5)

2The subscript a is a reminiscence of chapters 3 and 5 where the formulation here used for homogeneous
electrodes was suitable for active material only.
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Current density iBV and mass flux hBV have been studied in detail and related constitutively
in section 3.2.2. Across the remaining part of the Neumann boundaries the current flux is
generally given

~ie− · ~n = ie− ~x ∈ ∂NVa \ ΓBV (6.6)

and a Dirichlet boundary condition that sets the location of the zero of the electric potential
is mandatory to the problem definite.

Tractions-type boundary conditions are given along ∂NVa and displacements are imposed
on the Dirichlet part ∂DVa

σ · ~nan = ~̄pan ~x ∈ ∂NVan , σ · ~ncath = ~̄pcath ~x ∈ ∂NVcath (6.7a)

~u = ~uan ~x ∈ ∂DVan , ~u = ~ucath ~x ∈ ∂DVcath (6.7b)

6.1.3 Interfaces

The following reaction of Lithium deposition/dissolution

Li � Li+ + e− (6.8)

is assumed to take place at the two sharp electrode/electrolyte interfaces. In reaction (6.8)
electrical charge is created or consumed. These events are accompanied by an electrostatic
potential difference between the solid electrolyte and electrode, that will be modeled as a
discontinuity ξ = JφK that arises across a zero-thickness interface denoted with ΓBV (see also
3.2.2).

Figure 6.2: A model of the interface between electrolyte and electrode as a discontinuity locus.

As depicted in Figure 6.2 a one-to-one mapping is set between interface ΓBV and bound-
aries ∂Ve and ∂Va. At any point ~x along ΓBV two points correspond along boundaries ∂Ve
and ∂Va. At point ~xe the outer normal ~ne is associated, and analogously to point ~xa. In
the light of the small displacement assumption, during the deformation process the normals
identity ~ne = −~na is kept.
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The Nernst potential ξNernst (refer to 3.2.2) is a function of the state of charge of the
battery, which will be taken as a given (i.e. extrapolated from experimental measures as
in [21]) function of an internal variable ζ|. The net mass flux flowing between electrode and
electrolyte is related to the surface over-potential, expressed by the difference

χ = ξ − ξNernst(ζ|) (6.9)

The mass flux projected in the outward normal direction at the surface of an electrode,
has already been denoted by hBV , refer again to 3.2.2. The relationship between averaged
mass flux and surface over-potential is usually described by means of the Butler-Volmer
equation [6, 11, 88, 118]:

hBV (χ) =
i0
F

{
exp

[
(1− β)

RT
F χ

]
− exp

[
− β

RT
F χ

] }
(6.10)

There are two kinetic parameters in equation (6.10), namely i0 and β. Experimental data are
required to estimate these parameters. Factor i0, termed exchange current density, depends
on the microscopic state of the system nearby the physical interface between electrolyte and
electrode. Parameter β is a symmetry factor and represents the fraction of the surface over-
potential that promotes cathodic reaction. It is widely assumed to be β = 1/2 and as such
was taken in the simulations.

It will be assumed that the interface is not capable to store neither charge nor mass.
Accordingly, the inflow shall equal the outflow (refer to Figure 6.3 for notation):

~hLi+ · ~ne + ~hLi · ~nan = 0 ~x ∈ ΓanBV ,
~hLi+ · ~ne + ~hLi · ~ncath = 0 ~x ∈ ΓcathBV (6.11a)

F ~hLi+ · ~ne +~ian · ~nan = 0 ~x ∈ ΓanBV , F ~hLi+ · ~ne +~icath · ~ncath = 0 ~x ∈ ΓcathBV (6.11b)

In terms of the Butler-Volmer flux defined in (6.10) the conservation equations above
reads:

~hLi+ · ~ne + hanBV (χ) = 0 ~x ∈ ΓanBV ,
~hLi+ · ~ne + hcathBV (χ) = 0 ~x ∈ ΓcathBV (6.12)

The current density projected in the outward normal direction at the surface of an elec-
trode~ie− · ~na has been denoted by iBV in equation (6.5). Faraday’s law induces a constraint
along the interface between the mass flux and current in view of the continuity of current
density across the interface (6.11b):

F ~hLi+ · ~ne + iBV = 0 ~x ∈ ΓanBV , F ~hLi+ · ~ne + iBV = 0 ~x ∈ ΓcathBV (6.13)

By comparison of formulae (6.12) and (6.13) it turns out that Faraday’s law extends to the
current density and mass fluxes across interfaces ΓanBV and ΓcathBV , in the following form:

iBV (χ) = F hBV (χ) (6.14)

Boundary conditions (6.2) are the mere link between the magnetic and electric fields
due to the electro-quasi-static assumption. To account for the projection of the curl of the
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magnetizing field on the normal at the boundary in equation (6.2), the differential problem
(2.5) for ~B should be deployed. Rather than attempting at that, in order to simplify the
formulation the assumption is made3 that along the interface ΓBV

curl
[
~He

]
· ~ne = −iBV (6.15)

which is an acceptable assumption as long as

∂ ~De

∂t
· ~ne �~ie · ~ne ~x ∈ ΓBV (6.16)

with ~ie = F ~hLi+ in view of Faraday’s law (2.2-2.3) and boundary conditions (6.1b-c). Con-
tinuity of the electric current across the interface at each point ~x ∈ ΓBV therefore allows
to identify also the projection of the curl of the magnetizing field on the normal at the
boundary.

Tractions as well as displacements across the interface are supposed to be continuous:

σe · ~ne + σan · ~nan = 0 ~x ∈ ΓanBV , σe · ~ne + σcath · ~ncath = 0 ~x ∈ ΓcathBV (6.17a)

~uel − ~uan = 0 ~x ∈ ΓanBV , ~uel − ~ucath = 0 ~x ∈ ΓcathBV (6.17b)

Weak form

The constraint (6.14) will be imposed via Lagrange multipliers λ, that inherit the physical
meaning of a current density across the interface ΓBV . The weak form reads:∫

ΓBV

− ξ̂ λ+ γ̂ hBV (χ) + λ̂| (λ− F hBV (χ)) dΓ (6.18)

The symbol γ denotes the virtual counterpart of the reaction Gibbs energy

γ = µLi − µLi+ (6.19)

and the symbol λ| denotes the field energetically conjugated to λ.

6.1.4 Weak form

In conclusion, a weak form can be given in a time interval [0, tf ] as:

Find y ∈ V [0,tf ] such that
d

dt
b (ŷ, z(t)) + a(ŷ, y(t)) = f(ŷ) ∀ŷ ∈ V (6.20)

where

b (ŷ, z) = −
∫
Va

µ̂Li cLi dV −
∫
Ve

µ̂Li+ cLi+ + µ̂X− cX− dV +

−
∫
Ve

∇
[
φ̂e

]
· ~De dV +

∫
V
ε̂ : σ dV

3i.e. ~B along the boundary can be estimated from the “steady current” theory (see appendix 3.8 and[13],
chapter 3).
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a (ŷ, y) =

∫
Va

∇ [ µ̂Li ] · ~hLi dV +

∫
Ve

∇ [ µ̂Li+ ] · ~hLi+ +∇ [ µ̂X− ] · ~hX− dV +

−
∫
Va

∇
[
φ̂s

]
·~ie− dV −

∫
Ve

∇
[
φ̂e

]
·
(
F
(
~hLi+ − ~hX−

))
dV +

−
∫

ΓBV

− ξ̂ λ+ γ̂ hBV (χ) + λ̂| (λ− F hBV (χ)) dΓ

with z = {cLi, cLi+ , cX−}, y = {µLi, µLi+ , µX− , φa, φe, ~u, λ}. The unknown field λ along
the interface acts as a Lagrange multiplier. Gibbs’ reaction energy is defined according to
equations (6.19) as

γ̂ = µ̂Li − µ̂Li+ (6.21)

the potential jump as

ξ̂ = φ̂s − φ̂e

Mass flux across the interface hBV (χ) obeys to Butler-Volmer equation (6.10). The right
hand side

f (ŷ) = −
∫
∂NVa\ΓBV

φ̂s ie− dΓ +

∫
∂NVa

~̂ua · ~pa dΓ

is a functional on V [0,tf ] that accounts for non-homogeneous Neumann boundary conditions
as well as for the bulk terms of the balance equations.

The weak form (6.20) is written in terms of potentials rather than concentrations.
Through this choice, the weak form maintains the usual physical meaning of power ex-
penditure, which will be kept also in the weak form of the governing equations, after the
specification of the constitutive equations.

6.2 Thermodynamics and constitutive theory

6.2.1 Electrolyte

Thermodynamic restrictions, formulated as in (4.26), apply. Dilute solutions accounting for
saturation, under the assumption of non-interacting species will be considered

6.2.2 Electrodes

The procedure detailed in chapter 5, sections 5.3 and 5.4, while discussing about active
materials applies here.

6.2.3 Interfaces

As interfaces are here assumed as mere zero-thickness discontinuity locus, with all ther-
modynamic interactions taking place in the electrodes and electrolyte, no thermodynamic
restrictions arise for interfaces.
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6.3 Governing equations.

6.3.1 Electrolyte

Governing equations can be derived as in 4.9 by incorporating the constitutive equations
(4.29), (4.62) and (4.36) into balance equations (4.2). The variable fields that rule the
problem, resulting from the choice made for thermodynamic prescriptions, are concentrations
cα, displacements ~u, and the electric potential φe. Governing equations hold at all points
~x ∈ Ve at all instants:

∂cLi+

∂t
+ div

[
−D|Li+ ∇ [ cLi+ ]− F u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [φe ]

]
= 0 (6.22a)

∂cX−

∂t
+ div

[
−D|X− ∇ [ cX− ] + F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [φe ]

]
= 0 (6.22b)

div

[
−ε| ∇

[
∂φe
∂t

]
+ F (D|X− ∇ [ cX− ]−D|Li+ ∇ [ cLi+ ])

]
+

− F 2 div
[ (

u|Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

) )
∇ [φe ]

]
= 0 (6.22c)

div [C : ε ] = ~0 (6.22d)

Initial conditions are usually imposed for concentration of ions cLi+(~x, t = 0) and cX−(~x, t =
0) in the electrolyte solution. To comply with equilibrium thermodynamics they are uniform
on volume Ve; furthermore initial concentrations are equal, obeying the electroneutrality
condition. Consistently, a positive constant cbulk will be defined as

cbulk = cLi+(~x, t = 0) = cX−(~x, t = 0) (6.23)

and will be used to scale concentration variables henceforth.

Initial conditions for electric potential and displacements solve a boundary value problem
at t = 0. In view of the perfect electroneutrality, at initial time Gauss law (2.8) and balance
of momentum (2.11) provide the necessary and sufficient equations to be solved for φe and
~u:

div [ ε| ∇ [φe ] ] = 0 ~x ∈ Ve, t = 0 (6.24a)

div [C : ε ] = ~0 ~x ∈ Ve, t = 0 (6.24b)

together with homogeneous boundary conditions for current, in view of thermodynamic
equilibrium at initial time, and usual given boundary conditions for displacements and trac-
tions.

6.3.2 Electrodes

As in 5.5 governing equations will be deployed considering material parameters independent
upon cLi and without energetic interactions, χ| = 0. Governing equations can be derived
by incorporating the constitutive equations (5.23), (5.28), and (5.31) into balance equations
(5.1) and completed by the definition (5.32) of µmechLi .
The variables that rule the problem are thus concentrations cLi, displacements ~u, the electric
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potential φa, and µmechLi . Governing equations hold at all points ~x ∈ Va at all instants, and
write

∂cLi

∂t
+ div [−D|Li ∇ [ cLi ] ] + div

[
−u|Li MLi(cLi) ∇

[
µmechLi

] ]
= 0 (6.25a)

div [−κ∇ [φs ] ] = 0 (6.25b)

div [σ ] = ~0 (6.25c)

µmechLi − µmechLi (cLi, ε) = 0 (6.25d)

with σ defined constitutively by equations (5.28).

Boundary conditions (6.3), (6.4), (6.5), (6.6) and (6.7) are applied along Neumann bound-
aries ∂NVa. To ensure solvability to the problem, Dirichlet boundary conditions have to be
imposed along part ∂DVa, being ∂Va = ∂DVa∪∂NVa. Rigid body motion inhibition and zero
electric potential have to be included amidst Dirichlet boundary conditions.

Initial conditions are usually imposed for concentration of neutral Lithium cLi(~x, t = 0).
To comply with equilibrium thermodynamics it is constant in volume Va. Initial conditions
for electric potential and displacements solve a boundary value problem at t = 0, made
of equations (6.25b-c-d) together with homogeneous boundary conditions for current, in
view of thermodynamic equilibrium at initial time, and usual given boundary conditions for
displacements and tractions.

6.4 Weak form: complete cell

Following the same path of reasoning of sections 4.5, 4.9 and 5.5, the evolution problem can
be formulated in a weak form. In Galerkin approaches weak forms are built using “variations”
of the same set of variables that rule the problem, namely “virtual” concentrations ĉLi+ , ĉX− ,

ĉLi, displacements ~̂u, electric potential φ̂, chemical potential µ̂mechLi , and Lagrange multipliers

λ̂. By doing so however the energy meaning of weak form (6.20) is lost. To give to the new
weak form at least the physical dimension of a power expenditure, the mass balance equations
and definition (5.32) will be scaled by suitable coefficients, that follow from constitutive
equations. A weak form of governing equations can be given in a time interval [0, tf ] as

Find y(~x, t) ∈ V [0,tf ] such that

∂

∂t
b ( ŷ(~x), y(~x, t) ) + a( ŷ(~x), y(~x, t) ) = f( ŷ(~x) ) ∀ŷ(~x) ∈ V

(6.26)

where

b (ŷ, y) = − RT

cbulk

∫
Va

ĉLi cLi dV − RT

cbulk

∫
Ve

ĉLi+ cLi+ + ĉX− cX− dV

+ ε|
∫
Ve

∇
[
φ̂e

]
· ∇ [φe ] dV +

∫
Ve

ε̂ : σ(ε) dV +

∫
Va

ε̂ : σ(cLi, ε) dV

a (ŷ, y) = − RT

cbulk

∫
Va

D|Li ∇ [ ĉLi ] · ∇ [ cLi ] dV +

− RT

cbulk

∫
Va

u|Li MLi(cLi) ∇ [ ĉLi ] · ∇
[
µmechLi

]
dV +
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+
cbulk
RT ∆t

∫
Va

µ̂mechLi

(
µmechLi − µmechLi (cLi, ε)

)
dV

− RT

cbulk

∫
Ve

D|Li+ ∇ [ ĉLi+ ] · ∇ [ cLi+ ] + D|X− ∇ [ ĉX− ] · ∇ [ cX− ] dV +

− RT

cbulk

∫
Ve

F u|Li+ cLi+

(
1− 2

cLi+

cmax

)
∇ [ ĉLi+ ] · ∇ [φe ] dV +

+
RT

cbulk

∫
Ve

F u|X− cX−

(
1− 2

cX−

cmax

)
∇ [ ĉX− ] · ∇ [φe ] dV +

+ κ

∫
Va

∇
[
φ̂s

]
· ∇ [φs ] dV +

+ F

∫
Ve

∇
[
φ̂e

]
· (D|Li+ ∇ [ cLi+ ]−D|X− ∇ [ cX− ]) dV +

+ F 2

∫
Ve

(
u|Li+ cLi+

(
1− 2

cLi+

cmax

)
+ u|X− cX−

(
1− 2

cX−

cmax

))
∇
[
φ̂e

]
· ∇ [φe ] dV +

−
∫

ΓBV

RT

cbulk
(ĉLi − ĉLi+) hBV (χ) − (φ̂s − φ̂e) λ+

L

κ
λ̂ (λ− F hBV (χ)) dΓ

f (ŷ) = −
∫
∂NVa

φ̂s ie− dΓ +

∫
∂NVa

~̂ua · ~pa dΓ

with list y(~x, t) = {cLi+ , cX− , cLi, µ
mech
Li , φa, φe, ~ua, ~ue, λ }. Owing to the scaling, a character-

istic length L and a characteristic time ∆t appear in the weak form. They will be given a
neat identification in what follows. The proof descends from the same path of reasoning of
the weak form for the balance equations provided in appendix 3.5 and will not be replicated.

6.5 One-dimensional modeling of an all-solid-state Li-ion bat-
tery.

6.5.1 Description

This section deals with the case study analysed in [21], namely a 10 µAh planar thin film all-
solid-state Li-ion battery, also depicted in Figure 6.1. It is composed by a metallic Lithium
anode, an amorphous Li3PO4 solid electrolyte and a LiCoO2 cobaltate Lithium cathode.
The sizes of each component are reported in Figure 6.3.
Several discharge rates were applied in [21] to reproduce experimental evidences. With the
aim of validating the model here proposed, only a discharge rate of 51.2 C-rate is considered
at temperature of 25oC, with current density I51.2C = 5.12Am−2.

In order to make initial and boundary conditions compatible with thermodynamic equi-
librium at t = 0, the current I(t) is tuned in time as

I(t) = (1− e−t) I51.2C (6.27)

with t in seconds.
A uniform ionic flow at the interfaces is considered, enabling a 1D description. Due to

charge conservation, the value of the specific current per unit area along the outer boundaries
of both electrodes is given by the ratio between the current I(t) flowing through the battery
and the net area A = 1× 10−2m2. Boundary conditions (6.5) thus read:

~ie− · ~nan
∣∣∣
Γan

(t) = ~ie− · ~ncath
∣∣∣
Γcath

(t) =
I(t)

A
(6.28)
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Figure 6.3: Skematic of an all-solid-state Li-ion battery, nomenclature and dimensions.

It is here assumed that the expansion of the battery cell is prevented, refer to Figure 6.3 for
notation

~uan(~x, t) = 0 ~x ∈ Γan (6.29a)

~ucath(~x, t) = 0 ~x ∈ Γcath (6.29b)

The current collectors have not been modeled, boundary conditions (6.28) and (6.29) are
used in their place.

The pure Lithium foil has been chosen as reference electrode. The electric potential in
correspondence of the outer boundary has been set to zero accordingly

φans (~x, t) = 0 ~x ∈ Γan (6.30)

Initial conditions have been taken according to [21]. The cell is assumed to be in ther-
modynamic equilibrium and fully charged at time t = 0. The concentrations of both neutral
and ionic Lithium across the electrodes and the electrolyte are uniform

cLi(~x, 0) = 4.61× 106 mol m−3 ~x ∈ Van (6.31a)

cLi+(~x, 0) = cX−(x, 0) = 1.1× 104 mol m−3 ~x ∈ Vel (6.31b)

cLi(~x, 0) = 1.2× 104 mol m−3 ~x ∈ Vcath (6.31c)

It is worth pointing out that no boundary conditions have been imposed on the elec-
trolyte domain Ve, they arise from interface conditions (6.11), (6.12), (6.13) and (6.17). This
represents a difference against the inspiring work of Danilov et al. [21], in which a Lithium
flux hBV (i.e. an electric current) is imposed in correspondence of ΓanBV and ΓcathBV .

6.5.2 Material parameters and constants

Assumption is made that all processes take place at temperature T = = 298.15K. Material
parameters have been taken according to [21, 48, 70, 152].
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Anode

Young’s modulus Ean = 4.9 × 109 N m−2, Poisson’s ratio νan = 0, 3, Yield stress σanY =
2.58 × 108N m−2, Kp = 4.0 × 1010 N m−2 have been used for the pure Lithium. A value
κan = 1.08× 107 S m−1 has been taken for the electric conductivity.
It is here assumed that pure Lithium is actually unaffected by the delithiation process,
diffusivity4 coefficient D|anLi and chemical expansion coefficient ωanLi have been set to zero
accordingly.

Cathode

Young’s modulus Ecath = 8 × 1010 N m−2, Poisson’s ratio νcath = 0, 3, Yield stress σcathY =
2.58 × 108 N m−2, Kp = 4.0 × 1010 N m−2 have been used for the LiCoO2. A value
κcath = 104 S m−1 has been taken for the electric conductivity.
A diffusivity D|cathLi = 1.76 × 10−15 m2 s−1 and a chemical expansion coefficient ωcathLi =
3.497× 10−6 m2 mol−1 have been adopted.

Electrolyte

The Li3PO4 electrolyte is here regarded as an incompressible fluid according to the adoption
of the liquid electrolyte model. It is then regarded as a linear elastic material characterized
by a huge5 Young’s modulus. A value ε|el = 2.25 ε|0 F m−1 has been assumed for the electric
permittivity6.
Diffusivities amount at D|Li+ = 0.9× 10−15m2 s−1, D|X− = 5.1× 10−15m2 s−1.

6.5.3 Adimensional weak form: complete cell

Weak form (6.26) can be transformed in a first order ODE in time if discretization is per-
formed via separated variables, with spatial test ϕi(x) and shape functions ϕj(x) and nodal
unknowns (collectively gathered in column y with component yj(t)) that depend solely on
time. A dimensionless expression is derived by making fields in list y(x, t) quantity of di-
mension one via suitable scaling factors, namely:

c∗α =
cα
cbulk

, µmechLi
∗

=
µmechLi

RT
, φ∗ =

F

RT
φ, ~u∗ =

~u

L
, λ∗ =

L

κ

F

RT
λ, (6.32)

The star superscript is omitted for the sake of readability. The usual Einstein convention of
sum is taken henceforth.

A one-dimensional domain is considered, nevertheless integration boundaries will be iden-
tified by V , ∂V and Γ to easily recognize different domains. Explicit distinction should be
made among anode and cathode, but this would require the introduction of further terms in

4The opposite strategy has been adopted in numerical analyses. Being the goal to have the Lithium
concentration unaffected by the delithiation process, an extremely large value (theree order of magnitudes
larger than the ones used for other components) has been adopted. In this way a sort of steady state
distribution is always achieved.

5From a numerical point of view, a sufficiently large number compared with the Young’s modulus of the
other components.

6The same value was used in section 4.6
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the weak form. In order to avoid introduction of additional terms, both the electrodes and
the material parameters related to them will be identified with subscript a. Subscript e will
denote material parameters that refer to the electrolyte.

Within the one-dimensional setting, equations (5.27) and (5.32) specify as follows:

σa = Ea

(
∂u

∂x
− εp − ωa cLi

)
(6.33a)

µmechLi a = −Ea ωa
(
∂u

∂x
− εp − ωa cLi

)
(6.33b)

The shape functions referring to φs and φe will be identified by ϕφs and ϕφe along the
interface ΓBV , where both the electric potentials are present. They will shortly be denoted
by ϕφ elsewhere, since the connection either to φs or φe should be apparent from the context.

In the present section, the effect of saturation has not been taken into account for any of
the components.

The non linear ODE reads:

Find y(t) such taht b∗i ·
∂y

∂t
(t) + a∗i [ y(t) ] = f∗i (t) for i = 1, 2, ..., N (6.34)

where

b∗i
RT cbulk

· ∂y
∂t

(t) = −
∫
Va

ϕLi
i ϕLi

j dV
∂cLi

j

∂t
+

−
∫
Ve

ϕLi+

i ϕLi+

j dV
∂cLi+

j

∂t
−
∫
Ve

ϕX−
i ϕX−

j dV
∂cX

−
j

∂t
+

+
ε|

cbulk

RT

F 2

∫
Ve

∂ϕφi
∂x

∂ϕφj
∂x

dV
∂φej
∂t

+

+
Ee L

2

RTcbulk

∫
Ve

∂ϕui
∂x

∂ϕuj
∂x

dV
∂uj
∂t

+

+
L2

RTcbulk

∫
Va

∂ϕui
∂x

1

L

∂σ(cLi, ε)

∂t
dV

a∗i [ y(t) ]

RT cbulk
= −D|Li

∫
Va

∂ϕLi
i

∂x

∂ϕLi
j

∂x
dV cLi

j +

− D|Li

∫
Va

ϕLi
j

∂ϕLi
i

∂x

∂ϕµk
∂x

dV cLi
j µ

mech
k +

+
1

∆t

∫
Va

ϕµi ϕ
µ
j dV µmechj +

− 1

∆t

∫
Va

ϕµi µ
mech
Li (cLi, ε) dV +

−D|Li+

∫
Ve

∂ϕLi+

i

∂x

∂ϕLi+

j

∂x
dV cLi+

j +

− D|Li+

∫
Ve

ϕLi+

j

∂ϕLi+

i

∂x

∂ϕφk
∂x

dV cLi+

j φek +
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−D|X−
∫
Ve

∂ϕX−
i

∂x

∂ ϕX−
j

∂x
dV cX−

j +

+ D|X−
∫
Ve

ϕX−
j

∂ϕX−
i

∂x

∂ϕφk
∂x

dV cX−
j φek +

+
RT κ

cbulk F 2

∫
Va

∂ϕφi
∂x

∂ϕφj
∂x

dV φsj +

+ D|Li+

∫
Ve

∂ϕφi
∂x

∂ϕφk
∂x

ϕLi+

j dV cLi+

j φek +

+ D|Li+

∫
Ve

∂ϕφi
∂x

∂ϕLi+

j

∂x
dV cLi+

j +

+ D|X−
∫
Ve

∂ϕφi
∂x

∂ϕφk
∂x

ϕX−
j dV cX−

j φsk +

− D|X−
∫
Ve

∂ϕφi
∂x

∂ϕX−
j

∂x
dV cX−

j +

− 1

cbulk

∫
ΓBV

ϕLi
i hBV (χ) dΓ +

1

cbulk

∫
ΓBV

ϕLi+

i hBV (χ) dΓ +

+
RTκ

F 2 cbulk L

∫
ΓBV

ϕφsi ϕλj dΓ λj −
RTκ

F 2 cbulk L

∫
ΓBV

ϕφei ϕλj dΓ + λj

− RTκ

F 2 cbulk L

∫
ΓBV

ϕλi ϕ
λ
j dΓ λj +

1

cbulk

∫
ΓBV

ϕλi hBV (χ) dΓ

f∗i (t)

RT cbulk
= − 1

cbulk F

∫
∂N Va

ϕφi ie− dΓ +
L

RT cbulk

∫
∂N Va

ϕui
∂p̄a
∂t

dΓ+

Note that hBV , p̄ and ie− have not been scaled.

Form a∗i [y(t)] is clearly non-linear. The novelties with respect to discrete weak forms
derived previous chapters (refer to sections 4.6.2, 4.10.1, 4.13.2 and 5.9) are represented by
inelastic deformation εp and the boundary term hBV , which is not given for the problem at
hand.
J2 plasticity is standard argument in solid mechanics and will not be detailed here. The radial
return technique have been used for implementation, the reader may refer to [145, 153] for
details.
The term hBV depends on the electric potential discontinuity

ξ = φs − φe (6.35)

across the electrode/electrolyte interface and on the Nernst potential ξNernst, equation (6.9).
The latter is generally not constant, it depends on the state of charge (SOC), i.e. number of
charges measured per unit area identified by ζ|, which represents the amount of charge that
crosses the electrode/electrolyte interface in correspondence of a specific location, during a
charge and discharge processes [21]. In this example, the location is unique because of the
one-dimensional feature.
As the Lithium metal anode is used as ground electrode the open circuit potential ξNernst

in correspondence of the ΓanBV is set to zero [48, 132].
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A relation between ξNernst and the SOC ζ| has been experimentally determined by Danilov
et al. [21] for the ΓcathBV interface. The outcomes of those experimental fitting are depicted in
Figure 6.4 and have been used in the numerical computations at hand.
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-2
D

Ξ Nernst
@VD

Figure 6.4: Experimental fitting of the relation among ξNernst and the state of charge ζ| [21].

By pursuing the same path of reasoning used in section 4.6.2, backward Euler scheme
has been selected as time-advancing method for the numerical simulations that follow.

Search y(t+ ∆t) such that

b∗i ·
y(t+ ∆t)

∆t
+ la∗i · y(t+ ∆t) + na∗i [ y(t+ ∆t) ] = f∗i (t+ ∆t) + b∗i ·

y(t)

∆t
(6.36)

after having decomposed a∗i [y(t)] in the linear la∗i · y(t) and non-linear na∗i [ y(t + ∆t) ]
forms.

By defining the generic component of na∗i [ y(t+∆t) ] containing the term hBV as follows:

nBVi [y(t+ ∆t)] =

∫
ΓBV

ϕi hBV (χ) dΓ (6.37)

the correspondent contribution to Newton-Raphson strategy of the form (4.53) reads:

d

dε
nBVi [ qy(t+ ∆t) + ε δy ]

∣∣∣∣
ε=0

=

=
i0
L2

∫
ΓBV

ϕi

{
(1− β) exp

[
(1− β)

(
qξ∗ − F

RT
ξNernst (t+ ∆t)

)]
+

+β exp

[
−β
(

qξ∗ − F

RT
ξNernst (t+ ∆t)

)]} (
ϕφsk

qδφsk
∗ − ϕφem

qδφem
∗
)

dΓ

(6.38)

where
qξ∗ =

(
ϕφsk

qφsk
∗
)
−
(
ϕφek

qφek
∗
)
− ξNernst

(
ζ| (t+ ∆t)

)
(6.39)

and qφsk
∗, qφek

∗ ∈ qy according to section 4.6.3.
In order to avoid additional iterations, ξNernst has been calculated using the value of ζ| at
the beginning of the Newton-Raphson loop, and has been kept constant for the whole time
step.
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The numerical technique (4.53) that refers to problem (6.34) have been implemented in
a Wolfram Mathematica package script.

Several dimensionless groups arise that numerically connote the multi-physics processes
concurrently taking place. The parameters expected to rule the stability of the numerical
solution are:

γα =
∆tDα

L2
, γbulk = ωLicbulk , γφ1 =

rD
L
, γφ2 =

κ∆t

ε|
,

γBV1 =
i0
κ

F

RT
L , γBV2 =

i0
cbulkF

∆t

L
, γσ =

K ωLi

RT
,

rD being the Debye length defined in (2.19).

6.5.4 Simulation: complete cell

Several simulations have been carried out with different time steps and number of elements.
The outcomes here reported refer to finite elements of equal length L = 10−8m (50 elements
for the anode, 150 for the electrolyte ad 32 for the cathode) and a constant time step
∆t = 0.01 s. The value canbulk = 11000mol m−3 has been used for adimensionalization (6.32)
for all the components.
The simulation was ended at time tf = 90s. The steady state is not achieved for high
discharge rate as the one at hand, 51.2 C-rate. The amount of charge transferred at the
interface ΓcathBV is such that the open circuit potential collapse, Figure 6.4, and the electric
current flow is suddenly interrupted.

The Lithium concentration distribution obtained from the numerical analyses is given
in Figure 6.5 for all the components of the battery. Two different pictures overlap in that
representation.
In the first graph the concentration ranges from 0 to roughly 4×106mol m−3. This allows to
appreciate the huge difference in Lithium content between the pure Lithium anode and the
other components. Within the latter the concentration seems to lie along the x-coordinate.
The neutral Lithium concentration in anode is unchanged with respect to the initial value
cLi(~x, 0) = 4.61× 106 mol m−3.
In the second part the concentration ranges from 0 to 3.5 × 104mol m−3, which means it
is two orders of magnitude smaller then the previous. This allows to appreciate the time
evolution of Lithium distribution, both ionic and neutral, within the electrolyte and the
cathode (the anode concentration content is out of the range of the plot) and the jump
across the ΓcathBV interface. As expected, the concentration profiles depart from the initial
uniform values of cLi+(~x, 0) = 1.1 × 104 mol m−3 and cLi(~x, 0) = 1.2 × 104 mol m−3 toward
non-uniform distributions. The time evolution is in good agreement with data published in
[21], Figure 12.

Figure 6.6 depicts the electric potential and its evolution in time. Linear distribution of φ
develops in both the electrodes (difficult to appreciate due to the small gradient) according to
the assumption of conductive materials. The electric potential discontinuity (6.35), apparent
between electrolyte and cathode, arises at both interfaces ΓanBV and ΓcathBV . The galvanostatic
regime imposes, through equations (6.10) and (6.14), that the overpotential (6.9) has to
be constant in one-dimensional processes. This implies that the discontinuity (6.35) has
to follow the evolution of ξNernst, which can be envisaged from the time evolution of φs
along the cathode. The latter reproduces in fact the trend of Figure 6.4, being the time
parametrization of Figure 6.6 correspondent to a constant time step.
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Figure 6.5: Lithium concentration distribution paramaterized in time along the solid-state battery. Two
different intervals are depicted for the concentratio-axis. The range 0 to 4 × 106mol m−3 refers to all the
components; the range 0 to 3.5× 104mol m−3 is restricted to electrolyte and the cathode. The x-axis is shared.

Figure 6.6: Plot of the electric potential φ parametrized in time along the solid-state battery.

Displacements and stresses are plotted in Figure 6.7 and 6.8 respectively. Due to the hy-
pothesis made, refer to section 6.5.2, the chemo-mechanical coupling only affects the cathode.
The constrained swelling, Figure 6.7, of the LiCoO2 under lithiation give rise to compression
stresses in both the electrodes, Figure 6.8, in agreement with the assumption of incompress-
ible electrolyte. Since the latter has been modeled as a rigid body no stresses arise.
The outcomes of the numerical analyses show that no plastic deformation develops being the
achieved values of stresses far below the yield stress σY .
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No comparison are available for the mechanical part, not investigated by Danilov et al.
[21].

Figure 6.7: Plot of the displacement u parametrized in time along the solid-state battery.

Figure 6.8: Plot of the stresses σ parametrized in time along the solid-state battery.

6.5.5 Remarks

In this chapter the microscale formulation proposed within the framework of a multiscale
computational homogenization approach has been validated. Capacitive effects have been
explicitly taken in to account via the electro-quasi-static formulation. The electroneutrality
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assumption and Maxwell’s laws have been used to describe the electric field. Electroneutral-
ity has been taken into account to neglect Lorentz forces, whereas the influence of the charge
effect in the solution has not been disregarded.
The set of balance equation of section 3.2.1, completed by proper constitutive theory (chap-
ters 4 and 5 ) leaded to the numerical algorithm detailed in 6.5. The latter has been
implemented in a Wolfram Mathematica package script and used to simulate the study case
of an all-solid-state battery [21]. The outcomes of the numerical analyses, section 6.5.4,
show that the multiphase model developed for porous electrodes, chapter 3, well reproduces
the behavior of each component of the cell and their interactions. The processes affecting
the all-solid-state battery during a single discharge process are cached by the simulations,
denoting the robustness of the approach. Comparison with the results of [21] are satisfactory.

For future development, the possibility to extend the numerical analyses to more general
problems (2D or 3D geometries, more complex material behavior, SEI formation) is envis-
aged.
The possibility to extend the approach to multiscale numerical analyses is guaranteed by the
energetic meaning of the weak form. Some preliminary results of multiscale computational
homogenization applied to Li-ion battery will be showed in chapter 7.
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Chapter 7

Toward multiscale numerical analyses

Processes in Li-ion batteries electrodes are modeled with the partial differential equations
setting of diffusion-migration-intercalation problems and their mechanical coupling. This
appears a new challenge for the computational homogenization technique, whose application
to multi-physics problems does not represent a novelty [98–102].

Due to the lack of time, coupled two-scales computational homogenization analyses have
not been carried out within this work. The (numerical) relations between the macroscopic
input and output variables, particularly the tangent “stiffnesses” to be inserted in each
incremental step of the Newton-Raphson scheme (7.7), have not been provided here. In
principle they can be determined following the usual approach of the computational ho-
mogenization scheme: the reader may for instance refer to the one proposed in [98, 99] for
thermo-mechanical analysis of heterogeneous solids.

A first step toward multiscale numerical analyses for batteries has been made and is
described in this last chapter. The framework concerning liquid electrolyte, exposed in
chapter 4, has been further applied to a two-dimensional problem to investigate the micro
structural behavior of a multi-phase separator. Boundary conditions descend from the scale
transition conditions (as detailed in section 3.4.1) peculiar of computational homogenization
formulation for batteries [8, 9].
Concentrations and electric potential profiles, resulting from the numerical analyses, are
reported in section 7.2. A strong influence of the geometry is observed from the results, in
particular at the interface between fluid electrolyte and the separator membrane, suggesting
that microscopic investigations might be crucial for a deep understanding of the overall
battery behavior and its failure mechanisms, in line with recent experimental investigations
[154].

7.1 Computation procedures

7.1.1 Discretization

The macroscale weak form can be written in the following semi-discrete approximated form

Find yMh ∈ V
[0,T ]
h such that

d

dt
b
(
ŷMh , z

M
h (t)

)
+ a(ŷMh , y

M
h (t)) = f(ŷMh , t) ∀ŷMh ∈ Vh , t ∈ (0, T ) (7.1)

with zM = {cMLi , c
M
e− , c

M
Li+

, cMX−}, y
M = {µMLi , µ

M
e− , µ

M
Li+

, µMX− , φ
M
s , φ

M
e , ~u

M} and yMh (0) = y0
h

an approximation of the initial datum. As for the weak forms of chapters 4, 5 and 6 the
Galerkin approximation is adopted using as Vh the classical finite element space.
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As motivated in section 3.1.2, the problem at hand requires concurrent time evolution
across scales. An ODE in time have to be addressed for the microscale as well. The semi-
discrete weak form reads:

Find ymh ∈ V
[0,T ]
h such that

d

dt
bm (ŷmh , z

m
h (t)) + a(ŷmh , y

m
h (t)) = f(ŷmh , t) ∀ŷm ∈ Vh , t ∈ (0, T ) (7.2)

with zm = {cmLi, c
m
e− , c

m
Li+

, cmX−}, y
m = {µmLi, µ

m
e− , µ

m
Li+

, µmX− , φ
m
s , φ

m
e , ~u

m, λm} and Vh the clas-
sical finite element space.

7.1.2 Time advancing by finite differences

A family of time-advancing methods based on the so-called θ-scheme can be built for the
macroscale discrete problem (7.1).

1

∆t
b
(
ŷMh , z

M
h (t+ ∆t)− zMh (t)

)
+ a(ŷMh , θ y

M
h (t+ ∆t) + (1− θ)yMh (t)) =

= θ f(ŷMh , t+ ∆t) + (1− θ) f(ŷMh , t) ∀ŷMh ∈ Vh
(7.3)

where 0 ≤ θ ≤ 1, ∆t = T/N is the time step, N is a positive integer and y0
h ∈ Vh is a

suitable approximation of the initial datum. This includes the forward Euler scheme (θ = 0),
backward Euler (θ = 1), and Crank-Nicolson (θ = 1/2).

7.1.3 Newton-Raphson scheme

Depending on the constitutive assumptions, equations (7.2) and (7.3) can be non linear in
ymh , yMh respectively, which is the usual case (see chapters 4, 5 and 6). Equation (7.3) may
be solved by means of the Newton Raphson iterative method. Define function g(yMh (t+∆t))
as

g(yMh (t+ ∆t)) =

=
1

∆t
b
(
ϕj , z

M
h (t+ ∆t)− zMh (t)

)
+ a(ϕj , θ y

M
h (t+ ∆t) + (1− θ)yMh (t)) =

= θ f(ϕj , t+ ∆t) + (1− θ) f(ϕj , t)

(7.4)

{ϕj |j = 1, ..., Nh} being a basis for Vh. Equation (7.3) reads

g(yMh (t+ ∆t)) = 0 (7.5)

li · δy +
d

dε
ni[

qy(t+ ∆t) + ε δy ]

∣∣∣∣
ε=0

= ξi − li · qy(t+ ∆t) + ni[
qy(t+ ∆t) ] (7.6)

and the Newton Raphson iterative scheme in an abstract formalism can be obtained by
making recourse to the notion of Gateaux derivative. Taking ε ∈ R it reads:

g
(
q+1yMh (t+ ∆t)

)
= g
(
qyMh (t+ ∆t)

)
+

d

dε
g
(
qyMh (t+ ∆t) + ε δyMh

)∣∣∣∣
ε=0

= 0 (7.7)

to be solved for increment δyMh = q+1yMh (t + ∆t) − q+1yMh (t) iteratively until its norm is
sufficiently small (refer to section 4.6.3). Within the computational homogenization proce-
dure, the macroscopic Cauchy stress, mass fluxes, and electric fields are recovered from the
numerical solution of the micro-scale problem (7.2) by means of micro to micro scale tran-
sitions (3.58). The Newton-Raphson iteration (7.7) requires macroscopic tangents. Their
consistent derivation can be achieved in analogy with the scheme proposed in [98, 99] for
thermo-mechanical analysis of heterogeneous solids.
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7.2 Two-dimensional modeling of ionic transport in a solid
electrolyte

A one dimensional mathematical description is generally accepted for the separator consistent
with the geometry of the battery, which intrinsically dictates such an overall behavior. Such
a geometrical description represents reality only in an average sense under adequate circum-
stances. The porous separator of an electrolytic cell is in fact a multi-phase structure that
includes a network of interconnected and irregular pores and channels [155]. One-dimensional
models can neither capture the underlying microstructure nor detail the processes that take
place at such a scale. They are not capable, for instance, to model failure in the separa-
tor, where micro-structural events initiate damage and eventually lead to macroscopic short
circuit. As the integrity of the separator is vital to the performance and safety of batteries
[53, 54] multiscale approaches may be helpful in performing stress anayses, in particular,
computational homogenization can be a useful tool to describe the separator pore network
[54].

7.2.1 Description

Figure 7.1: Microscopic RVE (5µm edge) and its discretization with 4600 elements adopted in the numerical
analysis. Two phases are considered, namely the electrolyte (dark gray) and the polymeric separator (light
gray).

Following the typical path of reasoning of computational homogenization (section 1.3.1),
any point of the macroscale is related to its underlying microstructure through a properly
defined RVE, see section 3.1.1. Numerical outcomes based on a two dimensional RVE,
assumed to be the microscopic counterpart of the 1D separator of section 4.6.1, will be
shown. The RVE, whose edges are 5µm long, is depicted in Figure 7.1. Two phases have been
considered: a liquid electrolyte (dark gray) and a polymeric porous membrane (light gray).
Temperature and material parameters of the electrolyte are taken from section 4.6.1. Since
the polymeric membrane does not contribute to ionic transport, boundary conditions refer to
the electrolyte only. Moreover, the following conditions apply along the electrolyte/polymer
interface, denoted with Γint:

~hX− · ~n
∣∣∣
Γint

(t) = ~hLi+ · ~n
∣∣∣
Γint

(t) = 0 (7.8)
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Boundary conditions apply along the edges of the RVE occupied by the electrolyte ∂VRV E ∩
∂Ve and read:

cLi+(~x, t) = ∇
[
cM

Li+
]

(t) · (~x− ~xG) + cM
Li+

(t) ~x ∈ ∂VRV E ∩ ∂Ve (7.9a)

cX−(~x, t) = ∇
[
cMX−

]
(t) · (~x− ~xG) + cMX−(t) ~x ∈ ∂VRV E ∩ ∂Ve (7.9b)

φe(~x, t) = ∇
[
φMe

]
(t) · (~x− ~xG) + φMe (t) ~x ∈ ∂VRV E ∩ ∂Ve (7.9c)

They arise from scale transitions conditions (3.48), with concentrations cα used in place
of electrochemical potentials µ̄α. ∂VRV E and ∂Ve represents the edges of the whole RVE
(identified with VRV E) and the boundary of the electrolyte domain (identified with Ve)
respectively; vector ~x identifies the position of a generic point inside the RVE, while the
centroid of the RVE is denoted with ~xG. Apex M defines quantities descending from the
macroscale, namely the outcomes of section 4.6. Since macro and micro scale evolutions are
concurrent in time (see section 3.1.2), any generic instant t coincides at both scales.

Figure 7.2 reports the evolution of concentrations and electric potential φe in time, evalu-
ated macroscopically at point x = 0.05 mm - see Figure 4.1. In the same way, time evolution
of ∇ [ c ] and ∇ [φe ] are depicted in Figure 7.2.

Figure 7.2: Development of concentration cLi+ (circles) and electric potential φ (squares in the left plot),
as well as of concentration gradient ∇ [ cLi+ ] (circles) and electric potential gradient ∇ [φ ] (squares in the
right plot) experienced by the macroscopic point at the coordinate x = 0.05 mm. The values are the outcome
of the numerical analysis discussed in section 4.6.

Discretization and time advancing can be achieved as in section 4.6.2. The numerical
algorithm implemented for 2D domain is detailed in appendix 4.16.
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7.2.2 Simulations

The Newton-Raphson iterative scheme (4.53) has been implemented in an Abaqus User
Element script.

Results refer to the mesh shown in Figure 7.1. To be consistent with the boundary condi-
tions (7.9) and time history, Figure 7.2 refers to simulations with ∆t = 60s. A homogeneous
electric potential, and a constant concentration equal to cbulk have been imposed at t = 0.
According to Figure 7.2 the boundary conditions become steady after a few time steps, and
similarly the values of the field inside the RVE evolve until their own steady state condition
is approached. Figure 7.3 show concentrations and electric potential distributions at time
t = 3600 s, once the steady state is reached.

Figure 7.3: Microscale ionic concentration cLi+ and electric potential φ distribution at steady state (t =
3600s) in the electrolyte.

7.2.3 Remarks

To avoid the complexity of the non-uniform intercalation within each active particle of elec-
trodes, it is customary in literature to restrict the analysis to one-dimensional problems,
eventually focusing to nanowires [65], thin films [67], or to a single active particle without
modeling the surrounding material and phenomena; neither the electrolyte nor the inter-
face reaction are directly considered, but the electrochemical interactions are replaced by “a
priori” given incoming flux, often claiming for axialsymmetry.

The numerical simulations here carried out evidence that the presence of holes in the ge-
ometry strongly influences the results. The profile of concentrations at the interface between
electrolyte and separator is dictated by the macro scale and by the local microstructure,
and it is hardly possible either to envisage any special symmetry or to predict the interface
conditions “a priori”. Similar results are expected for particles in the electrodes. These out-
comes strengthen the conceptual framework of the multi scale approach that permeates this
thesis, namely that performance of Li batteries strongly depends on the interaction between
micro and nano-scale phenomena.





Chapter 8

Conclusions

A two-scale modeling of several electrochemical and mechanical processes that take place
during charging/discharging cycles in Li-ion battery electrodes has been dealt with in the
part I of the present thesis. The performance of batteries relies on the interaction between
micro and nano-scale phenomena, in particular within the electrodes. Mechanical effects
induced by cyclic lithiation/delithiation, as swelling and the consequent eventual mechanical
failure, arise at the level of the nano-sized active particles. Unfortunately, modeling a single
battery cell at such a scale is at present unfeasible, because of the huge computational cost.
Therefore, nano-scale effects have to be incorporated into a multi-scale strategy, through
averaging techniques and constitutive models that are derived from homogenization methods.

In this work a computational homogenization formulation has been proposed adopting
a continuum approach at both scales. Capacitive effects have been explicitly taken into
account via the electro-quasi-static formulation. Electroneutrality has been considered as an
approximation towards the solution. The error introduced on the balance laws by ignoring
the charge separation has been investigated, concluding that Lorentz forces can reasonably be
neglected, whereas the influence of the charge effect on the solution should not be disregarded.

At the macro-scale, electrodes have been modeled as porous continua, whereas at the
micro level they have been described as heterogeneous and multiphase media. Length and
time scales have been investigated in section 3.1.

As established by Suquet [32], the basic concepts of computational homogenization con-
sist in determining the microscopic boundary conditions from the macroscopic input variables
(macro-to-micro transition) as well as in recovering the macroscopic output variables from
the microstructural RVE solution (micro-to-macro transition). The latter scale transition, in
mechanics named after Hill-Mandel, has been extensively reformulated for the multi-physics
processes taking place in batteries. In order to keep the usual physical interpretation of power
expenditure, which is a key concept in the multi scale approach, the variational framework
here outlined selects potentials rather than concentrations as independent fields in the mod-
elization. The procedure itself is independent on the constitutive laws at the micro-scale,
provided that thermodynamic restrictions discussed in chapters 4 and 5 are satisfied and
that the microscopic boundary value problem admits a unique solution.
Differently from [8], the steady-state mass and charge transport assumption that was taken
at the microscale has been removed and the scale transitions are elaborated for a time de-
pendent formulation. As a result, the internal expenditure of virtual power of mechanical
forces, of charge and mass fluxes is completely preserved in the scale transition.

The second part of the thesis has been devoted to the validation of the microscale formu-
lation. Electrolyte and active material modeling have been detailed separately in chapters 4
and 5 respectively. A whole cell has been considered in chapters 6.
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Conductivity for binary ionic salts dissolved in non convective solutions has been investi-
gated. Whereas two coupled parabolic equations are largely used in the literature to model
the diffusion process, it is common to use electroneutrality condition (2.21) to model migra-
tion phenomena. The resulting electric field can be described by analytical expressions [10]
but it is not constrained in any way to satisfy Maxwell’s equations. This is a fundamental
inherent paradox which is not often acknowledged according to [7].

In solving the Nernst-Planck equations, one determines the effect of the electric field,
which only arises in the presence of a net charge separation. Yet, to determine the electric
field by means of the electroneutrality condition, the approximation of zero charge separation
is made, thus removing the cause of the electric field itself.

Besides this fundamental inconsistency, it has to be pointed out that methods based
on electroneutrality formulate the problem in terms of the electric field. The overpotential,
namely an integral estimation from the electric field, is usually the most valuable information
one seeks. Reconstructing the potential from the electric field, especially in 2D or 3D, may
be not straightforward and accurate.

In this contribution the electric potential is a primary variable and is evaluated directly
in the numerical simulations.

Diffusion and migration have been described constitutively by means of Fick’s law, estab-
lished rigorously from general principles of non-equilibrium thermodynamics. The resulting
governing equations have been expressed in a weak form that is physically equivalent to a
power expenditure, in terms of the thermodynamic variables (concentrations, displacements,
and the electric potential). The discrete counterpart of the weak form can be numerically
solved via finite differences in time and finite elements in space, provided that suitable algo-
rithms are used to handle the resulting non-linear system.

The weak form (4.3) is three-dimensional in nature, i.e. no 1D character influences the
modeling at all as the 2D simulation provided in section 7.2 testifies. Nevertheless, one
dimensional models can be formulated as a restriction of the general framework, as for the
example shown in section 4.6.

Computations, based on Backward Euler and Newton Raphson schemes, show that the
proposed methodology is efficient and reliable. Outcomes match the ones derived in [10].

The assumption of ideal solutions far from saturation has also been investigated. In the
further hypothesis that concentrations are too high to neglect the role of saturation but still
sufficiently low to exclude incomplete dissociation of the Li-salt. This conjecture is confirmed
indeed by the data and the numerical simulations on real batteries.

Constitutive specification detailed in section 4.8 accounts for the saturation contribution.
By comparing it with the mass flux constitutive equation adopted in [128], here formula
(4.34), one notices that saturation has no effect on the diffusivity. Under the assumption
of electroneutrality, it can be assessed that saturation does not impact the concentration
profiles either. Indeed, the electroneutrality condition (2.21) is well approximated during
the simulations and the influence of saturation on the concentration profiles is actually
negligible.

Saturation does affect the electric potential in view of the mass flux equation (4.62) be-
cause it acts as to modify the ionic mobility, in turn inducing a higher potential gradient in
the carried out simulations. Figures 4.13-4.14 confirm that the saturation may increase the
electric potential by about 40% near the cathode for all C-rates. Saturation impacts by a
similar magnitude in the internal entropy production, as conveyed in Figure 4.16.
In conclusion, saturation appears to be an unavoidable feature in a multi scale and multi
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physics approach to battery modeling [8, 9]. Furthermore, the fully three-dimensional formu-
lation that was proposed in [128] and the numerical algorithms that emanate from the weak
form established therein have shown to be robust and capable to include the new constitutive
specifications required to take into account of the saturation.

The ionic transport model has finally been reshaped on solid-electrolytes. Conservation
laws (4.2) have been modified in section 4.11.1 to account for the Li+ ions generated or
consumed by ionization reaction acting as a rate controller. This results in a mass supply
within the mass balance equation for ionic species.
Constitutive specification that include the saturation contribution are still suitable and have
been used to complete the set of governing equations in section 4.8.
Numerical simulations show good agreement between the approach chosen by [21] and the
one at hand.

Active particles have been treated as a binary Larche-Cahn system composed by the
hosting material filled with Lithium and the free interstitial lattice material. The swelling
effect induced by the presence of the Li concentration is accounted for by a constitutive
coupling between Lithium chemical potential and stress tensor through the first invariant.
Active particles have been regarded as conductive material, Ohm’s law has been used in
place of differential Ampère law (2.14) accordingly.
The constitutive theories considered may appear simplistic with respect to the most up to
date literature. The choice was consciously taken to perform a validation within a complex
multiscale/multiphysics framework. More realistic theories will be adopted in future works
inspired by [81, 148], strengthened by analogies with Hydrogen diffusion modeling.
The numerical algorithm descending form weak form (5.36) leads to satisfactory results when
compared to the available analytical solutions, see 5.9.3.

The set of balance equations describing the microscale of a porous electrode, section 3.2.1,
has been completed with constitutive theories detailed in chapters 4 and 5. The governing
equations led to the numerical algorithm detailed in section 6.5. It has been used to simulate
the study case of an all-solid-state battery [21]. The outcomes of the numerical analyses in
terms of Lithium concentration profiles are compatible with the results of [21] despite the
use of a liquid electrolyte model.

The computational homogenization technique presented here may provide a significant
contribute to the multi physics simulation in the fundamental area of the mechanics of energy
storage materials. If it will reach a sufficient maturity and robustness, the scheme can be
attractive even for battery makers companies, interested in capturing a significant part of
the expected strong increase in demand of Li-ion batteries.
The 2D numerical simulations carried out in section 7.2 constitute a significant step towards
the 3D multi scale modeling of Li-ion batteries. Even if a fully coupled two-dimensional
implementation has not been attained during this work, the potentiality of the method is
envisaged and dependence of Li batteries performance on the interaction between micro and
nano-scale phenomena highlighted.
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